Math 232, Spring 2018 Boris Botvinnik

Summary on Lecture 3, April 4, 2018

We continue with Recurrence Relations

Fibonacci numbers again: nontrivial application. Now we denote by F, the Fibonnaci numbers defined

above, i.e. Fp =0, Fy =1 and F,, = F,,_1 + Fj,_o for n > 2. Let a = 1+T\/5 Recall the following property we
proved last time:
Lemma 1. F,, > o™ 2 for n > 3.

Let m, k be positive integers, k > 2, and we look at the division:
m=q-k+r, 0<r<k.

Recall that a key to compute ged(m, k) is the identity ged(m, k) = ged(k,r). We organize the Euclidian Algorithm
as follows to match the notations from the book.

Let ro = m, r1 = k. Then we have the divisions:

To = qr1+712 0<ra<m
81 = (@or2+T3 0<rs<r
T2 = q3r3+T4 0<ry<rs
L . (1)

Tn—2 = (Qn-1Tn—-1+7Tn 0 <rp <Tp_i
Tm—1 = {nTn

Then we have the sequence of identities:

ged(m, k) = ged(rg, 1) = ged(ry, r2) = ged(ra,r3) = -+ - = ged(rp—1, ) = ged(ry, 0) = 1.
We notice that we have performed n divisions, and every quotient ¢; > 1 for all ¢ = 1,2,...,n — 1. Then the

Tn_1 = qnry and r, < r,_1 imply that ¢, > 2.

Now we examine the remainders r,,7,-1,...,72,71 (here r1 = k). We have:
rp, >0, ie. 7, > 1thusr, > F, =1 i.e. Tn > Fy
qgn>2and r, > 1thusr,_ 1 =qurp >2-1=2=Fj i.e. o1 > Fj3
Th2=Gqn 1Tn 1+ =1 -1 1+r, > Fo+F3=F, ie. Tno2 > Fy
Tn-3 = (Qn-2Tn—2+7Tpn—1 > 1-rp_o+r,_1 > F3+Fy=1F5 ie. rn_3 = F5
ro=q3r3+ra>1l-r3+ry>2F, 1 +F, 2o=F, ie. ro > Iy
ri=qaro+132>1-104+13>F, +F,_1=F,1 ie. > Fhon

Since k = ry, we obtain k > Fj,41, m > k > 2. Lemma 1 then implies that

E>Fo>a"™ 72 =a""1 or loggk > (n—1)log,,a

Then we have that log,, o = 1og10(1+2‘/5) =0.208..> 02 =1, ie, logok > “=L. This means that if k is such
that 105~ < k < 10°, then

-1
s = logq 10° > log,o k > nT, or n<5s+1

We proved the following result.

Theorem 3. Let m > k > 2. Assume k has at most s digits, (i.e., 10571 < k < 10%). Then the Euclidian
Algorithm requires at most 5s divisions to compute ged(m, k).



Example: legal arithmetic expressions without parenthesis. In most computing languages, it important
to use “legal arithmetic expressions without parenthesis”. These expressions are made up out of the digits 0,1.. . .,
9 and binary symbols +, x, /. For example, the expressions 748, 5+7%3, 33x7+4+6x4 are legal expressions,
and the expressions /7+8, 5+ 734+, 337+ /44 6 x4 are not.

We denote by a,, the number of legal expressions of length n. Then a; = 10 since the only legal expressions
of length 1 are the digits 0,1,...,9. Then as = 100 which accounts for the expressions 00, 01, ..., 99.

Let n > 3. We observe:

(1) Let « be an arithmetic legal expression of (n — 1) symbols. Then the last symbol must be a digit. We
add one more digit to the right of z and obtain 10z more legal expressions of the length n.

(2) Let y be an arithmetic legal expression of (n — 2) symbols. Then we can add to the right of y one of the
following 29 2-symbol expressions: +0, +1, ..., +9, %0, «1, ..., %9, /1, ..., /9 (no division by 0 is allowed).

We obtain the recurrence relation: a; = 10, as = 100, a,, = 10a,,_1 + 29a,,_o for n > 3. We notice that
ap =0, indeed, 100 =a; =10-a1 +29-a9=10-104+29 - ag. i.e., ag =0.

Exercise: Find a closed formula for the recurrence relation: ag =0, ay = 10, a, = 10a,,_1 + 29a,_2, n > 2.

Example. We would like to find a number of binary sequences of the length n without any consecutive 0’s.
Let a, denote the number of such sequences of length n > 1. Clearly, if n =1, we have 0, 1, i.e., a; = 2, if
n = 2, we have the sequences 01, 10, 11, i.e., ay = 3.
Let n>3. Let x1---x,_22,_17, be a sequence like that. There are two cases:

(1) The last symbol z,, = 1. Then the sequence 7 - -+ &, _22,_1 has no consecutive 0’s.
(2) The last symbol z, = 0. Then z,_; = 1, and the sequence z; - - - x,,—2 has no consecutive 0’s.

Thus we conclude that a,, = a,—_1 + a,,—2. Also we notice that the initial conditions a; = 2, as = 3 could be
replaced by ap =1, a; = 2. Then as = a1 + ag = 3.

Exercise: Find a closed formula for the recurrence relation: ag =1, a1 =2, ap = an_1 + an_o for n > 2.



