Summary on Lecture 9, February 13, 2019

More on the principle of inclusion and exclusion.

Theorem. Let S be a finite set, and c_1, \ldots, c_k be some conditions on elements of S. Then

$$N(\bar{c}_1 \cdots \bar{c}_k) = N + \sum_{\ell=1}^k (-1)^{\ell} \sum_{1 \le i_1 < \dots < i_{\ell} \le k} N(c_{i_1} \cdots c_{i_{\ell}}),$$

where N = |S|, $N(c_{i_1} \cdots c_{i_\ell}) = |S_{i_1} \cap \cdots \cap S_{i_\ell}|$, and $N(\bar{c}_1 \cdots \bar{c}_k) = |\overline{S_1 \cup \cdots \cup S_k}|$.

Important Examples. (1) Let $A = \{1, 2, ..., 999, 999\}$. Count how many elements $n \in A$ have the property that a sum of digits of n is equal to 35?

Solution. Let x_1, \ldots, x_6 denote digits of $n = x_1x_2x_3x_4x_5x_6$. Then the condition on n is equivalent to the following question. Consider the equation $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 35$, and the integers x_i are such that $0 \le x_i \le 9$, $i = 1, \ldots, 6$. How many integral solutions (i.e. when all x_i are integers) are there?

First, we consider all solutions of the equation $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 35$ such that $0 \le x_i$, i = 1, ..., 6. We denote the set of all such solutions by S. For each i = 1, 2, 3, 4, 5, 6, we say that a solution $x_1 ... x_6$ satisfies the property c_i if $x_i \ge 10$. We denote by S_i the set of solutions satisfying c_i . Then we compute:

$$N = |S| = {35+6-1 \choose 6-1} = {40 \choose 5}$$

$$N(c_i) = |S_i| = {25+6-1 \choose 6-1} = {30 \choose 5}$$

$$N(c_{i_1}c_{i_2}) = |S_{i_1} \cap S_{i_2}| = {15+6-1 \choose 6-1} = {20 \choose 5}$$

$$N(c_{i_1}c_{i_2}c_{i_3}) = |S_{i_1} \cap S_{i_2} \cap S_{i_3}| = {5+6-1 \choose 6-1} = {10 \choose 5}$$

$$N(c_{i_1}c_{i_2}c_{i_3}c_{i_4}) = N(c_{i_1}c_{i_2}c_{i_3}c_{i_4}c_{i_5}) = N(c_{1}c_{2}c_{3}c_{4}c_{5}c_{6}) = 0$$

Then we compute the answer:

$$N(\bar{c}_1\bar{c}_2\bar{c}_3\bar{c}_4\bar{c}_5\bar{c}_6) = \begin{pmatrix} 40\\5 \end{pmatrix} - \begin{pmatrix} 6\\1 \end{pmatrix} \cdot \begin{pmatrix} 30\\5 \end{pmatrix} + \begin{pmatrix} 6\\2 \end{pmatrix} \cdot \begin{pmatrix} 20\\5 \end{pmatrix} - \begin{pmatrix} 6\\3 \end{pmatrix} \cdot \begin{pmatrix} 10\\5 \end{pmatrix}$$

(2) Let $A = \{a_1, \ldots, a_m\}$, $B = \{b_1, \ldots, b_n\}$. A function $f : A \to B$ is a rule which for each element $a_i \in A$ assigns an element $f(a_i) \in B$. Let $\mathcal{F}(A, B)$ be the set of all functions $f : A \to B$.

Exercise. Prove that $|\mathcal{F}(A,B)| = n^m$.

Definition. Let $f: A \to B$ be a function. We denote by $f(A) = \{ f(a) | a \in A \} \subset B$ the image of f. We say that a function $f: A \to B$ is *onto* iff f(A) = B. Let $\mathcal{F}^{\text{onto}}(A, B) \subset \mathcal{F}(A, B)$ be the set of all functions $f: A \to B$ which are onto.

Question: Let |A| = m and |B| = n. What is the size of the set $\mathcal{F}^{\text{onto}}(A, B)$?

Solution. We denote $\mathcal{F} := \mathcal{F}(A, B)$. Then we say that a function $f : A \to B$ satisfies c_i iff $b_i \notin f(A)$,

where i = 1, ..., n. We denote by \mathcal{F}_i the set of all functions satisfying c_i . Then we have:

$$\begin{array}{rcl} N & = & |\mathcal{F}| = n^m \\ N(c_i) & = & |\mathcal{F}_i| = (n-1)^m \\ N(c_{i_1}c_{i_2}) & = & |\mathcal{F}_{i_1} \cap \mathcal{F}_{i_2}| = (n-2)^m \\ N(c_{i_1}c_{i_2}c_{i_3}) & = & |\mathcal{F}_{i_1} \cap \mathcal{F}_{i_2} \cap \mathcal{F}_{i_3}| = (n-3)^m \\ & \cdots & \cdots \\ N(c_{i_1} \cdots c_{i_k}) & = & |\mathcal{F}_{i_1} \cap \cdots \cap \mathcal{F}_{i_k}| = (n-k)^m \\ & \cdots & \cdots \\ N(c_{i_1} \cdots c_{i_{n-1}}) & = & |\mathcal{F}_{i_1} \cap \cdots \cap \mathcal{F}_{i_{n-1}}| = 1^m \\ N(c_{i_1} \cdots c_{i_n}) & = & |\mathcal{F}_{i_1} \cap \cdots \cap \mathcal{F}_{i_n}| = 0 \end{array}$$

We obtain the answer:

$$|\mathcal{F}^{\text{onto}}(A,B)| = n^m - \binom{n}{1}(n-1)^m + \binom{n}{2}(n-2)^m - \dots + \binom{n}{k}(n-k)^m + \dots + \binom{n}{n-1}1^m$$

(3) Let $A = \{a_1, a_2, a_3, a_4, a_5, a_6\}, B = \{b_1, b_2, b_3, b_4, b_5\}.$ Then $N = |\mathcal{F}(A, B)| = 5^6$,

$$\begin{array}{lll} N & = & 5^6 \\ N(c_i) & = & 4^6 \\ N(c_{i_1}c_{i_2}) & = & 3^6 \\ N(c_{i_1}c_{i_2}c_{i_3}) & = & 2^6 \\ N(c_{i_1}c_{i_2}c_{i_3}c_{i_4}) & = & 1^6 \end{array}$$

We obtain the answer:

$$|\mathcal{F}^{\text{onto}}(A, B)| = 5^6 - {5 \choose 1} 4^6 + {5 \choose 2} 3^6 - {5 \choose 3} 2^6 + {5 \choose 4} 1^6$$

$$= 15,625 - 5 \cdot 4,096 + 10 \cdot 729 - 10 \cdot 64 + 5 \cdot 1$$

$$= 15,625 - 20,480 + 7,290 - 640 + 5 = 1,800$$

(4) **Euler function.** For given positive integer n, consider the set of numbers m such that $1 \le m < n$ and gcd(m, n) = 1. Leonard Euler defined the function:

$$\phi(n) = |\{\ m \ | \ 1 \leq m < n, \ \text{and} \ \gcd(m,n) = 1 \ \}|.$$

Here is the values of $\phi(n)$ for some n:

There is a simple formula to compute $\phi(n)$. Recall that for every integer n there exist primes p_1, \ldots, p_s and positive e_1, \ldots, e_s such that $n = p_1^{e_1} \cdots p_s^{e_s}$. Here is the formula:

$$\phi(n) = n \prod_{i=1}^{s} \left(1 - \frac{1}{p_i} \right)$$

Example: Let $n = p_1^{e_1} p_2^{e_2} p_3^{e_3} p_4^{e_4}$, and $S = \{1, \dots, n\}$.

We notice that for m < n with gcd(m, n) > 1, m has to be divisible by one of the primes p_i . We say that "m satisfies c_i " iff $p_i|m$. Let

$$S_i = \{ m \in S \mid p_i | m \}, i = 1, 2, 3, 4.$$

Then N = |S| = n, $N(c_i) = |S_i| = \frac{n}{p_i}$. Then $N(c_i c_j) = \frac{n}{p_i p_j}$, $N(c_i c_j c_k) = \frac{n}{p_i p_j p_k}$, $N(c_1 c_2 c_3 c_4) = \frac{n}{p_1 p_2 p_3 p_4}$. Then

$$\begin{split} N(\bar{c}_1\bar{c}_2\bar{c}_3\bar{c}_4) &= n - \left(\frac{n}{p_1} + \frac{n}{p_2} + \frac{n}{p_3} + \frac{n}{p_4}\right) + \left(\frac{n}{p_1p_2} + \frac{n}{p_1p_3} + \frac{n}{p_1p_4} + \frac{n}{p_2p_3} + \frac{n}{p_2p_4} + \frac{n}{p_2p_4}\right) \\ &- \left(\frac{n}{p_1p_2p_3} + \frac{n}{p_1p_2p_4} + \frac{n}{p_1p_3p_4} + \frac{n}{p_2p_3p_4}\right) + \frac{n}{p_1p_2p_3p_4} \end{split}$$

It is easy to check:

$$N(\bar{c}_1\bar{c}_2\bar{c}_3\bar{c}_4) \ = \ \frac{n(p_1-1)(p_2-1)(p_3-1)(p_4-1)}{p_1p_2p_3p_4} = n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\left(1-\frac{1}{p_3}\right)\left(1-\frac{1}{p_4}\right).$$

Examples: (1) Let p be a prime. Then $\phi(p) = p - 1$, and $\phi(p^k) = p^{k-1}(p-1)$.

(2) Since 2019 = 3.673, where 673 is a prime number. We obtain:

$$\phi(2019) = 3 \cdot 673 \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{673}\right) = 2 \cdot 672 = 1342.$$

Recursive definitions. There are many mathematical objects which we can define only *recursively*. We start with well-known example:

- (1) **Fibonacci numbers** F_n . We define:
 - (B) $F_0 = 0$, $F_1 = 1$,
 - (R) $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

Here are the first few values of F_n :

We prove that $\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$ by induction. Indeed, it's true if n = 1.

Assume
$$\sum_{i=1}^{k} F_i^2 = F_k F_{k+1}$$
. Then

$$\sum_{i=1}^{k+1} F_i^2 = \sum_{i=1}^k F_i^2 + F_{k+1}^2$$
$$= F_k F_{k+1} + F_{k+1}^2 = F_{k+1} (F_k + F_{k+1}) = F_{k+1} F_{k+2}.$$

- (2) We define a sequence of numbers a_n as:
 - (B) $a_0 = 0$, $a_1 = 0$, $a_2 = 1$, and
 - (R) $a_n = a_{n-1} + a_{n-2}$ for $n \ge 3$.

Here are the first few values of a_n :

We notice that $a_n = F_{n-1}$ for $n \ge 3$. We would like to prove that $a_{n+3} \ge (\sqrt{2})^n$ for all $n \ge 0$. Indeed, it's true if n = 0, 1. Assume $a_{k+3} \ge (\sqrt{2})^k$ for all $k = 0, 1, \ldots, n$. We should prove that $a_{n+4} \ge (\sqrt{2})^{n+1}$. We have:

$$a_{n+4} = a_{n+3} + a_{n+2} \ge (\sqrt{2})^n + (\sqrt{2})^{n-1}$$

= $(\sqrt{2})^{n-1}(\sqrt{2}+1) \ge (\sqrt{2})^{n-1} \cdot 2 = (\sqrt{2})^{n+1}$.

Here we use that $\sqrt{2} + 1 \ge 2$ and $2 = (\sqrt{2})^2$.

(3) We can define recursively the binomial coefficients $\binom{n}{r}$:

(B)
$$\binom{n}{0} = 1$$
, $\binom{n}{r} = 0$ if $r < 0$ and $r > n$.

(R)
$$\binom{n+1}{r} = \binom{n}{r} + \binom{n}{r-1}$$
.

- (4) We define factorial FAC(n):
 - (B) FAC(0) = 1
 - (R) $FAC(n) = FAC(n-1) \cdot n$ for $n \ge 1$.
- (5) We define the Harmonic numbers H_n :
 - (B) $H_1 = 1$
 - (R) $H_n = H_{n-1} + \frac{1}{n}$ for $n \ge 2$.
- (6) We define the sequence SEC(n):
 - (B) SEC(0) = 1
 - (R) $SEC(n+1) = \frac{n+1}{SEC(0)}$.

Exercise. Use induction to prove that the sequence SEC(n) is well-defined.

- (7) We define the sequence T(n) as follows:
 - (B) T(1) = 1
 - (R) $T(n) = 2 \cdot T(\lfloor \frac{n}{2} \rfloor)$ for $n \ge 2$.

We compute a couple of values of T(n):

$$T(73) = 2 \cdot T(36) = 2^{2} \cdot T(18) = 2^{3} \cdot T(9) = 2^{4} \cdot T(4) = 2^{5} \cdot T(2) = 2^{6}$$

$$T(2019) = 2 \cdot T(1009) = 2^{2} \cdot T(504) = 2^{3} \cdot T(252) = 2^{4} \cdot T(126) = 2^{5} \cdot T(63)$$

$$= 2^{6} \cdot T(31) = 2^{7} \cdot T(15) = 2^{8} \cdot T(7) = 2^{9} \cdot T(3) = 2^{10}$$

Exercise. Use induction to prove that $T(n) = \max\{ \ 2^k \mid 2^k \le n \ \}.$

Exercise. Define a sequence S(n) such that $S(n) = \min\{ 2^k \mid n \leq 2^k \}.$

Exercise. Let p be a prime. Define recursively a sequence $T_p(n)$ such that

$$T(n) = \max\{ p^k \mid p^k \le n \}.$$

Exercise. Let p be a prime. Define recursively a sequence $S_p(n)$ such that

$$S_p(n) = \min\{ p^k \mid n \le p^k \}.$$

Exercise. Define recursively what does it mean "well-formed formula", see Ex. 17, p. 220.