Summary on Lecture 2, January 6, 2015

Second Order Recurrence Relations

Example. Consider the sequence defined by $a_{0}=1, a_{1}=-3$, and $a_{n}=6 a_{n-1}-9 a_{n-2}$ for $n \geq 2$. The we try $a_{n}=c r^{n}$ with $c \neq 0$ to get the following characteristic equation: $r^{2}-6 r+9=0$. We obtain the solution $r=r_{1}=r_{2}=3$. We notice that the $a_{n}=c_{1} r^{n}+c_{2} n r^{n}$ satisfies the relation $a_{n}=6 a_{n-1}-9 a_{n-2}$. We notice that $6=2 r$ and $9=r^{2}$. Then, indeed, we have:

$$
\begin{aligned}
c_{1} r^{n}+c_{2} n r^{n} & =6 c_{1} r^{n-1}+6 c_{2}(n-1) r^{n-1}-9 c_{1} r^{n-2}-9 c_{2}(n-2) r^{n-2} \\
& =c_{1}\left(6 r^{n-1}-9 r^{n-2}\right)+c_{2}\left(2(n-1) r \cdot r^{n-1}-(n-2) r^{2} r^{n-2}\right) \\
& =c_{1}\left(6 r^{n-1}-9 r^{n-2}\right)+c_{2} n r^{n}
\end{aligned}
$$

This is true since $r^{n}=6 r^{n-1}-9 r^{n-2}$. Thus $a_{n}=c_{1} r^{n}+c_{2} n r^{n}=c_{1} 3^{n}+c_{2} 3^{n}$ satisfies the relation $a_{n}=$ $6 a_{n-1}-9 a_{n-2}$. Then for $n=0,1$, we obtain:

$$
\left\{\begin{array} { r l }
{ 1 } & { = c _ { 1 } } \\
{ - 3 } & { = 3 c _ { 1 } + 3 c _ { 2 } }
\end{array} \Longrightarrow \left\{\begin{array} { r l }
{ 1 } & { = c _ { 1 } } \\
{ - 1 } & { = 1 + c _ { 2 } }
\end{array} \Longrightarrow \left\{\begin{array}{rll}
1 & =c_{1} \\
-2 & =c_{2}
\end{array}\right.\right.\right.
$$

We obtain the answer $a_{n}=3^{n}-2 n 3^{n}$. This example is a particular case of the following Theorem:
Theorem 2. Let a_{0} and a_{1} are given, and $a_{n}=A a_{n-1}+B a_{n-2}$ be a recurrence relation, $n \geq 2$, where A, B are non-zero constants. Assume that the characteristic equation $r^{2}-A r-B=0$ has one real solution $r \neq 0$ (i.e., $r_{1}=r_{2}=r$) Then $a_{n}=c_{1} r^{n}+c_{2} n r^{n}$, where the constants c_{1} and c_{2} are determined by solving the system $\left\{\begin{array}{l}a_{0}=c_{1} \\ a_{1}=c_{1} r+c_{2} r\end{array}\right.$
Exercise: Prove Theorem 2.
Fibonacci numbers again: nontrivial application. Now we denote by F_{n} the Fibonnaci numbers defined above, i.e. $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Let $\alpha=\frac{1+\sqrt{5}}{2}$. We need the following property:
Lemma 1. $F_{n}>\alpha^{n-2}$ for $n \geq 3$.
Exercise: Prove Lemma 1 by induction.
Let m, k be positive integers, $k \geq 2$, and we look at the division:

$$
m=q \cdot k+r, \quad 0 \leq r<b
$$

Recall that a key to compute $\operatorname{gcd}(m, k)$ is the identity $\operatorname{gcd}(m, k)=\operatorname{gcd}(k, r)$. We organize the Euclidian Algorithm as follows to match the notations from the book.

Let $r_{0}=m, r_{1}=k$. Then we have the divisions:

$$
\begin{array}{lll}
r_{0}=q_{1} r_{1}+r_{2} & 0 \leq r_{2}<r_{1} \\
r_{1}=q_{2} r_{2}+r_{3} & 0 \leq r_{3}<r_{2} \\
r_{2}=q_{3} r_{3}+r_{4} & 0 \leq r_{4}<r_{3} \tag{1}\\
\cdots & \cdots & \cdots \\
r_{n-2}=q_{n-1} r_{n-1}+r_{n} & 0 \leq r_{n}<r_{n-1} \\
r_{n-1}=q_{n} r_{n} &
\end{array}
$$

Then we have the sequence of identities:

$$
\operatorname{gcd}(m, k)=\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\operatorname{gcd}\left(r_{2}, r_{3}\right)=\cdots=\operatorname{gcd}\left(r_{n-1}, r_{n}\right)=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n}
$$

We notice that we have performed n divisions, and every quotient $q_{i} \geq 1$ for all $i=1,2, \ldots, n-1$. Then the $r_{n-1}=q_{n} r_{n}$ and $r_{n}<r_{n-1}$ imply that $q_{n} \geq 2$.

Now we examine the remainders $r_{n}, r_{n-1}, \ldots, r_{2}, r_{1}$ (here $r_{1}=k$). We have:

$$
\begin{array}{llll}
r_{n}>0, \text { i.e. } r_{n} \geq 1 \text { thus } r_{n} \geq F_{2}=1 & \text { i.e. } & r_{n} \geq F_{2} \\
q_{n} \geq 2 \text { and } r_{n} \geq 1 \text { thus } r_{n-1}=q_{n} r_{n} \geq 2 \cdot 1=2=F_{3} & \text { i.e. } & r_{n-1} \geq F_{3} \\
r_{n-2}=q_{n-1} r_{n-1}+r_{n} \geq 1 \cdot r_{n-1}+r_{n} \geq F_{2}+F_{3}=F_{4} & \text { i.e. } & r_{n-2} \geq F_{4} \\
r_{n-3}=q_{n-2} r_{n-2}+r_{n-1} \geq 1 \cdot r_{n-2}+r_{n-1} \geq F_{3}+F_{4}=F_{5} & \text { i.e. } & r_{n-3} \geq F_{5} \\
\ldots \ldots \cdots \cdots & \ldots \cdots \cdots & & \\
r_{2}=q_{3} r_{3}+r_{4} \geq 1 \cdot r_{3}+r_{4} \geq F_{n-1}+F_{n-2}=F_{n} & \text { i.e. } & r_{2} \geq F_{n} \\
r_{1}=q_{2} r_{2}+r_{3} \geq 1 \cdot r_{2}+r_{3} \geq F_{n}+F_{n-1}=F_{n+1} & \text { i.e. } & r_{1} \geq F_{n+1}
\end{array}
$$

Since $k=r_{1}$, we obtain $k \geq F_{n+1}, m \geq k \geq 2$. Lemma 1 then implies that

$$
k \geq F_{n+1} \geq \alpha^{n+1-2}=\alpha^{n-1}, \quad \text { or } \quad \log _{10} k \geq(n-1) \log _{10} \alpha
$$

Then we have that $\log _{10} \alpha=\log _{10}\left(\frac{1+\sqrt{5}}{2}\right)=0.208 \ldots>0.2=\frac{1}{5}$, i.e., $\log _{10} k \geq \frac{n-1}{5}$. This means that if k is such that $10^{s-1} \leq k<10^{s}$, then

$$
s=\log _{10} 10^{s}>\log _{10} k \geq \frac{n-1}{5}, \text { or } n<5 s+1
$$

We proved the following result.
Theorem 3. Let $m \geq k \geq 2$, and k has at most s digits, (i.e., $10^{s-1} \leq k<10^{s}$). Then the Euclidian Algorithm requires at most $5 s$ divisions to compute $\operatorname{gcd}(m, k)$.

