Math 232, Winter 2016, Boris Botvinnik

REVIEW PROBLEMS FOR THE FIRST MIDTERM TEST

- 1. Find an Euler circuit (if it does exist) in a given graph.
- **2.** Let a_n be the number of words of length n in A, B, C, and D with an odd number of B's. Calculate a_0 , a_1 , a_2 , a_3 , a_4 . Find a recurrence relation satisfied by a_n for all $n \ge 2$.
- **3.** Solve the following recurrence relations:

(a)
$$a_n = a_{n-1} + 2a_{n-2}, n \ge 2,$$

 $a_0 = 1, a_1 = 1.$

(b)
$$a_n = a_{n-1} + a_{n-2}, n \ge 2,$$

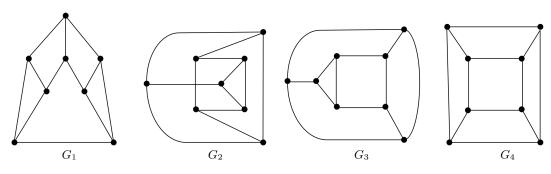
 $a_0 = 0, a_1 = 1.$

(c)
$$a_n = 6a_{n-1} + 9a_{n-2}, n \ge 2,$$

 $a_0 = 1, a_1 = -3.$

(d)
$$a_n = 2a_{n-1} - 2a_{n-2}, n \ge 2,$$

 $a_0 = 0, a_1 = 1.$


4. Use generating functions to solve the following recurrence relations:

(a)
$$a_n - 3a_{n-1} = n^2$$
, $n \ge 1$, $a_0 = 1$.

(b)
$$a_n - a_{n-1} = 3n^2 - 5n^3$$
, $n \ge 1$, $a_0 = 1$,

(c)
$$a_n + 3a_{n-1} - 10a_{n-2} = 3 \cdot 2^n, \ n \ge 2,$$

 $a_0 = 0, \ a_1 = 6.$

- **5.** Let $\Sigma = \{0,1\}$ be an alphabet, and $A = \{0,01,111\} \subset \Sigma^*$ be a language over Σ . Find a number of strings of length n over A.
- **6.** Let $\Sigma = \{0,1\}$ and A_n be the set of binary strings of length n which do not contain the string 00. Find and solve a recurrence relation for $a_n = |A_n|$.
- 7. A graph G = (V, E) with 21 edges has seven vertices of degree 1, three of degree 2, seven of degree 3 and the rest of degree 4. How many vertices does it have?
- 8. Prove that a connected graph G has an Euler circuit if and only if all vertices of G have even degree.
- **9.** Write an algorithm to construct a circuit for a graph G, where all vertices of G have even degree. Explain why does it work.
- 10. Write an algorithm to construct an Euler circuit for a graph G, where all vertices of G have even degree. Explain why does it work.
- 11. Which, if any, of the pairs of graphs shown are isomorphic? Justify your answer by describing an isomorphism or explaining why one does not exist.

