
Math 232, Spring 2018 Boris Botvinnik

Summary on Lecture 14, May 4, 2018

Trees: definitions and basic properties

Definition. A connected graph G = (V,E) is a tree if G has no cycles.

Theorem 1. Let T = (V,E) be a tree, and v, v′ ∈ V (T ) . Then there exists a unique path from v to v′ .

Proof. Assume there are two different paths connecting v and v′ . Then there is a cycle. �

Definition. Let G = (V,E) be a graph. A tree T ⊂ G is a spanning tree of G if V (T ) = V (G).

Theorem 2. Let G = (V,E) be a finite graph. Then G is connected if and only if there exists a spanning tree
T of G .

Proof. Let T ⊂ G be a spanning tree. Then for any two vertices v, v′ ∈ V (T ) = V (G) there exists a path in T
(and, consequently, in G) which connects v and v′ .

On the other hand, if G is connected, then we remove all loops from G to obtain graph G1 , which is still
connected. If G1 is a tree, we are done. If not, we find a cycle in G1 , and choose an edge e1 in that cycle.
Then G2 = G1 \ {e1} is a connected graph. If G2 has a cycle, we repeat the procedure. Finally we will obtain a
connected graph Gk ⊂ G which has no cycles since the original graph is finite, i.e., Gk is a spanning tree. �

Let G = (V,E) be a graph. We say that a vertex v ∈ V is a leaf of G if deg v = 1. We need the following
observation:

Lemma 1. Let T = (V,E) be a finite tree. There there are at least two leaves v, v′ in T .

Proof. Consider a longest path in T , and let v and v′ are its end-points. We notice that v 6= v′ since T is a
tree. Then v and v′ are both leaves, indeed, if not, we can extend a path by at least one edge. �

Theorem 2. Let T = (V,E) be a finite tree. Then |V | = |E|+ 1 .

Proof. Induction on k = |V | . Theorem 2 obviously holds if k = 1 and k = 2. Assume Theorem 2 holds for
all trees T ′ = (V ′, E′) with |V | ≤ n . Consider a tree T = (V,E) with |V | = n + 1. Then by Lemma 1, there
exists a leaf v ∈ V ′ with a single edge e . We prune the tree T at v , to obtain a tree T ′ = (V ′, E′), where
V ′ = V \ {v} , E′ = E \ {e} . By induction, |V ′| = |E′|+ 1. Since |V | = |V ′|+ 1 and |E| = |E′|+ 1, we obtain
that |V | = |E|+ 1. �

Theorem 3. The following statements are equivalent:

(a) A graph G = (V,E) is a finite tree.

(b) A graph G = (V,E) is connected, but a removal of any edge will make it disconnected.

(c) A graph G = (V,E) contains no cycles and |V | = |E|+ 1 .

(d) A graph G = (V,E) is connected and |V | = |E|+ 1 .

Proof. (a)=⇒(b) Let G = (V,E) be a finite tree. Assume that a removing an edge e from G keeps G \ {e}
connected. Let v, v′ be the end-vertices of e . Then there exists a path in G \ {e} connecting v and v′ . Then we
put the edge e back an we obtain a cycle. Thus G could not be a tree in the first place. Contradiction. Thus
(a)=⇒(b).

(b)=⇒(c) Let G = (V,E) be as in (b), however, G contains a cycle. Then we can remove an edge e from such a
cycle, and the graph G\{e} is still connected. Contradiction. Thus G = (V,E) has no cycles, and, by definition,
G is a tree. By Theorem 2, |V | = |E|+ 1.

(c)=⇒(d) Let G = (V,E) be as in (c), however, G is not connected. It means that G = G1 ∪ · · · ∪Gr , where
Gi are connective components of G and r ≥ 2. Then every component Gi has no cycles and it is connected,
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thus Gi is a tree by definition. Theorem 2 gives that

|V (G1)| = |E(G1)|+ 1, · · · |V (Gr)| = |E(Gr)|+ 1.

We obtain:
|V (G)| = |V (G1)|+ · · ·+ |V (Gr)| = |E(G1)|+ · · ·+ |E(Gr)|+ r = |E(G)|+ r.

At the same time, we have that |V (G)| = |E(G)|+ 1. Thus r = 1. Contradiction.

(d)=⇒(a) Let G = (V,E) be as in (d). Then G has a spanning tree T ⊂ G by Theorem 1. Then V (T ) = V (G)
and |E(T )| ≤ |E(G)| . Since T is a tree, |V (T )| = |E(T )| + 1, and by assumption, |V (G)| = |E(G)| + 1. Thus
|E(T )| = |E(G)| , i.e., T = G . In particular, G is a tree (in fact, it is its own spanning tree). �
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