
Math 232, Spring 2018 Boris Botvinnik

Summary on Lecture 17, May 14, 2018

Weighted Trees

A weighted tree is a finite rooted tree (T, v) in which each leaf is assigned a weight (i.e. a non-negative number)
of this leaf.

Let T have t leaves whose weights are w1, w2, . . . , wt . We loose no generality if we assume that

0 ≤ w1 ≤ w2 ≤ · · · ≤ wt.

We will label the leaves by their weights, and will refer to a leaf by its weight. Let `1, `2, . . . , `t be the corresponding
levels of the leaves. Then the weight W (T) of the tree T is defined as the sum:

W (T) =

t∑
i=1

wi`i.

Example. (a) The six leaves of the weighted tree in Fig. 1(a) have weights 2, 4, 6, 7, 7, and 9. Thus w1 = 2,
w2 = 4, w3 = 6, w4 = 7, w5 = 7, and w6 = 9.

2 6 4 7 7 2 4 2

9 7

4 7

6 9 6

9 7 7

(a) (b) (c)

Fig. 1.

There are two leaves labeled 7, and it does not matter which we regard as w4 and which we regard as w5 . For
definiteness, we let w4 represent the leaf labeled 7 at level 2. Then the level numbers are `1 = 3, `2 = 1, `3 = 3,
`4 = 2, `5 = 1, and `6 = 2. Hence

W (T) =

6∑
i=1

wi · `i = 2 · 3 + 4 · 1 + 6 · 3 + 7 · 2 + 7 · 1 + 9 · 2 = 67.

(b) The same six weights can be placed on a binary tree, as in Fig. 1(b) for instance. Now the level numbers are
`1 = 3, `2 = 3, `3 = 2, `4 = `5 = 3, and `6 = 2, so

W (T) =

6∑
i=1

wi · `i = 2 · 3 + 4 · 3 + 6 · 2 + 7 · 3 + 7 · 3 + 9 · 2 = 90.

(c) Fig. l(c) shows another binary tree with these weights. Its weight is

W (T) =

6∑
i=1

wi · `i = 2 · 4 + 4 · 4 + 6 · 3 + 7 · 2 + 7 · 2 + 9 · 2 = 88.

1

The total weight is less than that in part (b), because the heavier leaves are near the root and the lighter ones
are farther away.

Remark. We are often interested in binary trees with minimum weight. If we omit the binary require-
ment and allow many weights near the root, as in part (a), then we can get the lowest possible weight by placing

all the weights on leaves at level 1 so that W (T) =
∑6

i=1 1 · wi . For weights 2, 4, 6, 7, 7, and 9, this gives a tree
of weight 35. Such weighted trees are not interesting for us, since they won’t help us solve any interesting
problems.

Merge and Sort. Consider a collection of sorted lists, say L1, L2, . . . , Ln . For example, each list Li could be
an alphabetically sorted mailing list of clients or a pile of exam papers arranged in increasing order of grades.
To illustrate the ideas involved, we suppose that each list is a set of real numbers arranged by the usual order
“≤ . Also we suppose that we can merge lists together only two at a time to produce new lists. Our problem
is to determine how to merge the n lists most efficiently to produce a single sorted list. Two lists are merged by
comparing the first numbers of both lists and selecting the smaller of the two (either one if they are equal). The
selected number is removed and becomes the first member of the merged list, and the process is repeated for the
two lists that remain. The next number selected is placed second on the merged list, and so on. The process ends
when one of the remaining lists is empty.

Let |L| be the length of the list L . We notice that to merge two lists L and L′ , it takes at most |L|+ |L′| − 1
comparisons. Indeed, let L = {4, 8, 9} and L′ = {3, 6, 10, 11} . We compare first two numbers and select the
smaller of the two: here we get 3 and put it on new list L ∪ L′ := {3} , and then we compare new remaining
lists L = {4, 8, 9} and L′ = {6, 10, 11} . Then we choose 4, and redefine L ∪ L′ := {3, 4} , L = {8, 9} and
L′ = {6, 10, 11} , and so on. Thus here we will need at most 3 + 4− 1 comparisons (we do not need to compare
the last number).

We observe that a merging of n lists in pairs involves n− 1 merges. Suppose, for example, that we have five lists
L1 , L2 , L3 , L4 , and L5 with |L1| = 15, |L2| = 22, |L3| = 31, |L4| = 34, and |L5| = 42 and suppose that they
are merged as it is shown in Fig. 2 (a):

|L3| |L5||L3| |L4|

|L2| |L1| |L4||L2| |L1| |L5|

(a) (b)

Fig. 2.

Then we find a total number of camparisons to create a final list L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 :

W (T)− 4 = 2 · |L1|+ 2 · |L2|+ 3 · |L3|+ 3 · |L4|+ 2 · |L1| − 4 = 2 · 15 + 2 · 22 + 3 · 31 + 3 · 34 + 2 · 42− 4 = 349.

On the other hand, if we use the merging scheme given by Fig. 2 (b), we get the following total:

W (T)− 4 = 2 · |L1|+ 2 · |L2|+ 3 · |L3|+ 3 · |L4|+ 2 · |L1| − 4 = 2 · 15 + 2 · 22 + 3 · 31 + 2 · 34 + 3 · 42− 4 = 363.

Thus if we use a binary weighted tree T with n leaves and weights |L1|, . . . , |Ln| , the we need at most W (T)−
(n− 1) comparisons.

2

Let L = (w1, . . . , wt) be a list of weights. We say that a binary weighted tree T is optimal for the weights
L = (w1, . . . , wt) if W (T) ≤W (T ′) for any weighted tree T ′ with the same weights L = (w1, . . . , wt).

Here is the algorithm to find an optimal tree for a given list of weights:

Huffman(L = {w1, w2, . . . , wk}):
{Input: A list of weights: L = {w1, w2, . . . , wk}, k ≥ 2}
{Output: an optimal tree T (L)}
if k = 2 then

return the tree

w2w1

else

Choose two smallest weights u and v of L.
Make a list L′ by removing the elements u and v and adding the element u + v.
Let T (L′) :=Huffman(L′).
Form a tree T (L) from T (L′) by replacing a leaf of weight u + v
by a subtree with two leaves of weights u and v.

return T (L).

Now we returen to the example above to merge the lists L1 , L2 , L3 , L4 , and L5 with |L1| = 15, |L2| = 22,
|L3| = 31, |L4| = 34, and |L5| = 42. We run the algorithm Huffman(L = {15, 22, 31, 34, 42}) and we get the
following weighted tree:

|L1|=15 |L2|=22

|L5|=42 |L4|=34 |L3|=31

Fig. 3.

We get the the following total number of comparisons:

W (T)− 4 = 3 · |L1|+ 3 · |L2|+ 2 · |L3|+ 2 · |L4|+ 2 · |L1| − 4 = 3 · 15 + 3 · 22 + 2 · 31 + 2 · 34 + 2 · 42− 4 = 321.

3

