Summary on Lecture 1, January 5, 2015

Recurrence Relations

Warm-up: linear reccurence relations.

(1) Geometric progression. Define a sequence $\left\{a_{n}\right\}$ as follows: $a_{0}=A, a_{n+1}=d a_{n}, n \geq 1$. Then we have:

$$
a_{1}=d A, \quad a_{2}=d^{2} A, \quad a_{3}=d^{3} A, \ldots a_{n}=d^{n} A, \ldots
$$

Thus we have a general formula: $a_{n}=d^{n} A$. This is a geometric progression.
Exercise. Prove formula $a_{n}=d^{n} A$ by induction.
Definition. A reccurence relation $a_{n+1}-d a_{n}=0$, where d is a constant, is called linear relation. More general, a reccurence relation $a_{n+1}-d a_{n}=f(n)$, where c is a constant, and $f(n)$ is a function, is called a first order relation.
(2) Example: Bubble Sort algorithm. Let x_{1}, \ldots, x_{n} be n real numbers. We would like to sort them out into ascending order. Here is an algorithm known as BubbleSort:

```
begin(BubbleSort)
    for i:=1 to n-1 do
        for j:=n down to i+1 do
            if }\mp@subsup{x}{j}{}<\mp@subsup{x}{j-1}{}\mathrm{ then
                begin(Interchange)
                t:= x ( 
                x j-1 := x 
                xj:=t
            end(Interchange)
end(BubbleSort)
```

First, we would like to understand how does it work. Let us start with the sequence $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=$ $(7,9,2,5,8)$.

$i=1$		$j=5$	$j=4$	$j=3$	$j=2$	
x_{1}		7	7	7	2	2
x_{2}		9	9	2	7	7
x_{3}	$:=$	2	2	9	9	9
x_{4}		5	5	5	5	5
x_{5}		8	8	8	8	8

$i=2$		$j=5$	$j=4$	$j=3$	
x_{1}		2	2	2	2
x_{2}		7	7	5	5
x_{3}	$:=$	9	5	7	7
x_{4}		5	9	9	9
x_{5}		8	8	8	8

$i=3$		$j=5$	$j=4$	
x_{1}		2	2	2
x_{2}		5	5	5
x_{3}	$:=$	7	7	7
x_{4}		8	8	8
x_{5}		9	9	9

$i=4$		$j=5$	
x_{1}		2	2
x_{2}		5	5
x_{3}	$:=$	7	7
x_{4}		8	8
x_{5}		9	9

Here we have: for $i=1,4$ comparisons and 2 interchanges, for $i=2,3$ comparisons and 2 interchanges, for $i=3,2$ comparisons and 1 interchange, for $i=4,1$ comparison and no interchanges.

Now we denote by a_{n} a total number of comparisons to sort out a sequence $\left(x_{1}, \ldots, x_{n}\right)$. First, we can identify the smallest number: this is done when we run the algorithm for $i=1$. Clearly, we use ($n-1$) comparisons for that. Then we obtain the recursion:

$$
a_{1}=0, \quad a_{n}=a_{n-1}+(n-1)
$$

We have:

$$
\begin{array}{ll}
a_{1}=0 & \\
a_{2}=a_{1}+(2-1) & =1 \\
a_{3}=a_{2}+(3-1) & =1+2 \\
a_{4}=a_{3}+(4-1)=1+2+3 \\
\cdots & \cdots \\
a_{n}=a_{n-1}+(n-1)=1+2+3+\cdots+(n-1)
\end{array}
$$

The answer:

$$
a_{n}=1+2+3+\cdots+(n-1)=\frac{(n-1) n}{2}=\frac{1}{2}\left(n^{2}-n\right) .
$$

In that case we say that the time-complexity function of that algorithm is $O\left(n^{2}\right)$.
Second Order Recurrence Relations. Let $\left\{a_{n}\right\}$ be a Fibonacci sequence, i.e. $a_{0}=0, a_{1}=1$, and $a_{n}=$ $a_{n-1}+a_{n-2}$ for all $n \geq 2$. We would like to find a closed formula for a_{n} 's. Let us try $a_{n}=c \cdot r^{n}$, where $c \neq 0$ and r some real numbers. Then the relation $a_{n}=a_{n-1}+a_{n-2}$ gives:

$$
c r^{n}=c r^{n-1}+c r^{n-2}, \quad n \geq 2
$$

We cancel $c r^{n-2}$ and get the equation $r^{2}=r+1$ or $r^{2}-r-1=0$. We find the solutions:

$$
r=\frac{1 \pm \sqrt{5}}{2}, \quad \text { or } \quad r_{1}=\frac{1+\sqrt{5}}{2}, \quad r_{2}=\frac{1-\sqrt{5}}{2}
$$

Then both sequences $c_{1} r_{1}^{n}$ and $c_{2} r_{2}^{n}$ will satisfy the relation $a_{n}=a_{n-1}+a_{n-2}$. Moreover, the sequence $c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$ will satisfy the same relation. The we can find c_{1} and c_{2}.

We have for $n=0$ and $n=1$:

$$
\left\{\begin{array} { l }
{ 0 = c _ { 1 } + c _ { 2 } } \\
{ 1 = c _ { 1 } r _ { 1 } + c _ { 2 } r _ { 2 } }
\end{array} \quad \left\{\begin{array} { l l l }
{ c _ { 2 } = } & { - c _ { 1 } } \\
{ 1 } & { = c _ { 1 } r _ { 1 } - c _ { 1 } r _ { 2 } }
\end{array} \quad \left\{\begin{array}{lll}
c_{2} & = & -\frac{1}{r_{1}-r_{2}} \\
c_{1} & = & \frac{1}{r_{1}-r_{2}}
\end{array}\right.\right.\right.
$$

Since $r_{1}-r_{2}=\sqrt{5}$, we obtain a formula for a_{n} :

$$
a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

Let $a_{n}=A a_{n-1}+B a_{n-2}$ be a second order recurrence relation. Then the equation $r^{2}-A r-B=0$ is called a characteristic equation of that relation.

Theorem 1. Let a_{0} and a_{1} are given, and $a_{n}=A a_{n-1}+B a_{n-2}$ be a recurrence relation, $n \geq 2$, where A, B are non-zero constants. Assume that the characteristic equation $r^{2}-A r-B=0$ has two real different real solutions r_{1} and r_{2}. Then $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$, where the constants c_{1} and c_{2} are determined by solving the system $\left\{\begin{array}{l}a_{0}=c_{1}+c_{2} \\ a_{1}=c_{1} r_{1}+c_{2} r_{2}\end{array}\right.$
Proof. Indeed, we look for a solution $a_{n}=c r^{n}$, then the recurrence realtion $a_{n}=A a_{n-1}+B a_{n-2}$ gives the characteristic equation $r^{2}-A r-B=0$. By assumption, there are two two different real solutions, r_{1} and r_{2} of $r^{2}-A r-B=0$. Then the sum $c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$ will satisfy the recurrence. Finally, we notice that the system $\left\{\begin{array}{l}a_{0}=c_{1}+c_{2} \\ a_{1}=c_{1} r_{1}+c_{2} r_{2}\end{array}\right.$ always have a unique solution if $r_{1} \neq r_{2}$ (Explain why).
Concluding question: How to solve this problem if $r_{1}=r_{2}$?

