REVIEW PROBLEMS FOR THE FIRST MIDTERM TEST

1. Find an Euler circuit (if it does exist) in a given graph.
2. Let a_{n} be the number of words of length n in A, B, C, and D with an odd number of B 's. Calculate a_{0}, $a_{1}, a_{2}, a_{3}, a_{4}$. Find a recurrence relation satisfied by a_{n} for all $n \geq 2$.
3. Solve the following recurrence relations:
(a) $a_{n}=a_{n-1}+2 a_{n-2}, n \geq 2$, $a_{0}=1, a_{1}=1$.
(b) $a_{n}=a_{n-1}+a_{n-2}, n \geq 2$, $a_{0}=0, a_{1}=1$.
(c) $a_{n}=6 a_{n-1}+9 a_{n-2}, n \geq 2$, $a_{0}=1, a_{1}=-3$.
(d) $a_{n}=2 a_{n-1}-2 a_{n-2}, n \geq 2$, $a_{0}=0, a_{1}=1$.
4. Compute $(1+i \sqrt{3})^{2018},(1-i)^{2018}$.
5. Use generating functions to solve the following recurrence relations:
(a) $a_{n}-3 a_{n-1}=7 n, n \geq 1$,
$a_{0}=1$.
(b) $a_{n}+a_{n-1}=3 n-5 n^{2}, n \geq 1$, $a_{0}=1$,
(c) $a_{n}+3 a_{n-1}-10 a_{n-2}=3 \cdot 2^{n}, n \geq 2$, $a_{0}=0, a_{1}=6$.
6. Let $F_{n}, n=0,1, \ldots$ be the Fibonacci numbers. Prove that

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\frac{1+\sqrt{5}}{2}
$$

7. Let $F_{n}, n=0,1, \ldots$ be the Fibonacci numbers. Prove that

$$
\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}<F_{n}<\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}, \quad n \geq 3 .
$$

8. Let $\Sigma=\{0,1\}$ be an alphabet, and $A=\{0,01,11\} \subset \Sigma^{*}$ be a language over Σ. Find a number of strings of length n over A.
9. Let a_{n} be the number of words of lenght n in A, B, C, and D with an odd number of B 's. Calculate a_{0}, $a_{1}, a_{2}, a_{3}, a_{4}$. Find a recurrence relation satisfied by a_{n} for all $n \geq 2$.
10. Let $\Sigma=\{0,1\}$ and A_{n} be the set of binary strings of length n which do not contain the string 00 . Find and solve a recurrence relation for $a_{n}=\left|A_{n}\right|$.
11. Let $G=(V, E)$ be a finite graph. Assume $v, v^{\prime} \in V$ are two verices which are connected by some $v-v^{\prime}$-walk. Prove that there exists an $x-x^{\prime}$-path (i.e. a walk which does not visit any vertex more than once).
12. A graph $G=(V, E)$ with 21 edges has seven vertices of degree 1 , three of degree 2 , seven of degree 3 and the rest of degree 4 . How many vertices does it have?
13. Write an algorithm to construct a circuit for a graph G, where all vertices of G have even degree. Explain why does it work.
14. Write an algorithm to construct an Euler circuit for a graph G, where all vertices of G have even degree. Explain why does it work.
