Summary on Lecture 3, April 4, 2018

We continue with Recurrence Relations

Fibonacci numbers again: nontrivial application. Now we denote by F_n the Fibonnaci numbers defined above, i.e. $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Let $\alpha = \frac{1+\sqrt{5}}{2}$. Recall the following property we proved last time:

Lemma 1. $F_n > \alpha^{n-2}$ for $n \ge 3$.

Let m, k be positive integers, $k \ge 2$, and we look at the division:

$$m = q \cdot k + r, \quad 0 \le r < k.$$

Recall that a key to compute gcd(m,k) is the identity gcd(m,k) = gcd(k,r). We organize the Euclidian Algorithm as follows to match the notations from the book.

Let $r_0 = m$, $r_1 = k$. Then we have the divisions:

$$\begin{aligned}
 r_0 &= q_1 r_1 + r_2 & 0 \le r_2 < r_1 \\
 r_1 &= q_2 r_2 + r_3 & 0 \le r_3 < r_2 \\
 r_2 &= q_3 r_3 + r_4 & 0 \le r_4 < r_3 \\
 \dots & \dots & \dots \\
 r_{n-2} &= q_{n-1} r_{n-1} + r_n & 0 \le r_n < r_{n-1} \\
 r_{n-1} &= q_n r_n
 \end{aligned}$$
(1)

Then we have the sequence of identities:

$$gcd(m,k) = gcd(r_0,r_1) = gcd(r_1,r_2) = gcd(r_2,r_3) = \dots = gcd(r_{n-1},r_n) = gcd(r_n,0) = r_n.$$

We notice that we have performed n divisions, and every quotient $q_i \ge 1$ for all i = 1, 2, ..., n - 1. Then the $r_{n-1} = q_n r_n$ and $r_n < r_{n-1}$ imply that $q_n \ge 2$.

Now we examine the remainders $r_n, r_{n-1}, \ldots, r_2, r_1$ (here $r_1 = k$). We have:

$r_n > 0$, i.e. $r_n \ge 1$ thus $r_n \ge F_2 = 1$	i.e.	r_n	\geq	F_2
$q_n \ge 2$ and $r_n \ge 1$ thus $r_{n-1} = q_n r_n \ge 2 \cdot 1 = 2 = F_3$	i.e.	r_{n-1}	\geq	F_3
$r_{n-2} = q_{n-1}r_{n-1} + r_n \ge 1 \cdot r_{n-1} + r_n \ge F_2 + F_3 = F_4$	i.e.	r_{n-2}	\geq	F_4
$r_{n-3} = q_{n-2}r_{n-2} + r_{n-1} \ge 1 \cdot r_{n-2} + r_{n-1} \ge F_3 + F_4 = F_5$	i.e.	r_{n-3}	\geq	F_5
•••••	• • • • • •			
$r_2 = q_3 r_3 + r_4 \ge 1 \cdot r_3 + r_4 \ge F_{n-1} + F_{n-2} = F_n$	i.e.	r_2	\geq	F_n
$r_1 = q_2 r_2 + r_3 \ge 1 \cdot r_2 + r_3 \ge F_n + F_{n-1} = F_{n+1}$	i.e.	r_1	\geq	F_{n+1}

Since $k = r_1$, we obtain $k \ge F_{n+1}$, $m \ge k \ge 2$. Lemma 1 then implies that

$$k \ge F_{n+1} \ge \alpha^{n+1-2} = \alpha^{n-1}$$
, or $\log_{10} k \ge (n-1) \log_{10} \alpha$

Then we have that $\log_{10} \alpha = \log_{10}(\frac{1+\sqrt{5}}{2}) = 0.208... > 0.2 = \frac{1}{5}$, i.e., $\log_{10} k \ge \frac{n-1}{5}$. This means that if k is such that $10^{s-1} \le k < 10^s$, then

$$s = \log_{10} 10^s > \log_{10} k \ge \frac{n-1}{5}$$
, or $n < 5s + 1$.

We proved the following result.

Theorem 3. Let $m \ge k \ge 2$. Assume k has at most s digits, (i.e., $10^{s-1} \le k < 10^s$). Then the Euclidian Algorithm requires at most 5s divisions to compute gcd(m,k).

Example: legal arithmetic expressions without parenthesis. In most computing languages, it important to use "legal arithmetic expressions without parenthesis". These expressions are made up out of the digits $0,1,\ldots$, 9 and binary symbols +, *, /. For example, the expressions 7+8, 5+7*3, 33*7+4+6*4 are legal expressions, and the expressions /7+8, 5+7*3+, 33*7+/4+6*4 are not.

We denote by a_n the number of legal expressions of length n. Then $a_1 = 10$ since the only legal expressions of length 1 are the digits $0, 1, \ldots, 9$. Then $a_2 = 100$ which accounts for the expressions $00, 01, \ldots, 99$.

Let $n \geq 3$. We observe:

(1) Let x be an arithmetic legal expression of (n-1) symbols. Then the last symbol must be a digit. We add one more digit to the right of x and obtain 10x more legal expressions of the length n.

(2) Let y be an arithmetic legal expression of (n-2) symbols. Then we can add to the right of y one of the following 29 2-symbol expressions: $+0, +1, \ldots, +9, *0, *1, \ldots, *9, /1, \ldots, /9$ (no division by 0 is allowed).

We obtain the recurrence relation: $a_1 = 10$, $a_2 = 100$, $a_n = 10a_{n-1} + 29a_{n-2}$ for $n \ge 3$. We notice that $a_0 = 0$, indeed, $100 = a_2 = 10 \cdot a_1 + 29 \cdot a_0 = 10 \cdot 10 + 29 \cdot a_0$. i.e., $a_0 = 0$.

Exercise: Find a closed formula for the recurrence relation: $a_0 = 0$, $a_1 = 10$, $a_n = 10a_{n-1} + 29a_{n-2}$, $n \ge 2$.

Example. We would like to find a number of binary sequences of the length n without any consecutive 0's.

Let a_n denote the number of such sequences of length $n \ge 1$. Clearly, if n = 1, we have 0, 1, i.e., $a_1 = 2$, if n = 2, we have the sequences 01, 10, 11, i.e., $a_2 = 3$.

Let $n \ge 3$. Let $x_1 \cdots x_{n-2} x_{n-1} x_n$ be a sequence like that. There are two cases:

- (1) The last symbol $x_n = 1$. Then the sequence $x_1 \cdots x_{n-2} x_{n-1}$ has no consecutive 0's.
- (2) The last symbol $x_n = 0$. Then $x_{n-1} = 1$, and the sequence $x_1 \cdots x_{n-2}$ has no consecutive 0's.

Thus we conclude that $a_n = a_{n-1} + a_{n-2}$. Also we notice that the initial conditions $a_1 = 2$, $a_2 = 3$ could be replaced by $a_0 = 1$, $a_1 = 2$. Then $a_2 = a_1 + a_0 = 3$.

Exercise: Find a closed formula for the recurrence relation: $a_0 = 1$, $a_1 = 2$, $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$.