Second Order Recurrence Relations (continuation)

Example: legal arithmetic expressions without parenthesis. In most computing languages, it important to use "legal arithmetic expressions without parenthesis". These expressions are made up out of the digits $0,1, \ldots$, 9 and binary symbols $+, *, /$. For example, the expressions $7+8,5+7 * 3,33 * 7+4+6 * 4$ are legal expressions, and the expressions $/ 7+8,5+7 * 3+, 33 * 7+/ 4+6 * 4$ are not.

We denote by a_{n} the number of legal expressions of length n. Then $a_{1}=10$ since the only legal expressions of length 1 are the digits $0,1, \ldots, 9$. Then $a_{2}=100$ which accounts for the expressions $00,01, \ldots, 99$.

Let $n \geq 3$. We observe:
(1) Let x be an arithmetic legal expression of $(n-1)$ symbols. Then the last symbol must be a digit. We add one more digit to the right of x and obtain $10 x$ more legal expressions of the length n.
(2) Let y be an arithmetic legal expression of $(n-2)$ symbols. Then we can add to the right of y one of the following 29 2-symbol expressions: $+0,+1, \ldots,+9, * 0, * 1, \ldots, * 9, / 1, \ldots, / 9$ (no division by 0 is allowed).

We obtain the recurrence relation: $a_{1}=10, a_{2}=100, a_{n}=10 a_{n-1}+29 a_{n-2}$ for $n \geq 3$. We notice that $a_{0}=0$, indeed, $100=a_{2}=10 \cdot a_{1}+29 \cdot a_{0}=10 \cdot 10+29 \cdot a_{0} \cdot$ i.e., $a_{0}=0$.

Exercise: Find a closed formula for the recurrence relation: $a_{0}=0, a_{1}=10, a_{n}=10 a_{n-1}+29 a_{n-2}, n \geq 2$.
Example. We would like to find a number of binary sequences of the length n without any consecutive 0 's.
Let a_{n} denote the number of such sequences of length $n \geq 1$. Clearly, if $n=1$, we have 0 , 1 , i.e., $a_{1}=2$, if $n=2$, we have the sequences $01,10,11$, i.e., $a_{2}=3$.

Let $n \geq 3$. Let $x_{1} \cdots x_{n-2} x_{n-1} x_{n}$ be a sequence like that. There are two cases:
(1) The last symbol $x_{n}=1$. Then the sequence $x_{1} \cdots x_{n-2} x_{n-1}$ has no consecutive 0 's.
(2) The last symbol $x_{n}=0$. Then $x_{n-1}=1$, and the sequence $x_{1} \cdots x_{n-2}$ has no consecutive 0 's.

Thus we conclude that $a_{n}=a_{n-1}+a_{n-2}$. Also we notice that the initial conditions $a_{1}=2, a_{2}=3$ could be replaced by $a_{0}=1, a_{1}=2$. Then $a_{2}=a_{1}+a_{0}=3$.

Exercise: Find a closed formula for the recurrence relation: $a_{0}=1, a_{1}=2, a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 2$.

