
Math 232, Fall 2017 Boris Botvinnik

Summary on Lecture 16, November 1, 2017

More on Rooted Trees

Let m ≥ 1. Recall that a rooted tree (T, r) is a complete m-ary tree if every vertex of T has either m children
or no children. Mostly we are interested in the case m = 2.

Lemma 1. Let (T, r) be a complete binary tree. Then |V (T)| is odd.

Exercise. Prove Lemma 1 by induction.

We would like to count how many complete binary trees are there with 2n + 1 vertices.

Let (T, r) be a complete binary tree with 2n + 1 vertices. We use preorder listing to give a a list of all vertices
(starting with the root): rv1v2 . . . v2n . We notice that every move from vi to vi+1 has a direction: its either left
(L) or right (R). Hence the list rv1v2 . . . v2n gives a sequence of 2n L’s and R’s. Then we notice:

• We visit first the “left” child, then the “right” one. Thus if we count how many L’s and R’s from the
beginning to a given spot, we’ll get that the number of L’s is greater or equal to the number of R’s.

• There are n L’s and n R’s.

We have seen this problem before, and conclude that the number of such listings (and, consequently, the number
of complete binary graphs with 2n + 1 vertices) is nothing but the Catalan number, namely, 1

n+1

(
2n
n

)
.

Recall definition of the Catalan numbers. Let us consider the xy -plane, and two types of moves:

R : (x, y) 7→ (x + 1, y), U : (x, y) 7→ (x, y + 1).

We are allowed to make the moves R and U to get from the point (0, 0) to the point (n, n). A path consisting
of only the moves R and U is called monotonic.
Warm-up question: How many monotonic paths are there from (0, 0) to (n, n)?

This is easy. Indeed, any monotonic path can be recorded as a sequence of n R ’s and n U ’s. A total number

of moves is 2n ; thus it is enough to choose n slots for R ’s (or n U ’s). We obtain

(
2n
n

)
paths.

A monotonic path from (0, 0) to (n, n) is dangerous if it crosses the diagonal.

Actual question: How many non-dangerous monotonic paths are there from (0, 0) to (n, n)?

Let n = 6. Then the paths

R R U R U U R U R U R U is non-dangerous,

R R U R U U R U U U R R is dangerous.

To distinguish dangerous and non-dangerous paths, we count how many R and U moves did we make at every
step:

10

R
20

R
21

U
31

R
32

U
33

U
43

R
44

U
54

R
55

U
65

R
66

U is non-dangerous,

⇓
10

R
20

R
21

U
31

R
32

U
33

U
43

R
44

U
45

U
46

U
56

R
56

R is dangerous.

Moreover, once the number of U -moves gets greater than the number of R -moves, we use the red color. Then,
once the first red indicator appears, we write new path, where we change the path after the dangerous U -move:

1

all R -moves we turn to U -moves, and all U-moves we turn to R-moves:

⇓
10

R
20

R
21

U
31

R
32

U
33

U
43

R
44

U
45

U
46

U
56

R
56

R a dangerous path.

⇓
10

R
20

R
21

U
31

R
32

U
33

U
43

R
44

U
45

U R U U new path.

In the black portion of the new path, we have 4 R-moves and 5 U-moves; in the red portion, we have 1 R-move
and 2 U -moves. Totally, new path has 5 R -moves and 7 U-moves. Thus it is a path from (0, 0) to (5, 7). We
claim that in this way every dangerous path turns to a path from (0, 0) to (5, 7). Thus we have the answer:

{# of all paths} − {# of dangerous paths} =

(
12
6

)
−

(
12
5

)
.

For general n , we do the same. Namely, we consider a dangerous path (first line) and we produce new path
below:

⇓
(k − 1) U’s, (k − 1) R’s U (n− k) U’s, (n− k + 1) R’s

(k − 1) U’s, (k − 1) R’s U (n− k) R’s, (n− k + 1) U’s

The first path is dangerous since the red marker ⇓ shows that there are k U ’s and (k − 1) R ’s, so the path
crossed the diagonal. For the new path we changed all U ’s by R ’s and all R ’s by U ’s after the red marker ⇓ .
Totally, for the new path, we have

k + n− k + 1 = n + 1 U′s
k − 1 + n− k = n− 1 R′s

Thus we have the answer:

bn :=

(
2n
n

)
−

(
2n

n− 1

)
=

1

n + 1

(
2n
n

)
.

Now we return to trees. Let G = (V,E) be a connected graph without loops and multiple edges. We assume
that the vertices of G are ordered, i.e., V = {v1, . . . , vn} . We would like to find a spanning tree (T, r) (which is
depth-first ordered rooted tree).

Here is a pseudocode for a recursive version of the Depth-First-Search algorithm:

Depth-First-Search(G, v)
Let v := v1. Put v to the list T
For all edges from v to w in E(G) do

if w is not in T then call T (G,w) :=Depth-First-Search(G,w),
T := T ∪ T (G,w)

Return T

Exercise. Use Depth-First-Search(G, v) algorithm for several large graphs. Find non-trivial examples.

Exercise. Study the Breadth-First-Search(G, v) algorithm from the textbook and write a pseudocode for its
recursive version.

2

