Summary on Lecture 6, February 4, 2019

• Two proofs.

- (1) Show that n² 2 is not divisible by 5 for every n ∈ Z₊.
 Proof. We consider the cases: (a) n = 5k, (b) n = 5k + 1, (c) n = 5k + 2, (d) n = 5k + 3, (e) n = 5k + 4.
 (a): We have n² 2 = 25k² 2 is not divisible by 5.
 (b): We have n² 2 = 25k² + 10k + 1 2 = 5(5k² + 2k) 1 is not divisible by 5.
 (c): We have n² 2 = 25k² + 20k + 4 2 = 5(5k² + 4k) + 2 is not divisible by 5.
 (d): We have n² 2 = 25k² + 30k + 9 2 = 5(5k² + 6k + 1) + 2 is not divisible by 5.
 (e): We have n² 2 = 25k² + 40k + 16 2 = 5(5k² + 8k + 3) + 1 is not divisible by 5.
 (f): We have n² 2 = 25k² + 40k + 16 2 = 5(5k² + 8k + 3) + 1 is not divisible by 5.
 (g): Show that n⁴ n² is divisible by 3 for every n ∈ Z₊.
 (h): We notice that n⁴ n² = n²(n² 1) = n²(n 1)(n + 1). Then we consider the cases:
 - **Proof.** We notice that $n^4 n^2 = n^2(n^2 1) = n^2(n 1)(n + 1)$. Then we consider the cases (a) n = 3k, (b) n = 3k + 1, (c) n = 3k + 2.
 - (a): Then n^2 is divisible by 3.
 - (b): Then n-1 is divisible by 3.
 - (c): Then n+1 is divisible by 3.
 - Thus $n^4 n^2$ is divisible by 3 for every $n \in \mathbf{Z}_+$.
- (3) Show that $n^4 n^2$ is even for every $n \in \mathbb{Z}_+$.
- (4) Show that $n^4 n^2$ is divisible by 6 for every $n \in \mathbb{Z}_+$.
- Quantifiers. We introduce two important notations:

" \forall " "for all"

" \exists " "exists"

(a) Let p(n) means "n² = n", where n ∈ Z. Then we have the statements: ∀n p(n) ⇔ ∀n (n² = n) F ∃n p(n) ⇔ ∃n (n² = n) T
(b) Let p(n) means "n + 2 is even", where n ∈ Z. Then we have the statements: ∀n p(n) ⇔ ∀n (n + 2 is even) F ∃n p(n) ⇔ ∃n (n + 2 is even) T ∀n ¬p(n) ⇔ ∀n ¬(n + 2 is even) ⇔ ∀n (n + 2 is odd) F ∃n ¬p(n) ⇔ ∃n ¬(n + 2 is even) ⇔ ∃n (n + 2 is odd) T

We notice the following tautologies:

$$\neg(\exists x \ p(x)) \Longleftrightarrow \forall x \ \neg p(x)$$
$$\neg(\forall x \ p(x)) \Longleftrightarrow \exists x \ \neg p(x)$$

More examples:

(a) Let $x, y \in \mathbf{R}$. $\forall x \; \forall y \; (x+y=y+x)$

Т

- (b) Let $n \in \mathbb{Z}$. $\forall n \ [(n \text{ is a prime}) \rightarrow (n \text{ is a odd}) \qquad F$ $\forall n \ [((n \text{ is a prime}) \land (n \ge 3)) \rightarrow (n \text{ is a odd})] \qquad T$
- (c) Let $n \in \mathbb{Z}$. $\forall n \ (n+6 \leq 2^n)$ F $\forall n \ [(n+6 \leq 2^n) \land (n \geq 4)]$ T Here n = 3 is a counterexample for the first statement. The second one is hard to prove (we'll learn it soon: induction).
- (d) Let $x, y \in \mathbf{R}$. $\forall x \ \forall y \ [(x > y) \rightarrow (x^2 > y^2)]$ A counterexample: $x = 1, \ y = -2$.
- (e) Let $x, y \in \mathbf{R}_+ = \{ r \in \mathbf{R} \mid r > 0 \}.$ $\forall x \; \forall y \; [(x > y) \rightarrow (x^2 > y^2)]$ T

(f) Let
$$x, y \in \mathbf{R}$$
, and $p(x) := (x \ge 0), q(x) := (x^2 \ge 0).$
 $\exists x \ (p(x) \to q(x))$
 $\forall x \ (p(x) \to q(x))$
T

(g) We notice that the implication $\forall x \ p(x) \rightarrow \exists x \ p(x)$ is a tautology.

(h) Let
$$x \in \mathbf{Z}_+$$
.
 $\forall x \ (x^2 \ge 1)$ T
Let $x \in \mathbf{Z}$.
 $\forall x \ (x^2 \ge 1)$ F

(i) Important tautology: $\forall x \ (p(x) \to q(x)) \iff \forall x \ (\neg q(x) \to \neg p(x))$

(j) More tautologies:

$$\exists x \ (p(x) \land q(x)) \Longrightarrow (\exists x \ p(x)) \land (\exists x \ q(x))$$

We notice that the implication

$$(\exists x \ p(x)) \land (\exists x \ q(x)) \to \exists x \ (p(x) \land q(x))$$

is not a tautology. Example: $p(x) = (x < 1), q(x) = (x \ge 1)$. Then the statement $(\exists x \ p(x)) \land (\exists x \ q(x))$ is true, but the statement $\exists x \ (p(x) \land q(x))$ is false. More tautologies:

$$\exists x \ (p(x) \lor q(x)) \iff (\exists x \ p(x)) \lor (\exists x \ q(x))$$
$$\forall x \ (p(x) \land q(x)) \iff (\forall x \ p(x)) \land (\forall x \ q(x))$$
$$(\forall x \ p(x)) \lor (\forall x \ q(x)) \Longrightarrow \forall x \ (p(x) \lor q(x))$$

We notice that the implication

$$\forall x \ (p(x) \lor q(x)) \to (\forall x \ p(x)) \lor (\forall x \ q(x))$$

is not a tautology. The same example: $p(x) = (x < 1), q(x) = (x \ge 1)$. Then the statement $\forall x \ (p(x) \lor q(x))$ is true, but the statement $(\forall x \ p(x)) \lor (\forall x \ q(x))$ is false.

(k) Let $x, y \in \mathbf{R}$. Then the statement $\forall x \exists y \ (x + y = 25)$ is true. Indeed for any given x = a, we can find y = 25 - a so that x + y = 25.

- (1) However the statement $\exists y \ \forall x \ (x+y=25)$ is false. Indeed assume that there exists y=b so that for every x we have x+b=25. Then this is true for x=25-b, but not for all x.
- (m) Check that the statement $\forall y \ \forall x \ (x+y=25)$ is false, and the statement $\exists x \ \exists y \ (x+y=25)$ is true.

Limits. Next we discuss definitions of $\lim_{n \to \infty} x_n$ and $\lim_{x \to a} f(x)$.

• Let $\{x_n\}$ be a sequence of real numbers. Then $\lim_{n \to \infty} x_n = A$ if and only if for every $\epsilon > 0$ there exists an integer N such that for every n (n > N) implies that $|x_n - A| < \epsilon$. In our terms, the following proposition

$$\forall \epsilon > 0 \; \exists N \; \forall n [(n > N) \to (|x_n - A| < \epsilon)]$$

is true. What does it mean that $\lim_{n\to\infty} x_n \neq A$? The answer:

$$\neg (\forall \epsilon > 0 \; \exists N \; \forall n[(n > N) \to (|x_n - A| < \epsilon)]) \iff \exists \epsilon > 0 \; \forall N \; \exists n \; \neg [(n > N) \to (|x_n - A| < \epsilon)]$$
$$\iff \exists \epsilon > 0 \; \forall N \; \exists n[(n > N) \land (|x_n - A| \ge \epsilon)].$$

• Let f(x) be a function. We say that $\lim_{x \to a} f(x) = L$ is for every $\epsilon > 0$ there exists $\delta > 0$ such that for every x the inequality $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$. In our terms, the following proposition

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x [(0 < |x - a| \rightarrow (|f(x) - L| < \epsilon)]$$

is true. What does it mean that $\lim_{x \to a} f(x) \neq L$? The answer:

$$\exists \epsilon > 0 \ \exists \delta > 0 \ \forall x [(0 < |x - a| \rightarrow (|f(x) - L| < \epsilon)] \} \iff$$
$$\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x \neg [(0 < |x - a| \rightarrow (|f(x) - L| < \epsilon)] \iff$$
$$\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x [(0 < |x - a| \land (|f(x) - L| \ge \epsilon)].$$

Those two examples are very important to understand really well.

• Give examples when $\lim_{n \to \infty} x_n \neq A$ and $\lim_{x \to a} f(x) \neq L$.