REVIEW PROBLEMS FOR THE FIRST MIDTERM TEST

- 1. Find an Euler circuit (if it does exist) in a given graph.
- **2.** Let a_n be the number of words of length n in A, B, C, and D with an odd number of B's. Calculate a_0 , a_1, a_2, a_3, a_4 . Find a recurrence relation satisfied by a_n for all $n \ge 2$.
- **3.** Solve the following recurrence relations:

(a)
$$a_n = a_{n-1} + 2a_{n-2}, n \ge 2$$

 $a_0 = 1, a_1 = 1.$
(b) $a_n = a_{n-1} + a_{n-2}, n \ge 2,$
 $a_0 = 0, a_1 = 1.$

- (c) $a_n = 6a_{n-1} + 9a_{n-2}, n \ge 2,$ $a_0 = 1, a_1 = -3.$
- (d) $a_n = 2a_{n-1} 2a_{n-2}, n \ge 2,$ $a_0 = 0, a_1 = 1.$
- 4. Compute $(1 + i\sqrt{3})^{2018}$, $(1 i)^{2018}$.
- 5. Use generating functions to solve the following recurrence relations:

2,

(a)
$$a_n - 3a_{n-1} = 7n, n \ge 1,$$

 $a_0 = 1.$
(b) $a_n + a_{n-1} = 3n - 5n^2, n \ge 1,$
 $a_0 = 1,$
(c) $a_n + 3a_{n-1} - 10a_{n-2} = 3 \cdot 2^n, n \ge 2,$
 $a_0 = 0, a_1 = 6.$

6. Let F_n , n = 0, 1, ... be the Fibonacci numbers. Prove that

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{1 + \sqrt{5}}{2}.$$

7. Let F_n , n = 0, 1, ... be the Fibonacci numbers. Prove that

$$(\tfrac{1+\sqrt{5}}{2})^{n-2} < F_n < (\tfrac{1+\sqrt{5}}{2})^{n-1}, \quad n \geq 3.$$

- 8. Let $\Sigma = \{0,1\}$ be an alphabet, and $A = \{0,01,11\} \subset \Sigma^*$ be a language over Σ . Find a number of strings of length n over A.
- **9.** Let a_n be the number of words of lenght n in A, B, C, and D with an odd number of B's. Calculate a_0 , a_1, a_2, a_3, a_4 . Find a recurrence relation satisfied by a_n for all $n \ge 2$.
- 10. Let $\Sigma = \{0,1\}$ and A_n be the set of binary strings of length n which do not contain the string 00. Find and solve a recurrence relation for $a_n = |A_n|$.
- Let G = (V, E) be a finite graph. Assume $v, v' \in V$ are two vertices which are connected by some 11. v - v'-walk. Prove that there exists an x - x'-path (i.e. a walk which does not visit any vertex more than once).
- **12.** A graph G = (V, E) with 21 edges has seven vertices of degree 1, three of degree 2, seven of degree 3 and the rest of degree 4. How many vertices does it have?
- 13. Write an algorithm to construct a circuit for a graph G, where all vertices of G have even degree. Explain why does it work.
- 14. Write an algorithm to construct an Euler circuit for a graph G, where all vertices of G have even degree. Explain why does it work.