
Math 232, Fall 2017 Boris Botvinnik

Summary on Lecture 24, November 27, 2017

Optimal spanning trees: Prim’s Algorithm in more detail

For a given finite connected graph G = (V (G), E(G)), we are looking for a spanning tree T ⊂ G of minimal
weight.

Recall Prim’s algorithm:

Prim’s Algorithm(G = (V (G), E(G)), wt : E(G)→ (0,∞))
Input: A finite weighted connected graph (G,wt) with edges listed in any order
Output: A set E of edges of an optimal spanning tree for G)
Set E = ∅. Choose w in V (G) and set V := {w}.
while |V | < |V (G)| do

Choose an edge {u, v} in E(G) of smallest possible weight

with u ∈ V and v ∈ V (G) \ V .

Put {u, v} in E and put v in V .

return E

Theorem. Prim’s algorithm produces an optimal spanning tree for a connected weighted graph.

Proof. Theorem 1 and the way the algorithm Tree works, show that the graph the Prim’s algorithm is producing
is indeed a spanning tree. We have to show that it is an optimal one. We consider the statment

S := ‘‘The graph T is contained in an optimal spanning tree of G

It holds at the beginning since T is a single vertex. We claim that S is an invariant of the while loop. Suppose
that, at the beginning of some pass through the while loop, T is contained in the minimum spanning tree T ∗ of
G . Suppose that the algorithm now chooses the edge {u, v} . If {u, v} ∈ E(T ∗), then the new T is still contained
in T ∗ , which is wonderful. Suppose not. Because T ∗ is a spanning tree, there is a path in T ∗ from u to v . Since
u ∈ V and v /∈ V , there must be some edge in the path that joins a vertex z in V to a vertex w ∈ V (G) \ V .

Since Prim’s algorithm chose {u, v} instead of {z, w} , we have wt{u, v} ≤ wt{z, w} . Take the edge {z, w} out of
E(T ∗) and replace it with {u, v} . The new graph T ∗∗ is still connected, so it’s a tree. Since W (T ∗∗) ≤W (T ∗),
the graph T ∗∗ is also an optimal spanning tree, and T ∗∗ contains the new T . At the end of the loop, T is still
contained in some optimal spanning tree, as we wanted to show. �

1

