REVIEW FOR THE FINAL TEST II:

1. Design a recursive algorithm which for each integer $n>0$ computes such k that $7^{k-1} \leq n<7^{k}$.
2. Let $\Sigma=\{a, b\}$, and Σ^{*} be the language over Σ. Describe recursively the set T of words containing at least one a 's, at least one b 's and where all a 's precede all b 's.
3. Consider the following algorithm:

CON-3[n]:

\{Input: a non-negative integer n \}
\{Output: ????\} \longleftarrow explain
if $n<3$ then
return n
else
return CON-3[n DIV 3] n MOD 3
\{Here n MOD 3 follows the number CON-3[n DIV 3].\}
Does the algorithm CON-3[n] terminate? What is the output if you evaluate CON-3 [101]? CON-3 [99,999]?
4. Let K_{n} be a complete graph with n vertices. For which n the graph K_{n} admits an Euler circuit? Explain in detail.
5. Write the Prim's algorithm. Use Prim's algorithm to find a minimal spanning tree for the following graph:

6. Let Q_{n} be a hypercube.
(a) How many vertices does Q_{n} have?
(b) How many edges does Q_{n} have?
(c) What is a degree of every vertex in Q_{n} ?
(d) When does Q_{n} have an Euler circuit?
7. Find the maximum distance between pairs of vertices in Q_{8}.
8. How many distinct paths of length 2 are there in Q_{n} ?
9. Compute the chromatic plynomial $P\left(Q_{3}, \lambda\right)$.
10. Determine the number of cyles of length 4 in the hypercube Q_{n}.
11. Construct an optimal tree for the following weights $\{2,3,5,7,11,13,17,19,23,29,31,37,41,43\}$.
12. Define a complete binary tree. How many complete binary trees are there with $2 n+1$ vertices?
13. Let $G=(V, G)$ be a graph with no loops and parallel edges, and $|V|=n \geq 3$. Give a detailed proof that if $\operatorname{deg}(v)+\operatorname{deg}(w) \geq n$ for each pair of vertices v and w which are not connected by an edge, then G has a Hamiltonian cycle.
14. Write the Kruskal's algorithm. Use Kruskal's algorithm to find a minimal spanning tree for the weighted graph in problem \# 5 .
15. Define a complete binary tree. How many complete binary trees are there with $2 n+1$ vertices?
16. Let $G=(V, G)$ be a graph with no loops and parallel edges, and $|V|=n \geq 3$. Give a detailed proof that if $\operatorname{deg}(v)+\operatorname{deg}(w) \geq n$ for each pair of vertices v and w which are not connected by an edge, then G has a Hamiltonian cycle.
17. Find chromatic polynomials $P(G, \lambda)$ for the following graphs:
(a)

(b)

18. Prove that any tree has at least two leaves.
19. Let $T=(V, E)$ be a tree. Prove that for any two distinct vertices $v, u \in V$ there is a unique path connecting them.
20. Let $T=(V, E)$ be a tree. Prove that $|V|=|E|+1$.
21. Let T be a complete binary tree.
(a) Prove that it has odd number of vertices.
(b) Assume the height of T is h, and T has ℓ leaves. Prove that $\ell \leq 2^{h}$.
22. Write the expression

$$
\frac{(x-1)\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)-\left(x^{6}-1\right)}{(x-1)^{8}}
$$

in Polish notations.
23. Let $G=(V, E)$ be a finite graph.
(a) Assume that $|V|=|E|+1$ and that G is connected. Prove G is a tree.
(b) Assume that $|V|=|E|+1$. Find an example that G is not a tree.
24. A connected graph $G=(V, E)$ has 2018 edges. What is the maximal value of $|V|$? Give proof and example.
25. Let $G=(V, E)$ be a loop-free connected graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$, where $n \geq 2$, $\operatorname{deg} v_{1}=1$ and $\operatorname{deg} v_{j} \geq 2$ for all $2 \leq j \leq n$. Prove that G must have a cycle.

