
Math 232, Winter 2018 Boris Botvinnik

Summary on Lecture 8, April 16, 2018

Introduction to Graph Theory: more.

We say that two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there are bijections φ : V → V ′ and
Φ : E → E′ , such that for each edge e = {v, u} ∈ E ,

Φ(e) = Φ({v, u}) = {φ(v), φ(u)}.
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Fig. 4. Two isomorphic graphs

It is often useful to count the number of edges attached to a particular vertex. To get the right count, we need to
treat loops differently from edges with two distinct vertices. We define deg(v), the degree of the vertex v ∈ V (G),
to be the number of 2-vertex edges with v as a vertex plus twice the number of loops with v as vertex. If you
think of a picture of G as being like a road map, then the degree of v is simply the number of roads you can take
to leave v , with each loop counting as two roads.

The number Dk(G) of vertices of degree k in G is an isomorphism invariant, as is the degree sequence
(D0(G), D1(G), D2(G), . . .).
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Fig. 5. Isomorphic and non-isomorphic graphs

Exercise 1. Find particular isomorphisms for the graphs G1 , G2 and G3 from Fig. 5. Show that the graphs G1 ,
G2 and G3 are not isomorphic to the graph G4 .

Remark. Notice that the graphs G1 , G2 , G3 and G4 have the same number of vertices of the same degree. Thus
having the same degree sequences does not guarantee that graphs are isomorphic.

Let n be a positive integer. Then a complete graph Kn is a graph with n vertices v1, . . . , vn and
(
n
2

)
edges

ei,j = {v1, vj} , where i 6= j .
A complete graph Kn , contains subgraphs isomorphic to the graphs Km for m = 1, 2, . . . , n . Such a subgraph

can be obtained by selecting any m of the n vertices and using all the edges in Kn joining them. Thus K5

contains
(
5
2

)
= 10 subgraphs isomorphic to K2 ,

(
5
3

)
= 10 subgraphs isomorphic to K3 [i.e., triangles], and

(
5
4

)
= 5

subgraphs isomorphic to K4 . In fact, every graph with n or fewer vertices and with no loops or parallel edges is
isomorphic to a subgraph of Kn ; just delete the unneeded edges from Kn .

Complete graphs have a high degree of symmetry. Each permutation α of the vertices of a complete graph
gives an isomorphism of the graph onto itself, since both {u, v} and {(α(u), α(v)} are edges whenever u 6= v . The
next theorem relates the degrees of vertices to the number of edges of the graph.
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K1 K2 K3 K4 K5 K6

Fig. 6. Complete graphs

Theorem 2. The sum of the degrees of the vertices of a graph G = (V,G) is twice the number of edges, i.e.,∑
v∈V

deg(v) = 2 · |E(G)|.

Proof. Each edge, whether a loop or not, contributes 2 to the degree sum. This is a place where our convention
that each loop contributes 2 to the degree of a vertex pays off. � .

Euler Trails and circuits

The Seven Bridges of Königsberg. The Seven Bridges of Königsberg Problem is a historically important
problem in mathematics. Its negative resolution by Leonhard Euler in 1736 laid the foundations of graph theory
and prefigured the idea of topology.

Fig. 7. The Seven Bridges of Königsberg1

Here is The Seven Bridges of Königsberg Problem: find a walk through the city that would cross each bridge once
and only once, with the conditions that the islands could only be reached by the bridges and every bridge once
accessed must be crossed to its other end.

Since only the connection information is relevant, the shape of pictorial representations of a graph may be distorted
in any way, without changing the graph itself. Thus it is enough to analyze the corresponding graph (on the left of
Fig. 7). A closed walk which uses every edge of G only once is called an Euler circuit.

A key observation due to Euler is that whenever one enters a vertex by a bridge, one leaves the vertex by a bridge.
In our terms, it means that if a graph has an Euler circuit, then a degree of every vertex has to be even. It sounds
too easy, however, there is a remarkable result that this is the only condition for existence of an Euler circuit:

Theorem 3. (Leonard Euler, 1736) Let G be a finite connected graph. Then G has an Euler circuit if and only
if all vertices of G have even degrees.

We prove Theorem 3 later. We say that a walk in a graph G is an Euler trail if it uses every edge of G only once.

1These pictures are taken from Wikipedia
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Corollary 4. Let G be a finite connected graph. Then G has an Euler trail if and only if it has either only two
vertices of odd degree or no vertices of odd degree.

Proof. Suppose that G has an Euler trail starting at v and ending at v′ . If v = v′ , the path is closed and
Theorem 3 says that all vertices have even degree. If v 6= v′ , we create a new edge e joining v and v′ . The new
graph G∪{e} has an Euler circuit consisting of the Euler trail for G followed by e , so all vertices of G∪{e} have
even degree. Then we remove the edge e . Then v and v′ are the only vertices of G = (G ∪ {e}) \ {e} of odd
degree. �

Remark. Returning to The Seven Bridges of Königsberg Problem, we see that there is no an Euler trail for the
graph from Fig. 7. Indeed, all four vertices have odd degree.
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