
Math 231, Winter 2019 Boris Botvinnik

Summary on Lecture 8, February 11, 2019

• Examples on induction:

(1) Prove that

n∑
k=0

k =
n(n + 1)

2
.

(2) Prove that

n∑
k=0

k2 =
n(n + 1)(2n + 1)

6
.

(3) Prove that

n∑
k=0

k3 =
n2(n + 1)2

4
.

(4) Prove that 8n − 2n is divisible by 6 for every n ∈ Z+ .

(5) Prove that 11n − 4n is divisible by 7 for every n ∈ Z+ .

(6) Prove that 8n+2 + 92n+1 is divisible by 73 for every n ∈ Z+ .

(7) Prove that 5n+1 + 2 · 3n + 1 is divisible by 8 for every n ∈ Z+ .
Proof. Let n = 1. Then 51+1 + 2 · 31 + 1 = 32. OK
Assume that 5k+1 + 2 · 3k + 1 = 8 · ` . Consider the case n = k + 1.

5k+2 + 2 · 3k+1 + 1 = 5 · 5k+1 + 5 · 2 · 3k + 5 · 1− 5 · 2 · 3k − 5 · 1 + 2 · 3k+1 + 1

= 5 · (5k+1 + 2 · 3k + 1)− 10 · 3k + 6 · 3k − 4

= 5 · (5k+1 + 2 · 3k + 1)− 4(3k + 1).

By induction, 5 · (5k+1 + 2 · 3k + 1) is divisible by 8, then (3k + 1) is always even. Hence
4(3k + 1) is divisible by 8. We obtain that 5k+2 + 2 · 3k+1 + 1 is divisible by 8.

(8) We define the harmonic numbers: H1 = 1, H2 = 1 + 1
2 , H3 = 1 + 1

2 + 1
3 , and

Hn = 1 + 1
2 + 1

3 + · · ·+ 1
n . Prove that H2n ≥ 1 + n

2 .

Proof. Let n = 1, then H2 = 1 + 1
2 . By induction, we have H2k ≥ 1 + k

2 . Then we have:

H2k+1 = 1 + 1
2 + 1

3 + · · ·+ 1
2k

+ 1
2k+1

+ 1
2k+2

+ · · ·+ 1
2k+2k

= H2k + 1
2k+1

+ 1
2k+2

+ · · ·+ 1
2k+2k

.

We notice that 2k + i ≤ 2k + 2k for each i = 1, 2, . . . , 2k . Then we have that 1
2k+i

≥ 1
2k+2k

.
Then we have:

H2k+1 = H2k + 1
2k+1

+ 1
2k+2

+ · · ·+ 1
2k+2k

.

≥ H2k + 2k

2k+2k

= H2k + 2k

2·2k

= H2k + 1
2
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By induction, H2k ≥ 1 + k
2 . Then we have:

H2k+1 ≥ H2k +
1

2
≥ 1 +

k

2
+

1

2
= 1 +

k + 1

2
.

Remark.1 In particular, it means that lim
n→∞

Hn =∞ .

(9) Prove that n2 > n + 1 for all n ≥ 2.

(10) Prove the following inequalities for all n ∈ Z+ :

√
n ≤

n∑
i=1

1√
i
≤ 2
√
n− 1.

• The principle of inclusion and exclusion. We start with an example. Let S = {1, 2, . . . , 10, 000} .
We choose two primes p1 = 7 and p2 = 11, and we let

S1 := { n ∈ S | n is divisible by p1 = 7 },
S2 := { n ∈ S | n is divisible by p2 = 11 }.

We say that “n ∈ S satisfies a property c1” iff n ∈ S1 , and “n ∈ S satisfies a property c2” iff
n ∈ S2 . We use the notations: N(c1) = |S1| , N(c2) = |S2| , N(c1c2) = |S1 ∩ S2| . Then in these
terms, we have:

|S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2| = N(c1) + N(c2)−N(c1c2).

Then we denote:

N(c̄1c2) = |S̄1 ∩ S2| = |{n ∈ S | n does not satisfy c1 and satisfies c2}|,

N(c1c̄2) = |S1 ∩ S̄2| = |{n ∈ S | n satisfies c1 and does not satisfy c2}|,

N(c̄1c̄2) = |S̄1 ∩ S̄2| = |{n ∈ S | n does not satisfy c1 and does not satisfy c2}|.

We compute: N(c1) = b10,0007 c = 1, 428, N(c2) = b10,00011 c = 909, N(c1c2) = b10,00077 c = 129.
Then:

N(c̄1c2) = N(c2)−N(c1c2) = 909− 129 = 780,

N(c1c̄2) = N(c1)−N(c1c2) = 1, 428− 129 = 1, 299,

N(c̄1c̄2) = N − [N(c1) + N(c2)−N(c1c2)]

= 10, 000− [1, 428 + 909− 129] = 7, 792.

We add one more condition: n ∈ S satisfies c3 iff n is divisible by 23. Then we compute
N(c̄1c̄2c̄3):

N(c̄1c̄2c̄3) = |S̄1 ∩ S̄2 ∩ S̄3| = |S1 ∪ S2 ∪ S3|

= N − [(N(c1) + N(c2) + N(c3))− ((N(c1c2) + N(c1c3) + N(c2c3)) + N(c1c2c3)]

= 7, 456

1For those who are good friends with calculus
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Exercise. Verify this calculation.

Theorem. Let S be a finite set, and c1, . . . , ck be some conditions on elements of S . Then

N(c̄1 · · · c̄k) = N +

k∑
`=1

(−1)`
∑

1≤i1<···<i`≤k
N(ci1 · · · ci`),

where N = |S| , N(ci1 · · · ci`) = |Si1 ∩ · · · ∩ Si` | , and N(c̄1 · · · c̄k) = |S1 ∪ · · · ∪ Sk| .
Important Examples. (1) Let A = {1, 2, . . . , 999, 999} . Count how many elements n ∈ A have
the property that a sum of digits of n is equal to 35?

Solution. Let x1, . . . , x6 denote digits of n = x1 . . . x6 . Then the condition on n is equivalent to
the following question. Consider the equation x1 + x2 + xc3 + x4 + x5 + x6 = 35, and the integers
xi are such that 0 ≤ xi ≤ 9, i = 1, . . . , 6. How many integral solutions (i.e. when all xi are
integers) are there?

First, we consider all solutions of the equation x1 +x2 +xc3 +x4 +x5 +x6 = 35 such that 0 ≤ xi ,
i = 1, . . . , 6. We denote the set of all such solutions by S . For each i = 1, 2, 3, 4, 5, 6, we say
that a solution x1 . . . x6 satisfies the property ci if xi ≥ 10. We denote by Si the set of solutions
satisfying ci . Then we compute:

N = |S| =
(

35 + 6− 1
6− 1

)
=

(
40
5

)

N(ci) = |Si| =
(

25 + 6− 1
6− 1

)
=

(
30
5

)

N(ci1ci2) = |Si1 ∩ Si2 | =
(

15 + 6− 1
6− 1

)
=

(
20
5

)

N(ci1ci2ci3) = |Si1 ∩ Si2 ∩ Si3 | =
(

5 + 6− 1
6− 1

)
=

(
10
5

)
N(ci1ci2ci3ci4) = N(ci1ci2ci3ci4ci5) = N(c1c2c3c4c5c6) = 0

Then we compute the answer:

N(c̄1c̄2c̄3c̄4c̄5c̄6) =

(
40
5

)
−
(

6
1

)
·
(

30
5

)
+

(
6
2

)
·
(

20
5

)
−
(

6
3

)
·
(

10
5

)
(2) Let A = {a1, . . . , am} , B = {b1, . . . , bn} . A function f : A → B is a rule which for each
element ai ∈ A assigns an element f(ai) ∈ B . Let F(A,B) be the set of all functions f : A→ B .
Exercise. Prove that |F(A,B)| = nm .
Let f : A → B be a function. We denote by f(A) = { f(a) |a ∈ A} ⊂ B the image of f . We
say that a function f : A→ B is onto iff f(A) = B . Let Fonto(A,B) ⊂ F(A,B) be the set of all
functions f : A→ B which are onto.
Question: What is the size of the set Fonto(A,B)?
Solution. We denote F := F(A,B). Then we say that a function f : A → B satisfies ci iff

3



bi /∈ f(A), where i = 1, . . . , n . We denote by Fi the set of all functions satisfying ci . Then we
have:

N = |F| = nm

N(ci) = |Fi| = (n− 1)m

N(ci1ci2) = |Fi1 ∩ Fi2 | = (n− 2)m

N(ci1ci2ci3) = |Fi1 ∩ Fi2 ∩ Fi3 | = (n− 3)m

N(ci1 · · · cik) = |Fi1 ∩ · · · ∩ Fik | = (n− k)m

We obtain the answer:

|Fonto(A,B)| = nm−
(

n
1

)
(n−1)m+

(
n
2

)
(n−2)m−· · · (−1)k

(
n
k

)
(n−k)m+· · · (−1)n−1

(
n

n− 1

)
1m
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