
Math 232, Fall 2017 Boris Botvinnik

Summary on Lecture 20, November 10, 2017

Digraphs and shortest paths

Let G = (V,E) be a graph or digraph. We say that G is weighted if we are given a function wt : E → (0,∞).
In other words, each edge e ∈ E is given a positive weight wt(e). It is convenient to have a convention that if
v, v′ ∈ V (G) are not connected by an edge, then a virtual edge (v, v′) has weight ∞ . We also accept a convention
that a virtual edge (v, v) has zero weight. Then once we have a weighted graph, it makes sense to determine a
shortest distance d(v, v′) from a vertex v to a vertex v′ .

v1 v2 v3

v4 v5 v6 v7

Fig. 1. Weighted digraph G1 .

Example. Consider the digraph G1 in Fig. 1. It is easy to check that the shortest distance (weight) from v4 to
v1 is 5 when we take the route v4 → v5 → v1 , and it is shorter than a “direct” shot v4 → v1 .

Now the “shortest” paths v4 → v1 → v2 → v3 and v4 → v5 → v2 → v3 from v4 to v3 have weights 6+7+4 = 17
and 3 + 7 + 4 = 14, respectively, but the “longer” path v4 → v5 → v1 → v6 → v2 → v7 → v4 has weight
3 + 2 + 1 + 3 + 1 + 3 = 13, which is less than either of these. Thus length is not directly related to weight. �

There are special vertices in G1 , namely, v4 is a source, and v3 is a sink. Indeed, v4 has only outbounded edges,
and v3 only inbounded edges.

In the case when a weighted digraph G = (V,E) with a only one source v0 and one sink v∗ and has no loops
and parallel edges), it is called a scheduling network. The objective here is to find a shortest path (i.e., with
minimal weight) from a source to a sink. This is known as scheduling problem. We assume that a weight of every
edge is positive. In fact, we resolve more general problem, namely, for each vertex v0 ∈ V we determine

(i) the distance d(v0, v) for every v ∈ V ;

(ii) a shortest path from v0 to v if such a path exists.

We subdivide the set of vertices V into two subsets: V = S∪ S̄ , where v0 ∈ S , and S̄ = V \S , so that S∩ S̄ = ∅ .
Then we define the distance d(v0, S̄):

d(v0, S̄) = min{d(v0, v̄) | v̄ ∈ S̄ }.

If the distance d(v0, S̄) is finite, then there exists at least one vertex v̄∗ ∈ S̄ such that d(v0, S̄) = d(v0, v̄∗). We
choose a shortest path P from v0 to v̄∗ :

P : v0 → v1 → v2 → · · · → vk → vk+1 = v̄∗

Now we make the following observations:

(1) The vertices v0, v1, . . . vk are in S . Indeed, if vi would be in S̄ for some i = 1, . . . , k , then the path
Pi : v0 → v1 → v2 → · · · → vi would be shorter than P .

(ii) The path Pi : v0 → v1 → v2 → · · · → vi is the shortest path in G from v0 to vi for each i = 1, . . . , k .
Indeed, if there would be a shorter path P ′i from v0 to vi , then we would find a path P ′i composed with
the path vi → · · · → vk+1 = v̄∗ which is shorter than P .

1

Lemma 1. d(v0, S̄) = min{ d(v0, u) + wt(u, v̄) | u ∈ S, v̄ ∈ S̄ }.

Then if the minimum occurs when u = u∗ ∈ S and v̄ = v̄∗ ∈ S̄ , then we have that

d(v0, S̄) = d(v0, u∗) + wt(u∗, v̄∗). (1)

We use the formula (1) to explain the idea of the Dijkstra’s Shortest Path Algorithm. It goes as follows.
Let S0 = {v0} , and S̄0 = V \ S0 . We find d(v0, S̄0):

d(v0, S̄0) = min{ wt(v0, v̄) | v̄ ∈ S̄0}.

Let v1 ∈ S̄0 be such that d(v0, S̄0) = d(v0, v1). Then we define S1 = S0 ∪ {v1} , and S̄1 = V \ S1 . Then we find
d(v0, S̄1):

d(v0, S̄1) = min{ d(v0, v1) + wt(v1, v̄) | v̄ ∈ S̄1 }.

We find v2 ∈ S̄1 such that d(v0, S̄1) = d(v0, v1) + wt(v1, v2). If we proceed in such a way, we construct a set
Si = {v0, v1, . . . , vi} , and find the distance d(v0, S̄i):

d(v0, S̄i) = min{ d(v0, vi) + wt(vi, v̄) | v̄ ∈ S̄i },

and find the next vertex vi+1 ∈ S̄i such that d(v0, S̄i) = min{ d(v0, vi) + wt(vi, vi+1). The algorithm will stop if
either d(v0, S̄i) =∞ , or |S| = |V | . Fig. 2 shows the resulting path for the graph G1 as above.

v1 v2 v3

v4 v5 v6 v7

Fig. 2. A shortest path from v4 to v3 .

Next time we analyze the Dijkstra’s Shortest Path Algorithm in detail.

2

