Math 232, Fall 2017 Boris Botvinnik
Summary on Lecture 5, October 2, 2017

The case of complex roots. Let z = 2 + iy € C be a complex number. Then we let |z| = y/22 + y2, and we
can write z as

z = |z|(cos O + isinf), cos@zi7 sinf = .
2] 2]
There is a standard notation e? := cos@ + isin@. There is a remarkable formula (DeMoivre Theorem):

(cos 4 isin@)™ = cosnf + isinnd, or (e9)" = em?
We prove it by induction. Clearly this formula holds for n = 1. Assume it holds for n = k. Then we have:
(cos® +isinf)**1 = (cosf +isinf)*(cosf + isinf)
= (coskf + isinkf)(cosf + isin6)
= (coskfcosf — sin kO sin 6) + i(cos k6 sin 6 + sin k6 cos )
= cos(k+ 1) + isin(k + 1)6.

Here we used the formulas:
cos(a¢+ ) = cosacosf —sinasinf

sinfa +fB) = sinacosB+ cosasinf

Example. Let a9 =1, a1 =2, and a, = 2a,_1 — 2a,,_2. Then again, we are looking for a solution as a, = cr"™,
¢ # 0. We have substitute a,, = ¢r™ to our recurrence relation:

er™ =2er™t —2¢r™?% or 2 —2r +2=0.
We find the solutions of the characteristic equation:
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Then we have:
rn = 1+i = ﬂ(%Jrz%) = V2(cos T +isin %),
ro = 1—4 = \/5(%71%) = V2(cos T —isinT).

Now we are looking for a solution in the form a,, = c17] + cary . We notice the following:

an ci(l+4)"+ (1 —4)"

= ¢ (V2(cos T +isinT))" + ¢z (V2(cos T —isin Z))"

= o1 (V2)" (cos % +isin 2T) 4 ¢5 (v/2)" (cos T — isin )
= (\/E)n(Kl cos " + Ky sin ),

where K1 = ¢1 + ¢a, Ko = i(c1 — ¢2). Clearly we would like to find real values of K; and K>. We substitute
n =0 and n =1 to get the system:

Kicos0+ Kosin0 = aq=1 or K = 1 or K =1
V2(Kicos T + KosinT) = Ki+ Ky, = 2 K, =1
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We obtain the answer:
an = (\/i)n (cos ™F + sin °)

General Case. Now we assume that we have a second order recurrence relation, i.e. ag, a1, are given and
an = Aan—1 + Bay—2, n > 2, where the coefficients A and B are real numbers (in fact, they are integers in
all our examples). Then the characteristic equation is given as 7> — Ar — B = 0. Assume that the roots 71, 7o
are complex. Obviously, it means that r; and ro are conjugate, i.e., we can write 11 = p(cosf + isinf), and
ro = p(cos @ — isin@). Thus we may look for a solution for a, in the form:

an, = crl+cary
= c¢1p"(cosnb + isinnb) 4 cop™(cos nf — isinnd)
= p"((e1 + e2) cosnb + i(c; — co) sinnb)
= p"(Kycosnb + Kysinnb).
Here K1 = (¢1+¢2) and Ko = i(c;—cs). In particular, it means that the expression a,, = p™ (K cosnf+ K, sin nf)

satisfies the recurrence relation we started with. We also notice that K; and K5 are assumed to be real. Since
aop and ap are given, we find them by substituting n =0 and n = 1:

{chosO—i-KgsinO a {K1 = ag

p(Kjcosf+ Kosinf) = ag p(Kicosf+ Kosinf) = ag

We notice that the system always has a solution provided psinf # 0 for arbitrary initial coefficients ag and a; .
On the other hand, the condition psin# = 0 means that either p =0 or sinf = 0. Each of those imply that the
roots ry; 7o are real.

We summarize the above discussion:

Theorem 3. Let ag and a; are given, and a, = Aa,_1 + Ba,_o be a recurrence relation, n > 2, where A, B
are non-zero real constants. Assume that the characteristic equation r?> — Ar — B = 0 has two complex roots

r1 = p(cos@ +isinf), ro = p(cosf —isind),

Then a,, = p™ (K1 cosnf + Ky sinnf), where the coefficients K, Ko are determined by solving the system

Kl = Qo
p(Kjcosf + Kosinf) = ag



