Summary on Lecture 14, May 4, 2018

Trees: definitions and basic properties

Definition. A connected graph $G=(V, E)$ is a tree if G has no cycles.
Theorem 1. Let $T=(V, E)$ be a tree, and $v, v^{\prime} \in V(T)$. Then there exists a unique path from v to v^{\prime}.
Proof. Assume there are two different paths connecting v and v^{\prime}. Then there is a cycle.
Definition. Let $G=(V, E)$ be a graph. A tree $T \subset G$ is a spanning tree of G if $V(T)=V(G)$.
Theorem 2. Let $G=(V, E)$ be a finite graph. Then G is connected if and only if there exists a spanning tree T of G.

Proof. Let $T \subset G$ be a spanning tree. Then for any two vertices $v, v^{\prime} \in V(T)=V(G)$ there exists a path in T (and, consequently, in G) which connects v and v^{\prime}.

On the other hand, if G is connected, then we remove all loops from G to obtain graph G_{1}, which is still connected. If G_{1} is a tree, we are done. If not, we find a cycle in G_{1}, and choose an edge e_{1} in that cycle. Then $G_{2}=G_{1} \backslash\left\{e_{1}\right\}$ is a connected graph. If G_{2} has a cycle, we repeat the procedure. Finally we will obtain a connected graph $G_{k} \subset G$ which has no cycles since the original graph is finite, i.e., G_{k} is a spanning tree.
Let $G=(V, E)$ be a graph. We say that a vertex $v \in V$ is a leaf of G if $\operatorname{deg} v=1$. We need the following observation:

Lemma 1. Let $T=(V, E)$ be a finite tree. There there are at least two leaves v, v^{\prime} in T.
Proof. Consider a longest path in T, and let v and v^{\prime} are its end-points. We notice that $v \neq v^{\prime}$ since T is a tree. Then v and v^{\prime} are both leaves, indeed, if not, we can extend a path by at least one edge.

Theorem 2. Let $T=(V, E)$ be a finite tree. Then $|V|=|E|+1$.
Proof. Induction on $k=|V|$. Theorem 2 obviously holds if $k=1$ and $k=2$. Assume Theorem 2 holds for all trees $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $|V| \leq n$. Consider a tree $T=(V, E)$ with $|V|=n+1$. Then by Lemma 1 , there exists a leaf $v \in V^{\prime}$ with a single edge e. We prune the tree T at v, to obtain a tree $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}=V \backslash\{v\}, E^{\prime}=E \backslash\{e\}$. By induction, $\left|V^{\prime}\right|=\left|E^{\prime}\right|+1$. Since $|V|=\left|V^{\prime}\right|+1$ and $|E|=\left|E^{\prime}\right|+1$, we obtain that $|V|=|E|+1$.

Theorem 3. The following statements are equivalent:
(a) A graph $G=(V, E)$ is a finite tree.
(b) A graph $G=(V, E)$ is connected, but a removal of any edge will make it disconnected.
(c) A graph $G=(V, E)$ contains no cycles and $|V|=|E|+1$.
(d) A graph $G=(V, E)$ is connected and $|V|=|E|+1$.

Proof. $\mathbf{(a)} \Longrightarrow \mathbf{(b)}$ Let $G=(V, E)$ be a finite tree. Assume that a removing an edge e from G keeps $G \backslash\{e\}$ connected. Let v, v^{\prime} be the end-vertices of e. Then there exists a path in $G \backslash\{e\}$ connecting v and v^{\prime}. Then we put the edge e back an we obtain a cycle. Thus G could not be a tree in the first place. Contradiction. Thus $(\mathrm{a}) \Longrightarrow(\mathrm{b})$.
$\mathbf{(b)} \Longrightarrow(\mathbf{c})$ Let $G=(V, E)$ be as in (b), however, G contains a cycle. Then we can remove an edge e from such a cycle, and the graph $G \backslash\{e\}$ is still connected. Contradiction. Thus $G=(V, E)$ has no cycles, and, by definition, G is a tree. By Theorem $2,|V|=|E|+1$.
$\mathbf{(c)} \Longrightarrow \mathbf{(d)}$ Let $G=(V, E)$ be as in (c), however, G is not connected. It means that $G=G_{1} \cup \cdots \cup G_{r}$, where G_{i} are connective components of G and $r \geq 2$. Then every component G_{i} has no cycles and it is connected,
thus G_{i} is a tree by definition. Theorem 2 gives that

$$
\left|V\left(G_{1}\right)\right|=\left|E\left(G_{1}\right)\right|+1, \cdots\left|V\left(G_{r}\right)\right|=\left|E\left(G_{r}\right)\right|+1
$$

We obtain:

$$
|V(G)|=\left|V\left(G_{1}\right)\right|+\cdots+\left|V\left(G_{r}\right)\right|=\left|E\left(G_{1}\right)\right|+\cdots+\left|E\left(G_{r}\right)\right|+r=|E(G)|+r
$$

At the same time, we have that $|V(G)|=|E(G)|+1$. Thus $r=1$. Contradiction.
$\mathbf{(d)} \Longrightarrow \mathbf{(a)}$ Let $G=(V, E)$ be as in (d). Then G has a spanning tree $T \subset G$ by Theorem 1 . Then $V(T)=V(G)$ and $|E(T)| \leq|E(G)|$. Since T is a tree, $|V(T)|=|E(T)|+1$, and by assumption, $|V(G)|=|E(G)|+1$. Thus $|E(T)|=|E(G)|$, i.e., $T=G$. In particular, G is a tree (in fact, it is its own spanning tree).

