
Math 232, Spring 2018 Boris Botvinnik

Summary on Lecture 3, April 4, 2018

We continue with Recurrence Relations

Fibonacci numbers again: nontrivial application. Now we denote by Fn the Fibonnaci numbers defined

above, i.e. F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. Let α = 1+
√
5

2 . Recall the following property we
proved last time:
Lemma 1. Fn > αn−2 for n ≥ 3.

Let m, k be positive integers, k ≥ 2, and we look at the division:

m = q · k + r, 0 ≤ r < k.

Recall that a key to compute gcd(m, k) is the identity gcd(m, k) = gcd(k, r). We organize the Euclidian Algorithm
as follows to match the notations from the book.

Let r0 = m , r1 = k . Then we have the divisions:

r0 = q1r1 + r2 0 ≤ r2 < r1
r1 = q2r2 + r3 0 ≤ r3 < r2
r2 = q3r3 + r4 0 ≤ r4 < r3
· · · · · · · · ·
rn−2 = qn−1rn−1 + rn 0 ≤ rn < rn−1
rn−1 = qnrn

(1)

Then we have the sequence of identities:

gcd(m, k) = gcd(r0, r1) = gcd(r1, r2) = gcd(r2, r3) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn.

We notice that we have performed n divisions, and every quotient qi ≥ 1 for all i = 1, 2, . . . , n − 1. Then the
rn−1 = qnrn and rn < rn−1 imply that qn ≥ 2.

Now we examine the remainders rn, rn−1, . . . , r2, r1 (here r1 = k ). We have:

rn > 0, i.e. rn ≥ 1 thus rn ≥ F2 = 1 i.e. rn ≥ F2

qn ≥ 2 and rn ≥ 1 thus rn−1 = qnrn ≥ 2 · 1 = 2 = F3 i.e. rn−1 ≥ F3

rn−2 = qn−1rn−1 + rn ≥ 1 · rn−1 + rn ≥ F2 + F3 = F4 i.e. rn−2 ≥ F4

rn−3 = qn−2rn−2 + rn−1 ≥ 1 · rn−2 + rn−1 ≥ F3 + F4 = F5 i.e. rn−3 ≥ F5

· · · · · · · · · · · · · · · · · · · · ·
r2 = q3r3 + r4 ≥ 1 · r3 + r4 ≥ Fn−1 + Fn−2 = Fn i.e. r2 ≥ Fn

r1 = q2r2 + r3 ≥ 1 · r2 + r3 ≥ Fn + Fn−1 = Fn+1 i.e. r1 ≥ Fn+1

Since k = r1 , we obtain k ≥ Fn+1 , m ≥ k ≥ 2. Lemma 1 then implies that

k ≥ Fn+1 ≥ αn+1−2 = αn−1, or log10 k ≥ (n− 1) log10 α

Then we have that log10 α = log10( 1+
√
5

2 ) = 0.208... > 0.2 = 1
5 , i.e., log10 k ≥ n−1

5 . This means that if k is such
that 10s−1 ≤ k < 10s , then

s = log10 10s > log10 k ≥ n− 1

5
, or n < 5s+ 1.

We proved the following result.

Theorem 3. Let m ≥ k ≥ 2. Assume k has at most s digits, (i.e., 10s−1 ≤ k < 10s ). Then the Euclidian
Algorithm requires at most 5s divisions to compute gcd(m, k).
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Example: legal arithmetic expressions without parenthesis. In most computing languages, it important
to use “legal arithmetic expressions without parenthesis”. These expressions are made up out of the digits 0,1,. . . ,
9 and binary symbols +, ∗, / . For example, the expressions 7 + 8, 5 + 7∗3, 33∗7 + 4 + 6∗4 are legal expressions,
and the expressions /7 + 8, 5 + 7 ∗ 3+, 33 ∗ 7 + /4 + 6 ∗ 4 are not.

We denote by an the number of legal expressions of length n . Then a1 = 10 since the only legal expressions
of length 1 are the digits 0, 1, . . . , 9. Then a2 = 100 which accounts for the expressions 00, 01, . . . , 99.

Let n ≥ 3. We observe:

(1) Let x be an arithmetic legal expression of (n − 1) symbols. Then the last symbol must be a digit. We
add one more digit to the right of x and obtain 10x more legal expressions of the length n .

(2) Let y be an arithmetic legal expression of (n− 2) symbols. Then we can add to the right of y one of the
following 29 2-symbol expressions: +0, +1, . . . , +9, ∗0, ∗1, . . . , ∗9, /1, . . . , /9 (no division by 0 is allowed).

We obtain the recurrence relation: a1 = 10, a2 = 100, an = 10an−1 + 29an−2 for n ≥ 3. We notice that
a0 = 0, indeed, 100 = a2 = 10 · a1 + 29 · a0 = 10 · 10 + 29 · a0 . i.e., a0 = 0.

Exercise: Find a closed formula for the recurrence relation: a0 = 0, a1 = 10, an = 10an−1 + 29an−2 , n ≥ 2.

Example. We would like to find a number of binary sequences of the length n without any consecutive 0’s.
Let an denote the number of such sequences of length n ≥ 1. Clearly, if n = 1, we have 0, 1, i.e., a1 = 2, if

n = 2, we have the sequences 01, 10, 11, i.e., a2 = 3.
Let n ≥ 3. Let x1 · · ·xn−2xn−1xn be a sequence like that. There are two cases:

(1) The last symbol xn = 1. Then the sequence x1 · · ·xn−2xn−1 has no consecutive 0’s.

(2) The last symbol xn = 0. Then xn−1 = 1, and the sequence x1 · · ·xn−2 has no consecutive 0’s.

Thus we conclude that an = an−1 + an−2 . Also we notice that the initial conditions a1 = 2, a2 = 3 could be
replaced by a0 = 1, a1 = 2. Then a2 = a1 + a0 = 3.

Exercise: Find a closed formula for the recurrence relation: a0 = 1, a1 = 2, an = an−1 + an−2 for n ≥ 2.
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