Math 232, Fall 2017

Boris Botvinnik

Summary on Lecture 4, September 29, 2017

Second Order Recurrence Relations (continuation)

Example: legal arithmetic expressions without parenthesis. In most computing languages, it important to use "legal arithmetic expressions without parenthesis". These expressions are made up out of the digits $0,1,\ldots$, 9 and binary symbols +,*,/. For example, the expressions 7+8, 5+7*3, 33*7+4+6*4 are legal expressions, and the expressions 7+8, 5+7*3+, 33*7+4+6*4 are not.

We denote by a_n the number of legal expressions of length n. Then $a_1 = 10$ since the only legal expressions of length 1 are the digits $0, 1, \ldots, 9$. Then $a_2 = 100$ which accounts for the expressions $00, 01, \ldots, 99$.

Let $n \geq 3$. We observe:

- (1) Let x be an arithmetic legal expression of (n-1) symbols. Then the last symbol must be a digit. We add one more digit to the right of x and obtain 10x more legal expressions of the length n.
- (2) Let y be an arithmetic legal expression of (n-2) symbols. Then we can add to the right of y one of the following 29 2-symbol expressions: $+0, +1, \ldots, +9, *0, *1, \ldots, *9, /1, \ldots, /9$ (no division by 0 is allowed).

We obtain the recurrence relation: $a_1 = 10$, $a_2 = 100$, $a_n = 10a_{n-1} + 29a_{n-2}$ for $n \ge 3$. We notice that $a_0 = 0$, indeed, $100 = a_2 = 10 \cdot a_1 + 29 \cdot a_0 = 10 \cdot 10 + 29 \cdot a_0$. i.e., $a_0 = 0$.

Exercise: Find a closed formula for the recurrence relation: $a_0 = 0$, $a_1 = 10$, $a_n = 10a_{n-1} + 29a_{n-2}$, $n \ge 2$.

Example. We would like to find a number of binary sequences of the length n without any consecutive 0's. Let a_n denote the number of such sequences of length $n \ge 1$. Clearly, if n = 1, we have 0, 1, i.e., $a_1 = 2$, if n = 2, we have the sequences 01, 10, 11, i.e., $a_2 = 3$.

Let $n \geq 3$. Let $x_1 \cdots x_{n-2} x_{n-1} x_n$ be a sequence like that. There are two cases:

- (1) The last symbol $x_n = 1$. Then the sequence $x_1 \cdots x_{n-2} x_{n-1}$ has no consecutive 0's.
- (2) The last symbol $x_n = 0$. Then $x_{n-1} = 1$, and the sequence $x_1 \cdots x_{n-2}$ has no consecutive 0's.

Thus we conclude that $a_n = a_{n-1} + a_{n-2}$. Also we notice that the initial conditions $a_1 = 2$, $a_2 = 3$ could be replaced by $a_0 = 1$, $a_1 = 2$. Then $a_2 = a_1 + a_0 = 3$.

Exercise: Find a closed formula for the recurrence relation: $a_0 = 1$, $a_1 = 2$, $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$.