
Math 232, Winter 2015 Boris Botvinnik

Summary on Lecture 2, January 6, 2015

Second Order Recurrence Relations

Example. Consider the sequence defined by a0 = 1, a1 = −3, and an = 6an−1 − 9an−2 for n ≥ 2. The we
try an = crn with c 6= 0 to get the following characteristic equation: r2 − 6r + 9 = 0. We obtain the solution
r = r1 = r2 = 3. We notice that the an = c1r

n + c2nr
n satisfies the relation an = 6an−1 − 9an−2 . We notice

that 6 = 2r and 9 = r2 . Then, indeed, we have:

c1r
n + c2nr

n = 6c1r
n−1 + 6c2(n− 1)rn−1 − 9c1r

n−2 − 9c2(n− 2)rn−2

= c1(6rn−1 − 9rn−2) + c2(2(n− 1)r · rn−1 − (n− 2)r2rn−2)

= c1(6rn−1 − 9rn−2) + c2nr
n.

This is true since rn = 6rn−1 − 9rn−2 . Thus an = c1r
n + c2nr

n = c13n + c23n satisfies the relation an =
6an−1 − 9an−2 . Then for n = 0, 1, we obtain:{

1 = c1
−3 = 3c1 + 3c2

=⇒
{

1 = c1
−1 = 1 + c2

=⇒
{

1 = c1
−2 = c2

We obtain the answer an = 3n − 2n3n . This example is a particular case of the following Theorem:

Theorem 2. Let a0 and a1 are given, and an = Aan−1 + Ban−2 be a recurrence relation, n ≥ 2, where A,B
are non-zero constants. Assume that the characteristic equation r2 − Ar − B = 0 has one real solution r 6= 0
(i.e., r1 = r2 = r ) Then an = c1r

n + c2nr
n , where the constants c1 and c2 are determined by solving the system{

a0 = c1
a1 = c1r + c2r

Exercise: Prove Theorem 2.

Fibonacci numbers again: nontrivial application. Now we denote by Fn the Fibonnaci numbers defined

above, i.e. F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. Let α = 1+
√
5

2 . We need the following property:

Lemma 1. Fn > αn−2 for n ≥ 3.

Exercise: Prove Lemma 1 by induction.

Let m, k be positive integers, k ≥ 2, and we look at the division:

m = q · k + r, 0 ≤ r < b.

Recall that a key to compute gcd(m, k) is the identity gcd(m, k) = gcd(k, r). We organize the Euclidian Algorithm
as follows to match the notations from the book.

Let r0 = m , r1 = k . Then we have the divisions:

r0 = q1r1 + r2 0 ≤ r2 < r1
r1 = q2r2 + r3 0 ≤ r3 < r2
r2 = q3r3 + r4 0 ≤ r4 < r3
· · · · · · · · ·
rn−2 = qn−1rn−1 + rn 0 ≤ rn < rn−1
rn−1 = qnrn

(1)

Then we have the sequence of identities:

gcd(m, k) = gcd(r0, r1) = gcd(r1, r2) = gcd(r2, r3) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn.

We notice that we have performed n divisions, and every quotient qi ≥ 1 for all i = 1, 2, . . . , n − 1. Then the
rn−1 = qnrn and rn < rn−1 imply that qn ≥ 2.
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Now we examine the remainders rn, rn−1, . . . , r2, r1 (here r1 = k ). We have:

rn > 0, i.e. rn ≥ 1 thus rn ≥ F2 = 1 i.e. rn ≥ F2

qn ≥ 2 and rn ≥ 1 thus rn−1 = qnrn ≥ 2 · 1 = 2 = F3 i.e. rn−1 ≥ F3

rn−2 = qn−1rn−1 + rn ≥ 1 · rn−1 + rn ≥ F2 + F3 = F4 i.e. rn−2 ≥ F4

rn−3 = qn−2rn−2 + rn−1 ≥ 1 · rn−2 + rn−1 ≥ F3 + F4 = F5 i.e. rn−3 ≥ F5

· · · · · · · · · · · · · · · · · · · · ·
r2 = q3r3 + r4 ≥ 1 · r3 + r4 ≥ Fn−1 + Fn−2 = Fn i.e. r2 ≥ Fn

r1 = q2r2 + r3 ≥ 1 · r2 + r3 ≥ Fn + Fn−1 = Fn+1 i.e. r1 ≥ Fn+1

Since k = r1 , we obtain k ≥ Fn+1 , m ≥ k ≥ 2. Lemma 1 then implies that

k ≥ Fn+1 ≥ αn+1−2 = αn−1, or log10 k ≥ (n− 1) log10 α

Then we have that log10 α = log10( 1+
√
5

2 ) = 0.208... > 0.2 = 1
5 , i.e., log10 k ≥ n−1

5 . This means that if k is such
that 10s−1 ≤ k < 10s , then

s = log10 10s > log10 k ≥
n− 1

5
, or n < 5s+ 1.

We proved the following result.

Theorem 3. Let m ≥ k ≥ 2, and k has at most s digits, (i.e., 10s−1 ≤ k < 10s ). Then the Euclidian Algorithm
requires at most 5s divisions to compute gcd(m, k).
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