Summary on Lecture 1, April 2, 2018

Recurrence Relations

Warm-up: linear reccurence relations.

(1) Geometric progression. Define a sequence $\{a_n\}$ as follows: $a_0 = A$, $a_{n+1} = da_n$, $n \ge 1$. Then we have:

$$a_1 = dA, \ a_2 = d^2A, \ a_3 = d^3A, \ \dots \ a_n = d^nA, \ \dots$$

Thus we have a general formula: $a_n = d^n A$. This is a geometric progression.

Exercise. Prove formula $a_n = d^n A$ by induction.

Definition. A recurrence relation $a_{n+1} - da_n = 0$, where d is a constant, is called *linear relation*. More general, a recurrence relation $a_{n+1} - da_n = f(n)$, where d is a constant, and f(n) is a function, is called a *first* order relation.

(2) **Example: Bubble Sort algorithm.** Let x_1, \ldots, x_n be *n* real numbers. We would like to sort them out into ascending order. Here is an algorithm known as **BubbleSort**:

```
\begin{array}{l} \texttt{begin}(\textbf{BubbleSort})\\ \texttt{for } i:=1 \texttt{ to } n-1 \texttt{ do}\\ \texttt{for } j:=n \texttt{ down to } i+1 \texttt{ do}\\ \texttt{if } x_j < x_{j-1} \texttt{ then}\\ \texttt{begin}(\textbf{Interchange})\\ t:=x_{j-1}\\ x_{j-1}:=x_j\\ x_j:=t\\ \texttt{end}(\textbf{Interchange})\\ \texttt{end}(\textbf{BubbleSort})\end{array}
```

First, we would like to understand how does it work. Let us start with the sequence $(x_1, x_2, x_3, x_4, x_5) = (7, 9, 2, 5, 8)$.

						n – – – – – – – – – – – – – – – – – – –	n						. <u> </u>
i = 1		j = 5	j = 4	j = 3	j=2			i=2		j = 5	j = 4	j = 3	
x_1		7	7	7	2	2		x_1		2	2	2	2
x_2		9	9	2	7	7		x_2		7	7	5	5
x_3	:=	2	2	9	9	9		x_3	:=	9	5	7	7
x_4		5	5	5	5	5		x_4		5	9	9	9
x_5		8	8	8	8	8		x_5		8	8	8	8
i = 3		j = 5	j = 4					i = 4		j = 5			
x_1		2	2	2				x_1		2	2		
x_2		5	5	5				x_2		5	5		
x_3	:=	7	7	7				x_3	:=	7	7		
x_4		8	8	8				x_4		8	8		
x_5		9	9	9				x_5		9	9		

Here we have: for i = 1, 4 comparisons and 2 interchanges, for i = 2, 3 comparisons and 2 interchanges, for i = 3, 2 comparisons and 1 interchange, for i = 4, 1 comparison and no interchanges.

Now we denote by a_n a total number of comparisons to sort out a sequence (x_1, \ldots, x_n) . First, we can identify the smallest number: this is done when we run the algorithm for i = 1. Clearly, we use (n - 1) comparisons for that. Then we obtain the recursion:

$$a_1 = 0, \quad a_n = a_{n-1} + (n-1).$$

We have:

$$a_{1} = 0$$

$$a_{2} = a_{1} + (2 - 1) = 1$$

$$a_{3} = a_{2} + (3 - 1) = 1 + 2$$

$$a_{4} = a_{3} + (4 - 1) = 1 + 2 + 3$$

$$\dots$$

$$a_{n} = a_{n-1} + (n - 1) = 1 + 2 + 3 + \dots + (n - 1)$$

The answer:

$$a_n = 1 + 2 + 3 + \dots + (n-1) = \frac{(n-1)n}{2} = \frac{1}{2}(n^2 - n).$$

In that case we say that the time-complexity function of that algorithm is $O(n^2)$.

Second Order Recurrence Relations. Let $\{a_n\}$ be a Fibonacci sequence, i.e. $a_0 = 0$, $a_1 = 1$, and $a_n = a_{n-1} + a_{n-2}$ for all $n \ge 2$. We would like to find a *closed formula* for a_n 's. Let us try $a_n = c \cdot r^n$, where $c \ne 0$ and r some real numbers. Then the relation $a_n = a_{n-1} + a_{n-2}$ gives:

$$cr^n = cr^{n-1} + cr^{n-2}, \quad n \ge 2.$$

We cancel cr^{n-2} and get the equation $r^2 = r+1$ or $r^2 - r - 1 = 0$. We find the solutions:

$$r = \frac{1 \pm \sqrt{5}}{2}$$
, or $r_1 = \frac{1 + \sqrt{5}}{2}$, $r_2 = \frac{1 - \sqrt{5}}{2}$.

Then both sequences $c_1r_1^n$ and $c_2r_2^n$ will satisfy the relation $a_n = a_{n-1} + a_{n-2}$. Moreover, the sequence $c_1r_1^n + c_2r_2^n$ will satisfy the same relation. The we can find c_1 and c_2 .

We have for n = 0 and n = 1:

$$\begin{cases} 0 = c_1 + c_2 \\ 1 = c_1 r_1 + c_2 r_2 \end{cases} \begin{cases} c_2 = -c_1 \\ 1 = c_1 r_1 - c_1 r_2 \end{cases} \begin{cases} c_2 = -\frac{1}{r_1 - r_2} \\ c_1 = -\frac{1}{r_1 - r_2} \end{cases}$$

Since $r_1 - r_2 = \sqrt{5}$, we obtain a formula for a_n :

$$a_n = c_1 r_1^n + c_2 r_2^n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

Theorem 1. Let a_0 and a_1 are given, and $a_n = Aa_{n-1} + Ba_{n-2}$ be a second order recurrence relation, $n \ge 2$, where A, B are non-zero constants. Assume that the characteristic equation $r^2 - Ar - B = 0$ has two real different real solutions r_1 and r_2 . Then $a_n = c_1 r_1^n + c_2 r_2^n$, where the constants c_1 and c_2 are determined by solving the system

$$\begin{cases} a_0 = c_1 + c_2 \\ a_1 = c_1 r_1 + c_2 r_2 \end{cases}$$

Proof. Indeed, we look for a solution $a_n = cr^n$, then the recurrence realtion $a_n = Aa_{n-1} + Ba_{n-2}$ gives the characteristic equation $r^2 - Ar - B = 0$. By assumption, there are two two different real solutions, r_1 and r_2 of $r^2 - Ar - B = 0$. Then the sum $c_1r_1^n + c_2r_2^n$ will satisfy the recurrence. Finally, we notice that the system $\begin{cases} a_0 = c_1 + c_2 \\ a_1 = c_1r_1 + c_2r_2 \end{cases}$ always have a unique solution if $r_1 \neq r_2$ (Explain why).