Summary on Lecture 2, January 6, 2015

Second Order Recurrence Relations

Example. Consider the sequence defined by $a_0 = 1$, $a_1 = -3$, and $a_n = 6a_{n-1} - 9a_{n-2}$ for $n \ge 2$. The we try $a_n = cr^n$ with $c \ne 0$ to get the following characteristic equation: $r^2 - 6r + 9 = 0$. We obtain the solution $r = r_1 = r_2 = 3$. We notice that the $a_n = c_1r^n + c_2nr^n$ satisfies the relation $a_n = 6a_{n-1} - 9a_{n-2}$. We notice that 6 = 2r and $9 = r^2$. Then, indeed, we have:

$$c_1 r^n + c_2 n r^n = 6c_1 r^{n-1} + 6c_2 (n-1)r^{n-1} - 9c_1 r^{n-2} - 9c_2 (n-2)r^{n-2}$$

= $c_1 (6r^{n-1} - 9r^{n-2}) + c_2 (2(n-1)r \cdot r^{n-1} - (n-2)r^2 r^{n-2})$
= $c_1 (6r^{n-1} - 9r^{n-2}) + c_2 n r^n.$

This is true since $r^n = 6r^{n-1} - 9r^{n-2}$. Thus $a_n = c_1r^n + c_2nr^n = c_13^n + c_23^n$ satisfies the relation $a_n = 6a_{n-1} - 9a_{n-2}$. Then for n = 0, 1, we obtain:

$$\begin{cases} 1 = c_1 \\ -3 = 3c_1 + 3c_2 \end{cases} \implies \begin{cases} 1 = c_1 \\ -1 = 1 + c_2 \end{cases} \implies \begin{cases} 1 = c_1 \\ -2 = c_2 \end{cases}$$

We obtain the answer $a_n = 3^n - 2n3^n$. This example is a particular case of the following Theorem:

Theorem 2. Let a_0 and a_1 are given, and $a_n = Aa_{n-1} + Ba_{n-2}$ be a recurrence relation, $n \ge 2$, where A, B are non-zero constants. Assume that the characteristic equation $r^2 - Ar - B = 0$ has one real solution $r \ne 0$ (i.e., $r_1 = r_2 = r$) Then $a_n = c_1 r^n + c_2 n r^n$, where the constants c_1 and c_2 are determined by solving the system $\begin{cases} a_0 = c_1 \\ a_1 = c_1 r + c_2 r \end{cases}$

Exercise: Prove Theorem 2.

Fibonacci numbers again: nontrivial application. Now we denote by F_n the Fibonacci numbers defined above, i.e. $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Let $\alpha = \frac{1+\sqrt{5}}{2}$. We need the following property: Lemma 1. $F_n > \alpha^{n-2}$ for $n \ge 3$.

Exercise: Prove Lemma 1 by induction.

Let m, k be positive integers, $k \ge 2$, and we look at the division:

$$m = q \cdot k + r, \quad 0 \le r < b.$$

Recall that a key to compute gcd(m,k) is the identity gcd(m,k) = gcd(k,r). We organize the Euclidian Algorithm as follows to match the notations from the book.

Let $r_0 = m$, $r_1 = k$. Then we have the divisions:

$$\begin{array}{rcl}
r_{0} &=& q_{1}r_{1} + r_{2} & 0 \leq r_{2} < r_{1} \\
r_{1} &=& q_{2}r_{2} + r_{3} & 0 \leq r_{3} < r_{2} \\
r_{2} &=& q_{3}r_{3} + r_{4} & 0 \leq r_{4} < r_{3} \\
\dots & \dots & \dots & \dots \\
r_{n-2} &=& q_{n-1}r_{n-1} + r_{n} & 0 \leq r_{n} < r_{n-1} \\
r_{n-1} &=& q_{n}r_{n}
\end{array} \tag{1}$$

Then we have the sequence of identities:

$$gcd(m,k) = gcd(r_0,r_1) = gcd(r_1,r_2) = gcd(r_2,r_3) = \dots = gcd(r_{n-1},r_n) = gcd(r_n,0) = r_n$$

We notice that we have performed n divisions, and every quotient $q_i \ge 1$ for all i = 1, 2, ..., n - 1. Then the $r_{n-1} = q_n r_n$ and $r_n < r_{n-1}$ imply that $q_n \ge 2$.

Now we examine the remainders $r_n, r_{n-1}, \ldots, r_2, r_1$ (here $r_1 = k$). We have:

$r_n > 0$, i.e. $r_n \ge 1$ thus $r_n \ge F_2 = 1$	i.e.	r_n	\geq	F_2
$q_n \ge 2$ and $r_n \ge 1$ thus $r_{n-1} = q_n r_n \ge 2 \cdot 1 = 2 = F_3$	i.e.	r_{n-1}	\geq	F_3
$r_{n-2} = q_{n-1}r_{n-1} + r_n \ge 1 \cdot r_{n-1} + r_n \ge F_2 + F_3 = F_4$	i.e.	r_{n-2}	\geq	F_4
$r_{n-3} = q_{n-2}r_{n-2} + r_{n-1} \ge 1 \cdot r_{n-2} + r_{n-1} \ge F_3 + F_4 = F_5$	i.e.	r_{n-3}	\geq	F_5
$r_2 = q_3 r_3 + r_4 \ge 1 \cdot r_3 + r_4 \ge F_{n-1} + F_{n-2} = F_n$	i.e.	r_2	\geq	F_n
$r_1 = q_2 r_2 + r_3 \ge 1 \cdot r_2 + r_3 \ge F_n + F_{n-1} = F_{n+1}$	i.e.	r_1	\geq	F_{n+1}

Since $k = r_1$, we obtain $k \ge F_{n+1}$, $m \ge k \ge 2$. Lemma 1 then implies that

$$k \ge F_{n+1} \ge \alpha^{n+1-2} = \alpha^{n-1}$$
, or $\log_{10} k \ge (n-1)\log_{10} \alpha$

Then we have that $\log_{10} \alpha = \log_{10}(\frac{1+\sqrt{5}}{2}) = 0.208... > 0.2 = \frac{1}{5}$, i.e., $\log_{10} k \ge \frac{n-1}{5}$. This means that if k is such that $10^{s-1} \le k < 10^s$, then

$$s = \log_{10} 10^s > \log_{10} k \ge \frac{n-1}{5}$$
, or $n < 5s + 1$.

We proved the following result.

Theorem 3. Let $m \ge k \ge 2$, and k has at most s digits, (i.e., $10^{s-1} \le k < 10^s$). Then the Euclidian Algorithm requires at most 5s divisions to compute gcd(m, k).