Summary on Lecture 10, March 4, 2019

Recursive definitions. There are many mathematical objects which we can define only *recursively*. We start with well-known example:

- (1) **Fibonacci numbers** F_n . We define:
 - (B) $F_0 = 0$, $F_1 = 1$,
 - (R) $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

Here are the first few values of F_n :

We prove that $\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$ by induction. Indeed, it's true if n = 1.

Assume
$$\sum_{i=1}^{k} F_i^2 = F_k F_{k+1}$$
. Then

$$\sum_{i=1}^{k+1} F_i^2 = \sum_{i=1}^k F_i^2 + F_{k+1}^2 F_k F_{k+1} + F_{k+1}^2 = F_{k+1}(F_k + F_{k+1}) = F_{k+1} F_{k+2}.$$

- (2) We define a sequence of numbers a_n as:
 - (B) $a_0 = 0$, $a_1 = 0$, $a_2 = 1$, and
 - (R) $a_n = a_{n-1} + a_{n-2}$ for $n \ge 3$.

Here are the first few values of a_n :

We notice that $a_n = F_{n-1}$ for $n \ge 3$. We would like to prove that $a_{n+2} \ge (\sqrt{2})^n$ for all $n \ge 2$. Indeed, it's true if n = 2, 3. Assume $a_{k+2} \ge (\sqrt{2})^k$ for all k = 2, 3, ..., n. We should prove that $a_{n+3} \ge (\sqrt{2})^{n+1}$. We have:

$$a_{n+3} = a_{n+2} + a_{n+1} \ge (\sqrt{2})^n + (\sqrt{2})^{n-1}$$

= $(\sqrt{2})^{n-1}(\sqrt{2}+1) \ge (\sqrt{2})^{n-1} \cdot 2 = (\sqrt{2})^{n+1}$.

Here we use that $\sqrt{2} + 1 \ge 2$ and $2 = (\sqrt{2})^2$.

- (3) We can define recursively the binomial coefficients $\binom{n}{r}$:
 - (B) $\binom{n}{0} = 1$, $\binom{n}{r} = 0$ if r < 0 and r > n.

(R)
$$\binom{n+1}{r} = \binom{n}{r} + \binom{n}{r-1}$$
.

- (4) We define factorial FAC(n):
 - (B) FAC(0) = 1
 - (R) $FAC(n) = FAC(n-1) \cdot n$ for $n \ge 1$.
- (5) We define the Harmonic numbers H_n :
 - (B) $H_1 = 1$
 - (R) $H_n = H_{n-1} + \frac{1}{n}$ for $n \ge 2$.
- (6) We define the sequence SEC(n):
 - (B) SEC(0) = 1
 - (R) $SEC(n+1) = \frac{n+1}{SEC(n)}$.

Exercise. Use induction to prove that the sequence SEC(n) is well-defined.

- (7) We define the sequence T(n) as follows:
 - (B) T(1) = 1
 - (R) $T(n) = 2 \cdot T(\lfloor \frac{n}{2} \rfloor)$ for $n \ge 2$.

We compute a couple of values of T(n):

$$T(73) = 2 \cdot T(36) = 2^{2} \cdot T(18) = 2^{3} \cdot T(9) = 2^{4} \cdot T(4) = 2^{5} \cdot T(2) = 2^{6}$$

$$T(2019) = 2 \cdot T(1009) = 2^{2} \cdot T(504) = 2^{3} \cdot T(252) = 2^{4} \cdot T(126) = 2^{5} \cdot T(63)$$

$$= 2^{6} \cdot T(31) = 2^{7} \cdot T(15) = 2^{8} \cdot T(7) = 2^{9} \cdot T(3) = 2^{10}$$

Exercise. Use induction to prove that $T(n) = \max\{ 2^k \mid 2^k \le n \}$.

Exercise. Define a sequence S(n) such that $S(n) = \min\{2^k \mid n \leq 2^k\}$.

Exercise. Let p be a prime. Define recursively a sequence $T_p(n)$ such that

$$T(n) = \max\{ p^k \mid p^k \le n \}.$$

Exercise. Let p be a prime. Define recursively a sequence $S_p(n)$ such that

$$S_p(n) = \min\{ p^k \mid n \le p^k \}.$$

Exercise. Define recursively what does it mean "well-formed formula", see Ex. 17, p. 220.

• Division algorithm and prime numbers. Recall that if $m, n \in \mathbf{Z}$, and $n \neq 0$, we say that n divides m or m is divisible by n iff $m = n \cdot j$, where $j \in \mathbf{Z}$. We can say also that m is a multiple of n. The notation: n|m.

Properties:

- (1) 1|m and m|0 for any $m \in \mathbf{Z}$;
- (2) $(n|m) \wedge (m|k) \Longrightarrow n|k$;

- (3) $(n|m) \wedge (m|n) \Longrightarrow m = \pm n$;
- (4) if $m = c_1 m_1 + \cdots + c_s m_s$, and $n | m_i$ for all $i = 1, \dots, s$, then n | m.

Exercise. Prove (3), (4).

Recall that p is a prime number if p has no divisors but 1 and itself. We also recall the following fact (see Lecture 5 for the proof):

Lemma 1. Let $n \in \mathbb{Z}_+$ be not a prime number. Then there exits a prime p such that p|n.

We use Lemma 1 to prove the following remarkable fact:

Theorem 2. There is infinite number of primes.

Proof. Assume there exist only finite number of primes. Let $P = \{p_1, p_2, \ldots, p_k\}$ is the set of all prime numbers, |P| = k. Consider the integer: $p_{k+1} = p_1 \cdot p_2 \cdots p_k + 1$. The integer p_{k+1} is either pime or not. If p_{k+1} is not a prime, then by Lemma 1 it has to be divisible by some prime p_j , $j = 1, \ldots, k$, but it is not since the remainder will be 1. Thus p_{k+1} is a prime, and $p_{k+1} \in P$. Then |P| = k + 1, not |P| = k. This two properties cannot hold together. Contradiction.

• Division Algorithm. First we prove the existence result.

Theorem 2. Let $m, n \in \mathbb{Z}$, and $n \neq 0$. Then there exist unique integers $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., n-1\}$ such that $m = n \cdot q + r$.

Proof. We consider only the case when m > 0 and n > 0, leaving the remaining cases to you. If n|m, then $m = n \cdot q$ for some $q \in \mathbf{Z}$. If $m = n \cdot q'$, then $n \cdot q - n \cdot q' = 0$, or n(q - q') = 0, which implies q = q'.

Let $n \not\mid m$ and n < m. Then we consider the set

$$S = \{ m - t \cdot n \mid m - t \cdot n > 0 \}.$$

We notice that $S \neq \emptyset$ since m > n, i.e., $m - 1 \cdot n > 0$. Also, by definition, all elements of S are positive. By the Well-Ordering Principle, there exists a minimal element of S. We denote it by r. We have $m = q \cdot n + r$. We notice that $n > r \geq 0$: indeed, if $r \geq n$, then there is an element $(r - n) = m - (q + 1) \cdot n$ in S.

Exercise. Prove uniqueness of q and r in the case when m > n > 0.

• The Euclidian Algorithm: warm-up. Recall: let $m, n \in \mathbb{Z}$, and $n \neq 0$. Then there exist unique integers $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., n-1\}$ such that $m = n \cdot q + r$.

We look at the division:

$$m = q \cdot n + r$$
, $0 < r < n$.

The following fact is very important for us: it gives a key to compute gcd(m, n) for arbitrary integers m and n. Euclid has discovered this property around 2,300 years ago.

Lemma 1. gcd(m, n) = gcd(n, r).

Proof. We will show that every common divisor of m and n is also a common divisor of n and r, and that every common divisor of n and r is also a common divisor of m and n.

Indeed, let d|m and d|n. Then, since $r = m - q \cdot n$, d|r. Thus d is a common divisor of n and r. Let d|n and d|r. Then, since $m = q \cdot n + r$, d|m. Thus d is a common divisor of m and n.

Now, since the common divisors of the pairs (m, n) and (n, r) coincide, the greatest common divisor is the same, i.e., gcd(m, n) = gcd(n, r).

Examples. We compute few examples:

$$\gcd(27,5) = \gcd(5,2) = \gcd(2,1) = 1$$

 $\gcd(183,15) = \gcd(15,3) = \gcd(3,0) = 3$
 $\gcd(2014,323) = \gcd(323,76) = \gcd(76,19) = \gcd(19,0) = 19.$

We introduce the notations: (m DIV n) := q, and (m MOD n) := r. Thus we can write:

$$m = (m \text{ DIV } n) \cdot n + (m \text{ MOD } n).$$

We fix n > 0 and then we say that m and m' are equal **mod** n iff (m - m' MOD n) = 0, i.e. that m - m' is divisible by n.

Example. Let n = 5. Then there are only possible remainders are 0, 1, 2, 3, 4. Thus we can put together all integers in 5 different classes:

$$\mathbf{0} := \{0, \pm 5, \pm 2 \cdot 5, \ldots\}, \quad \mathbf{1} := \{1, 1 \pm 5, 1 \pm 2 \cdot 5, \ldots\}, \quad \mathbf{2} := \{2, 2 \pm 5, 2 \pm 2 \cdot 5, \ldots\}, \\ \mathbf{3} := \{3, 3 \pm 5, 3 \pm 2 \cdot 5, \ldots\}, \quad \mathbf{4} := \{4, 4 \pm 5, 4 \pm 2 \cdot 5, \ldots\}.$$

Now we can add the classes: say, let $4+5j \in 4$, and $1+5i \in 1$. Then

$$4 + 5j + 1 + 5i = 5(1 + i + j) \in \mathbf{0}$$
,

and we choose different numbers in **4** and **1**, the result will be the same. Thus we have that $\mathbf{4} + \mathbf{1} = \mathbf{0}$. Similarly, we can multiply. Say, let $2 + 5j \in \mathbf{2}$, and $3 + 5i \in \mathbf{3}$. Then

$$(2+5j)(3+5i) = 6+5 \cdot 3i+5 \cdot 2j+5 \cdot 5ji = 1+5(3i+2j+5ji) \in \mathbf{1}.$$

Thus $2 \cdot 3 = 1$. Here are the addition and multiplication tables **mod** 5:

+	0	1	2	3	4
0	0	1	2	3	3
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Example. Let n = 6. Then there are only possible remainders are 0, 1, 2, 3, 4, 5. Thus we can put together all integers in 6 different classes:

$$\mathbf{0} := \{0, \pm 6, \pm 2 \cdot 6, \ldots\}, \quad \mathbf{1} := \{1, 1 \pm 6, 1 \pm 2 \cdot 6, \ldots\}, \quad \mathbf{2} := \{2, 2 \pm 6, 2 \pm 2 \cdot 6, \ldots\}, \\ \mathbf{3} := \{3, 3 \pm 6, 3 \pm 2 \cdot 6, \ldots\}, \quad \mathbf{4} := \{4, 4 \pm 6, 4 \pm 2 \cdot 6, \ldots\}, \quad \mathbf{5} := \{5, 5 \pm 6, 5 \pm 2 \cdot 6, \ldots\}.$$

Similarly, we can add and multiply. Here are the addition and multiplication tables **mod** 6:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

We notice that $2 \cdot 3 = 0$, $4 \cdot 3 = 0$, and $3 \cdot 3 = 3$.

Exercise. Write the addition and multiplication tables for n = 10 and n = 11.

Example. Compute last three digits of the following integer: 2019⁷⁹.

In other words, we have to compute 2019^{79} mod 1000. To warm-up, we compute 2019^{2^k} mod 1000 for several values of k:

```
2019^{1}
                         mod 1000,
       = 19
                 = 19
2019^{2}
       = 19^2
                 = 361 \mod 1000,
2019^{2^2}
       = 361^2 = 321 \mod 1000,
2019^{2^3}
       = 321^2 = 41
                         mod 1000,
2019^{2^4}
       = 41^2
                = 681 \mod 1000,
2019^{2^5}
       = 681^2 = 761 \mod 1000,
2019^{2^6}
       = 761^2 = 121 \mod 1000.
```

Now we find a binary decomposition of 79: We have: $79 = 1 + 2 + 4 + 8 + 64 = 1 + 2 + 2^2 + 2^3 + 2^6$. Then we have:

The answer: $2019^{79} = 179 \text{ mod } 1000.$

Exercise. Compute last two digits of the integer 2019²⁰¹⁹.