Summary on Lecture 3, January 7, 2015

Second Order Recurrence Relations (continuation)

Example: legal arithmetic expressions without parenthesis. In most compute languages, one may use "legal arithmetic expressions without parenthesis". These expressions are made up out of the digits $0,1, \ldots, 9$ and binary symbols $+, *, /$. For example, the expressions $7+8,5+7 * 3,33 * 7+4+6 * 4$ are legal expressions, and the expressions $/ 7+8,5+7 * 3+, 33 * 7+/ 4+6 * 4$ are not.

We denote by a_{n} the number of legal expressions of length n. Then $a_{1}=10$ since the only legal expressions of length 1 are the digits $0,1, \ldots, 9$. Then $a_{2}=100$ which accounts for the expressions $00,01, \ldots, 99$.

Let $n \geq 3$. We observe:
(1) Let x be an arithmetic legal expression of $(n-1)$ symbols. Then the last symbol must be a digit. We add one more digit to the right of x and obtain $10 x$ more legal expressions of the length n.
(2) Let y be an arithmetic legal expression of $(n-2)$ symbols. Then we can add to the right of y one of the following 29 2-symbol expressions: $+0,+1, \ldots,+9, * 0, * 1, \ldots, * 9, / 1, \ldots, / 9$ (no division by 0 is allowed).

We obtain the recurrence relation: $a_{0}=10, a_{1}=10, a_{n}=10 a_{n-1}+29 a_{n-2}$ for $n \geq 3$.
Exercise: Find a closed formula for the recurrence relation: $a_{0}=10, a_{1}=10, a_{n}=10 a_{n-1}+29 a_{n-2}, n \geq 3$.
Example. We would like to find a number of binary sequences of the length n without any consecutive 0 's.
Let a_{n} denote the number of such sequences of length $n \geq 1$. Clearly, if $n=1$, we have 0,1 , i.e., $a_{1}=2$, if $n=2$, we have the sequences $01,10,11$, i.e., $a_{2}=3$.

Let $n \geq 3$. Let $x_{1} \cdots x_{n-2} x_{n-1} x_{n}$ be a sequence like that. There are two cases:
(1) The last symbol $x_{n}=1$. Then the sequence $x_{1} \cdots x_{n-2} x_{n-1}$ has no consecutive 0 's.
(2) The last symbol $x_{n}=0$. Then $x_{n-1}=1$, and the sequence $x_{1} \cdots x_{n-2}$ has no consecutive 0 's.

Thus we conclude that $a_{n}=a_{n-1}+a_{n-2}$. Also we notice that the initial conditions $a_{1}=2, a_{2}=3$ could be replaced by $a_{0}=1, a_{1}=2$. Then $a_{2}=a_{1}+a_{0}=3$.
Exercise: Find a closed formula for the recurrence relation: $a_{0}=1, a_{1}=2, a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$.
The case of complex roots. Let $z=x+i y \in \mathbf{C}$ be a complex number. Then we let $|z|=\sqrt{x^{2}+y^{2}}$, and we can write z as

$$
z=|z|(\cos \theta+i \sin \theta), \quad \cos \theta=\frac{x}{|z|}, \quad \sin \theta=\frac{y}{|z|}
$$

There is a standard notation $e^{i \theta}:=\cos \theta+i \sin \theta$. There is a remarkable formula (DeMoivre Theorem):

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta, \quad \text { or } \quad\left(e^{i \theta}\right)^{n}=e^{i n \theta}
$$

We prove it by induction. Clearly this formula holds for $n=1$. Assume it holds for $n=k$. Then we have:

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{k+1} & =(\cos \theta+i \sin \theta)^{k}(\cos \theta+i \sin \theta) \\
& =(\cos k \theta+i \sin k \theta)(\cos \theta+i \sin \theta) \\
& =(\cos k \theta \cos \theta-\sin k \theta \sin \theta)+i(\cos k \theta \sin \theta+\sin k \theta \cos \theta) \\
& =\cos (k+1) \theta+i \sin (k+1) \theta
\end{aligned}
$$

Here we used the formulas:

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
\end{aligned}
$$

Example. Let $a_{0}=1, a_{1}=2$, and $a_{n}=2 a_{n-1}-2 a_{n-2}$. Then again, we are looking for a solution as $a_{n}=c r^{n}$, $c \neq 0$. We have substitute $a_{n}=c r^{n}$ to our recurrence relation:

$$
c r^{n}=2 c r^{n-1}-2 c r^{n-2} \text { or } r^{2}-2 r+2=0
$$

We find the solutions of the characteristic equation:

$$
r_{1,2}=\frac{2 \pm \sqrt{4-8}}{2}=\frac{2 \pm \sqrt{-4}}{2}=\frac{2 \pm 2 \sqrt{-1}}{2}=1 \pm i
$$

Then we have:

$$
\begin{aligned}
& r_{1}=1+i=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \\
& r_{2}=1-i=\sqrt{2}\left(\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)=\sqrt{2}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)
\end{aligned}
$$

Now we are looking for a solution in the form $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$. We notice the following:

$$
\begin{aligned}
a_{n} & =c_{1}(1+i)^{n}+c_{2}(1-i)^{n} \\
& =c_{1}\left(\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right)^{n}+c_{2}\left(\sqrt{2}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)\right)^{n} \\
& =c_{1}(\sqrt{2})^{n}\left(\cos \frac{n \pi}{4}+i \sin \frac{n \pi}{4}\right)+c_{2}(\sqrt{2})^{n}\left(\cos \frac{n \pi}{4}-i \sin \frac{n \pi}{4}\right) \\
& =(\sqrt{2})^{n}\left(K_{1} \cos \frac{n \pi}{4}+K_{2} \sin \frac{n \pi}{4}\right)
\end{aligned}
$$

where $K_{1}=c_{1}+c_{2}, K_{2}=i\left(c_{1}-c_{2}\right)$. Clearly we would like to find real values of K_{1} and K_{2}. We substitute $n=0$ and $n=1$ to get the system:

$$
\left\{\begin{array} { l l }
{ K _ { 1 } \operatorname { c o s } 0 + K _ { 2 } \operatorname { s i n } 0 } & { = a _ { 0 } = 1 } \\
{ \sqrt { 2 } (K _ { 1 } \operatorname { c o s } \frac { \pi } { 4 } + K _ { 2 } \operatorname { s i n } \frac { \pi } { 4 }) } & { = a _ { 1 } = 2 }
\end{array} \quad \text { or } \quad \left\{\begin{array} { l }
{ K _ { 1 } } \\
{ K _ { 1 } + K _ { 2 } } \\
{ = }
\end{array} \quad 1 \quad \text { or } \left\{\begin{array}{l}
K_{1}=1 \\
K_{2}=1
\end{array}\right.\right.\right.
$$

We obtain the answer:

$$
a_{n}=(\sqrt{2})^{n}\left(\cos \frac{n \pi}{4}+\sin \frac{n \pi}{4}\right)
$$

