Summary on Lecture 3, April 4, 2018

We continue with Recurrence Relations

Fibonacci numbers again: nontrivial application. Now we denote by F_{n} the Fibonnaci numbers defined above, i.e. $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Let $\alpha=\frac{1+\sqrt{5}}{2}$. Recall the following property we proved last time:
Lemma 1. $F_{n}>\alpha^{n-2}$ for $n \geq 3$.
Let m, k be positive integers, $k \geq 2$, and we look at the division:

$$
m=q \cdot k+r, \quad 0 \leq r<k
$$

Recall that a key to compute $\operatorname{gcd}(m, k)$ is the identity $\operatorname{gcd}(m, k)=\operatorname{gcd}(k, r)$. We organize the Euclidian Algorithm as follows to match the notations from the book.

Let $r_{0}=m, r_{1}=k$. Then we have the divisions:

$$
\begin{array}{lll}
r_{0} & =q_{1} r_{1}+r_{2} & 0 \leq r_{2}<r_{1} \\
r_{1} & =q_{2} r_{2}+r_{3} & 0 \leq r_{3}<r_{2} \\
r_{2} & =q_{3} r_{3}+r_{4} & 0 \leq r_{4}<r_{3} \tag{1}\\
\cdots & \cdots & \cdots \\
r_{n-2} & =q_{n-1} r_{n-1}+r_{n} & 0 \leq r_{n}<r_{n-1} \\
r_{n-1} & =q_{n} r_{n} &
\end{array}
$$

Then we have the sequence of identities:

$$
\operatorname{gcd}(m, k)=\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\operatorname{gcd}\left(r_{2}, r_{3}\right)=\cdots=\operatorname{gcd}\left(r_{n-1}, r_{n}\right)=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n}
$$

We notice that we have performed n divisions, and every quotient $q_{i} \geq 1$ for all $i=1,2, \ldots, n-1$. Then the $r_{n-1}=q_{n} r_{n}$ and $r_{n}<r_{n-1}$ imply that $q_{n} \geq 2$.

Now we examine the remainders $r_{n}, r_{n-1}, \ldots, r_{2}, r_{1}$ (here $r_{1}=k$). We have:

$$
\begin{array}{llll}
r_{n}>0, \text { i.e. } r_{n} \geq 1 \text { thus } r_{n} \geq F_{2}=1 & \text { i.e. } & r_{n} \geq F_{2} \\
q_{n} \geq 2 \text { and } r_{n} \geq 1 \text { thus } r_{n-1}=q_{n} r_{n} \geq 2 \cdot 1=2=F_{3} & \text { i.e. } & r_{n-1} \geq F_{3} \\
r_{n-2}=q_{n-1} r_{n-1}+r_{n} \geq 1 \cdot r_{n-1}+r_{n} \geq F_{2}+F_{3}=F_{4} & \text { i.e. } & r_{n-2} \geq F_{4} \\
r_{n-3}=q_{n-2} r_{n-2}+r_{n-1} \geq 1 \cdot r_{n-2}+r_{n-1} \geq F_{3}+F_{4}=F_{5} & \text { i.e. } & r_{n-3} \geq F_{5} \\
\ldots \ldots \cdots \cdots & \ldots \cdots . & & \\
r_{2}=q_{3} r_{3}+r_{4} \geq 1 \cdot r_{3}+r_{4} \geq F_{n-1}+F_{n-2}=F_{n} & \text { i.e. } & r_{2} \geq F_{n} \\
r_{1}=q_{2} r_{2}+r_{3} \geq 1 \cdot r_{2}+r_{3} \geq F_{n}+F_{n-1}=F_{n+1} & \text { i.e. } & r_{1} \geq F_{n+1}
\end{array}
$$

Since $k=r_{1}$, we obtain $k \geq F_{n+1}, m \geq k \geq 2$. Lemma 1 then implies that

$$
k \geq F_{n+1} \geq \alpha^{n+1-2}=\alpha^{n-1}, \quad \text { or } \quad \log _{10} k \geq(n-1) \log _{10} \alpha
$$

Then we have that $\log _{10} \alpha=\log _{10}\left(\frac{1+\sqrt{5}}{2}\right)=0.208 \ldots>0.2=\frac{1}{5}$, i.e., $\log _{10} k \geq \frac{n-1}{5}$. This means that if k is such that $10^{s-1} \leq k<10^{s}$, then

$$
s=\log _{10} 10^{s}>\log _{10} k \geq \frac{n-1}{5}, \text { or } n<5 s+1
$$

We proved the following result.
Theorem 3. Let $m \geq k \geq 2$. Assume k has at most s digits, (i.e., $10^{s-1} \leq k<10^{s}$). Then the Euclidian Algorithm requires at most $5 s$ divisions to compute $\operatorname{gcd}(m, k)$.

Example: legal arithmetic expressions without parenthesis. In most computing languages, it important to use "legal arithmetic expressions without parenthesis". These expressions are made up out of the digits $0,1, \ldots$, 9 and binary symbols $+, *, /$. For example, the expressions $7+8,5+7 * 3,33 * 7+4+6 * 4$ are legal expressions, and the expressions $/ 7+8,5+7 * 3+, 33 * 7+/ 4+6 * 4$ are not.

We denote by a_{n} the number of legal expressions of length n. Then $a_{1}=10$ since the only legal expressions of length 1 are the digits $0,1, \ldots, 9$. Then $a_{2}=100$ which accounts for the expressions $00,01, \ldots, 99$.

Let $n \geq 3$. We observe:
(1) Let x be an arithmetic legal expression of $(n-1)$ symbols. Then the last symbol must be a digit. We add one more digit to the right of x and obtain $10 x$ more legal expressions of the length n.
(2) Let y be an arithmetic legal expression of $(n-2)$ symbols. Then we can add to the right of y one of the following 29 2-symbol expressions: $+0,+1, \ldots,+9, * 0, * 1, \ldots, * 9, / 1, \ldots, / 9$ (no division by 0 is allowed).

We obtain the recurrence relation: $a_{1}=10, a_{2}=100, a_{n}=10 a_{n-1}+29 a_{n-2}$ for $n \geq 3$. We notice that $a_{0}=0$, indeed, $100=a_{2}=10 \cdot a_{1}+29 \cdot a_{0}=10 \cdot 10+29 \cdot a_{0}$. i.e., $a_{0}=0$.

Exercise: Find a closed formula for the recurrence relation: $a_{0}=0, a_{1}=10, a_{n}=10 a_{n-1}+29 a_{n-2}, n \geq 2$.
Example. We would like to find a number of binary sequences of the length n without any consecutive 0 's.
Let a_{n} denote the number of such sequences of length $n \geq 1$. Clearly, if $n=1$, we have 0 , 1 , i.e., $a_{1}=2$, if $n=2$, we have the sequences $01,10,11$, i.e., $a_{2}=3$.

Let $n \geq 3$. Let $x_{1} \cdots x_{n-2} x_{n-1} x_{n}$ be a sequence like that. There are two cases:
(1) The last symbol $x_{n}=1$. Then the sequence $x_{1} \cdots x_{n-2} x_{n-1}$ has no consecutive 0 's.
(2) The last symbol $x_{n}=0$. Then $x_{n-1}=1$, and the sequence $x_{1} \cdots x_{n-2}$ has no consecutive 0 's.

Thus we conclude that $a_{n}=a_{n-1}+a_{n-2}$. Also we notice that the initial conditions $a_{1}=2, a_{2}=3$ could be replaced by $a_{0}=1, a_{1}=2$. Then $a_{2}=a_{1}+a_{0}=3$.

Exercise: Find a closed formula for the recurrence relation: $a_{0}=1, a_{1}=2, a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 2$.

