Math 232, Fall 2017 Boris Botvinnik

Summary on Lecture 13, October 25, 2017

More on Chromatic Polynomials

Let G = (V,E) be a graph, and e be its edge with vertices a and b. We denote by G. the graph which is
obtained by removing the edge e. Let G’ be a graph which is obtained from G. by identifying the vertices a
and b, see Fig. 3. Last time we proved the following Theorem:
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Fig. 3. The graphs G, G. and G’
Theorem 1. Let G = (V, E) be a connected graph, and e € E. Then

P(Ge, \) = P(G,\) + P(G., \).

Proof. Let e = {a,b}. Consider the value P(Ge, ). There are two possibilities here: either the vertices a and
b have the same color or not. If they are of different colors, then it corresponds to a proper coloring of G. If they
are the same, then it corresponds to a proper coloring of G. O

Lemma 1. Let T be a tree with n vertices. Then P(T,\) = A(A—1)""1.

Proof. Induction on n. If n = 1, then obviously P(T,A\) = A. Let n > 1. We find an edge e such that
e = {a,b}, Where a is a leaf. Then T, is a disjoint union of a tree on (n — 1) vertices and a single vertex, and
T! is a tree on (n — 1) vertices, see Fig. 4
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Fig. 4. The graphs T, T, and T
By induction, we have that P(T/,\) = A(A — 1)""2, and P(T.,\,) = A(A—1)""2. X = X2(A —1)""2. Then

P(T,\) = P(T,,\) — P(T/,)\) = XA =1)"2 = AxA-1)" 2= xA-1)""1.

This completes the induction. O
Lemma 2. Let C,, be a cycle on n vertices. Then P(Cp,\)=(A—=1)"+ (=1)"(A=1).

Proof. Induction on n. If n =3, C5 = K3, so we check
P(K3,A) =AA=1)(A=2) = A=13+(-13A-1)=A-1)((A=1)2-1)
= A=D1 =22+ -1)

= AA—1)(A—2).



Let n > 3, and e be an edge of C,,. Then (C},). is just a path on n vertices, and (C,), = C,,—1 is just a cycle
on (n — 1) vertices. We have

P(Cp,A) = P((Ch)e;A) = P(Cp—1, )
= AA—1)" - (A1)l = (—1) (A - 1)

= A=1)"+(-1)"(A-1).
This completes the induction. O

Remark. We notice that P(C,,1) = 0, and P(C,,2) = 1+ (—1)". Hence P(C,,2) = 2 if n is even, and
P(C,,2) = 0 if n is odd. Let n = 2k + 1, then P(Cax41,3) = 22F*1 — 2 = 2(22%¥ — 1). We conclude that
X(Cp) =2 if niseven and x(Cp) =3 if n=2k+1.

We define a wheel on (n+1) wvertices W, 11 by taking a cycle on n vertices and connecting each vertex of a cycle
to one more (n + 1)the vertex.

Lemma 3. Let W, 41 be a wheel on (n+ 1) vertices. Then P(Wy11,A) = AXA=2)" + (=1)"A(A—2).

Proof. We assign an arbitrary color to the centeral vertex, then we can use (A — 1) colors for the remaining
vertices. We obtain:

PWpt1, ) =A[A=1=-1)"+(-1)"A=1-1]=AA=2)"+ (-1)"A(A = 2).
This proves Lemma 3. O
We make two observations about the chromatic polynomial. Let G = (V, E), and
P(G,)\) =ag + a; A + - + ag\?.
(1) The coefficient ag = 0. Indeed, P(G,0) = ap and at the same time is a number of proper colorings of G
with 0O colors, i.e., ag = 0.

(2) Assume that |E| > 0. Then a3 +az + -+ +aq = P(G,1) = 0. Indeed, if G contains an edge, then we
cannot give proper colorings of G with one color.

Lemma 4. Let G; and Gs share a single vertex, i.e., V(G1) NV (Gy) = {v}. Then

P(G1,\) - P(Ga, A
P(G1 UGy, \) = TG )A G2 ),
Proof. Let us give a coloring to Ga. Then the vertex v receives some color A\g. Then we count how many ways
to color G so that v is colored with given color \g. Let Q(G1;v, A, Ag) be the result. Because of the symmetry
with respect to colors, Q(G1;v, A, Ag) is the same for any choice of A\g. On the other hand, by taking every value
of Ao, we count all colorings of the graph G;. We conclude that Q(G1;v, A, Ag)A = P(G1,\), or
P(G1, )

Q(Gl, v, )‘7 AO) = f

We obtain that all colorings of G; U G5 are given by

This completes the proof. O
Lemma 5. Let G1 and Ga be such that Gi NGy = K,,. Then
_ P(G17>\)P(G27)‘) _ P(G17)‘)P(G27)\)
P(G1UG,A) = P(K,, \) - O :

(Recall that A := AA=1)(A—=2)---(A=n+1).)

Exercise. Prove Lemma 5.



