
Math 232, Fall 2017 Boris Botvinnik

Summary on Lecture 13, October 25, 2017

More on Chromatic Polynomials

Let G = (V,E) be a graph, and e be its edge with vertices a and b . We denote by Ge the graph which is
obtained by removing the edge e . Let G′e be a graph which is obtained from Ge by identifying the vertices a
and b , see Fig. 3. Last time we proved the following Theorem:
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Fig. 3. The graphs G , Ge and G′e

Theorem 1. Let G = (V,E) be a connected graph, and e ∈ E . Then

P (Ge, λ) = P (G,λ) + P (G′e, λ).

Proof. Let e = {a, b} . Consider the value P (Ge, λ). There are two possibilities here: either the vertices a and
b have the same color or not. If they are of different colors, then it corresponds to a proper coloring of G . If they
are the same, then it corresponds to a proper coloring of G′e . �

Lemma 1. Let T be a tree with n vertices. Then P (T, λ) = λ(λ− 1)n−1 .

Proof. Induction on n . If n = 1, then obviously P (T, λ) = λ . Let n > 1. We find an edge e such that
e = {a, b} , where a is a leaf. Then Te is a disjoint union of a tree on (n − 1) vertices and a single vertex, and
T ′e is a tree on (n− 1) vertices, see Fig. 4
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Fig. 4. The graphs T , Te and T ′e

By induction, we have that P (T ′e, λ) = λ(λ− 1)n−2 , and P (Te, λ, ) = λ(λ− 1)n−2 · λ = λ2(λ− 1)n−2 . Then

P (T, λ) = P (Te, λ)− P (T ′e, λ) = λ2(λ− 1)n−2 − λ(λ− 1)n−2 = λ(λ− 1)n−1.

This completes the induction. �

Lemma 2. Let Cn be a cycle on n vertices. Then P (Cn, λ) = (λ− 1)n + (−1)n(λ− 1) .

Proof. Induction on n . If n = 3, C3 = K3 , so we check

P (K3, λ) = λ(λ− 1)(λ− 2) = (λ− 1)3 + (−1)3(λ− 1) = (λ− 1)((λ− 1)2 − 1)

= (λ− 1)(1− 2λ+ λ2 − 1)

= λ(λ− 1)(λ− 2).
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Let n > 3, and e be an edge of Cn . Then (Cn)e is just a path on n vertices, and (Cn)′e = Cn−1 is just a cycle
on (n− 1) vertices. We have

P (Cn, λ) = P ((Cn)e, λ)− P (Cn−1, λ)

= λ(λ− 1)n−1 − (λ− 1)n−1 − (−1)n−1(λ− 1)

= (λ− 1)n + (−1)n(λ− 1).

This completes the induction. �

Remark. We notice that P (Cn, 1) = 0, and P (Cn, 2) = 1 + (−1)n . Hence P (Cn, 2) = 2 if n is even, and
P (Cn, 2) = 0 if n is odd. Let n = 2k + 1, then P (C2k+1, 3) = 22k+1 − 2 = 2(22k − 1). We conclude that
χ(Cn) = 2 if n is even and χ(Cn) = 3 if n = 2k + 1.

We define a wheel on (n+ 1) vertices Wn+1 by taking a cycle on n vertices and connecting each vertex of a cycle
to one more (n+ 1)the vertex.

Lemma 3. Let Wn+1 be a wheel on (n+ 1) vertices. Then P (Wn+1, λ) = λ(λ− 2)n + (−1)nλ(λ− 2) .

Proof. We assign an arbitrary color to the centeral vertex, then we can use (λ − 1) colors for the remaining
vertices. We obtain:

P (Wn+1, λ) = λ [(λ− 1− 1)n + (−1)n(λ− 1− 1)] = λ(λ− 2)n + (−1)nλ(λ− 2).

This proves Lemma 3. �

We make two observations about the chromatic polynomial. Let G = (V,E), and

P (G,λ) = a0 + a1λ+ · · ·+ adλ
d.

(1) The coefficient a0 = 0. Indeed, P (G, 0) = a0 and at the same time is a number of proper colorings of G
with 0 colors, i.e., a0 = 0.

(2) Assume that |E| > 0. Then a1 + a2 + · · · + ad = P (G, 1) = 0. Indeed, if G contains an edge, then we
cannot give proper colorings of G with one color.

Lemma 4. Let G1 and G2 share a single vertex, i.e., V (G1) ∩ V (G2) = {v} . Then

P (G1 ∪G2, λ) =
P (G1, λ) · P (G2, λ)

λ
.

Proof. Let us give a coloring to G2 . Then the vertex v receives some color λ0 . Then we count how many ways
to color G1 so that v is colored with given color λ0 . Let Q(G1; v, λ, λ0) be the result. Because of the symmetry
with respect to colors, Q(G1; v, λ, λ0) is the same for any choice of λ0 . On the other hand, by taking every value
of λ0 , we count all colorings of the graph G1 . We conclude that Q(G1; v, λ, λ0)λ = P (G1, λ), or

Q(G1; v, λ, λ0) =
P (G1, λ)

λ

We obtain that all colorings of G1 ∪G2 are given by

P (G1, λ)

λ
· P (G2, λ) =

P (G1, λ) · P (G2, λ)

λ
.

This completes the proof. �

Lemma 5. Let G1 and G2 be such that G1 ∩G2 = Kn . Then

P (G1 ∪G2, λ) =
P (G1, λ) · P (G2, λ)

P (Kn, λ)
=
P (G1, λ) · P (G2, λ)

λ(n)
.

(Recall that λ(n) := λ(λ− 1)(λ− 2) · · · (λ− n+ 1).)

Exercise. Prove Lemma 5.
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