Math 232, Fall 2017 Boris Botvinnik

Summary on Lecture 20, November 10, 2017

Digraphs and shortest paths

Let G = (V, E) be a graph or digraph. We say that G is weighted if we are given a function wt : E — (0,00).
In other words, each edge e € F is given a positive weight wt(e). It is convenient to have a convention that if
v,v" € V(G) are not connected by an edge, then a virtual edge (v,v’) has weight co. We also accept a convention
that a virtual edge (v,v) has zero weight. Then once we have a weighted graph, it makes sense to determine a
shortest distance d(v,v’) from a vertex v to a vertex v’.

V4

Fig. 1. Weighted digraph Gj .

Example. Consider the digraph G; in Fig. 1. Tt is easy to check that the shortest distance (weight) from wv4 to
v1 is 5 when we take the route v4 — v5 — v, and it is shorter than a “direct” shot v4 — v1.

Now the “shortest” paths vy — v1 — v — v3 and v4 — v5 — v9 — v3 from vy to vg have weights 64+7+4 = 17
and 3 + 7+ 4 = 14, respectively, but the “longer” path vy — v5 — v1 — vg — v2 — v7 — v4 has weight
34+2+14+3+4+1+3 =13, which is less than either of these. Thus length is not directly related to weight. [

There are special vertices in Gy, namely, vy is a source, and vs is a sink. Indeed, vy has only outbounded edges,
and v only inbounded edges.

In the case when a weighted digraph G = (V, F) with a only one source vy and one sink v, and has no loops
and parallel edges), it is called a scheduling network. The objective here is to find a shortest path (i.e., with
minimal weight) from a source to a sink. This is known as scheduling problem. We assume that a weight of every
edge is positive. In fact, we resolve more general problem, namely, for each vertex vy € V' we determine

(i) the distance d(vg,v) for every v € V;
(ii) a shortest path from vy to v if such a path exists.

We subdivide the set of vertices V' into two subsets: V = SUS, where v € S, and S = V'\ S, so that SNS = 0.

Then we define the distance d(vg, S):
d(vo, S) = min{d(vo,?) | v € S }.

If the distance d(vg,S) is finite, then there exists at least one vertex v, € S such that d(vg,S) = d(vg,vs). We
choose a shortest path P from vy to U,:

P:vg—=v 2 vg = = U = Upp1 = Us
Now we make the following observations:

(1) The vertices vg,v1,...v, are in S. Indeed, if v; would be in S for some i = 1,...,k, then the path
P; :vg = vy = v — --- — v; would be shorter than P.

(ii) The path P; : vg — v; — v — -+- — v; is the shortest path in G from vy to v; for each ¢ = 1,... k.
Indeed, if there would be a shorter path P/ from vy to v;, then we would find a path P/ composed with
the path v; — .-+ — vg41 = v, which is shorter than P.

Lemma 1. d(vy,S) = min{ d(vo,u) + wt(u,?) |u€ S, v€S }.

Then if the minimum occurs when « = u, € S and ¥ = 0, € S, then we have that

d(vg, S) = d(vo, us) + wt(us, Us). (1)

We use the formula (1) to explain the idea of the Dijkstra’s Shortest Path Algorithm. It goes as follows.
Let So = {vo}, and Sy =V \ Sy. We find d(vg, Sp):

d(vg, So) = min{ wt(vg,?) | ¥ € Sp}.

Let v; € Sy be such that d(vo, So) = d(vo,v1). Then we define S; = So U {v1}, and S; = V'\ S;. Then we find
d(’l}o, Sl): _ _
d(vg, S1) = min{ d(vo,v1) + wt(vy,?) | v € Sy }.

We find vy € Sy such that d(vo,S1) = d(vo,v1) + wt(vi,v2). If we proceed in such a way, we construct a set
S; = {vo,v1,...,v;}, and find the distance d(vg, S;):

d(vo, S;) = min{ d(vo,v;) +wt(v;,0) | v € S; },

and find the next vertex v;y1 € S; such that d(vg,S;) = min{ d(vo,v;) + wt(v;,v;11). The algorithm will stop if
either d(vg, S;) = oo, or |S| = |V|. Fig. 2 shows the resulting path for the graph G as above.

V4

Fig. 2. A shortest path from vy to vs.
Next time we analyze the Dijkstra’s Shortest Path Algorithm in detail.

