Math 232, Winter 2015 Boris Botvinnik

Summary on Lecture 1, January 5, 2015

Recurrence Relations

Warm-up: linear reccurence relations.

(1) Geometric progression. Define a sequence {a,} as follows: ag = A, ap+1 = da,, n > 1. Then we
have:

a1 =dA, as =d*A, a3 =d*A, ... a, =d"A, ...
Thus we have a general formula: a,, = d"A. This is a geometric progression.
Exercise. Prove formula a,, = d*A by induction.

Definition. A reccurence relation a,4+1 — da, = 0, where d is a constant, is called linear relation. More
general, a reccurence relation a,4+1 — da, = f(n), where ¢ is a constant, and f(n) is a function, is called a first
order relation.

(2) Example: Bubble Sort algorithm. Let z1,...,2, be n real numbers. We would like to sort them out
into ascending order. Here is an algorithm known as BubbleSort:
begin(BubbleSort)

for ©:=1 to n—1 do
for j:=mn down to i+ 1 do
if z; <x;—1 then

begin(Interchange)
t:= Tj—1
Tj—1:=Tj
rj=t

end(Interchange)

end(BubbleSort)

First, we would like to understand how does it work. Let us start with the sequence (z1,%2,%3,%4,25) =
(7,9,2,5,8).
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Here we have: for ¢ = 1, 4 comparisons and 2 interchanges, for ¢ = 2, 3 comparisons and 2 interchanges, for
t = 3, 2 comparisons and 1 interchange, for ¢ = 4, 1 comparison and no interchanges.

Now we denote by a,, a total number of comparisons to sort out a sequence (z1,...,z,). First, we can identify
the smallest number: this is done when we run the algorithm for ¢ = 1. Clearly, we use (n — 1) comparisons for
that. Then we obtain the recursion:

ar =0, a,=an_1+(n—1).



We have:

aq = 0

a = a1+ (2-1) - 1

a3 = ax+(3-1) = 1+2

ag = a3+(4—1) = 14+2+3

an, = ap1+(n-1) = 1424+3+---4+(n-1)

The answer: 0 )
n—1)n
an:1+2+3+~--+(n—1)Z(Tzi(nQ—n).
In that case we say that the time-complexity function of that algorithm is O(n?).
Second Order Recurrence Relations. Let {a,} be a Fibonacci sequence, i.e. a9 =0, a; =1, and a, =
Gp—1 + an—o for all n > 2. We would like to find a closed formula for a,’s. Let us try a, = c-r™, where ¢ # 0
and r some real numbers. Then the relation a, = a,—1 + a,—2 gives:

e =" g% n > 2.
We cancel ¢r™? and get the equation 72 =7 +1 or 2 —r — 1 = 0. We find the solutions:

1+5 1+56 1-v5
D) , Or 7 = 9 y = 9 .

= 7‘2
Then both sequences c;r] and cory will satisfy the relation a,, = a,—1+a,—2. Moreover, the sequence c1r"+cory
will satisfy the same relation. The we can find ¢; and c¢s.

We have for n =0 and n = 1:

_ 1
{ 0 = c+e { g = —C { G2 = T
_ _ _ _ 1
1 = c11r1 + cars 1 = 1" C1T2 cT = pep——
Since r; — 19 = /5, we obtain a formula for a,,:
1

ap, = 1717 + cory =

V5

(- (7))

Let a, = Aan_1 + Ba,_o be a second order recurrence relation. Then the equation 2 — Ar — B = 0 is called
a characteristic equation of that relation.

Theorem 1. Let ag and a; are given, and a,, = Aa,_1 + Ba,_o be a recurrence relation, n > 2, where A, B
are non-zero constants. Assume that the characteristic equation 72 — Ar — B = 0 has two real different real
solutions r; and ry. Then a, = c17] + cory, where the constants c¢; and cp are determined by solving the
system { d = c1te
a; = c1rp+care

Proof. Indeed, we look for a solution a, = cr™, then the recurrence realtion a, = Aa,_1 + Ba,_2 gives the
characteristic equation r> — Ar — B = 0. By assumption, there are two two different real solutions, r; and r,
of 7> — Ar — B = 0. Then the sum c¢;77 + cor} will satisfy the recurrence. Finally, we notice that the system

{ Z(l] z Zi:fcﬂz always have a unique solution if r; # ro (Explain why).

Concluding question: How to solve this problem if ry =ry7



