## SECOND MIDTERM EXAM REVIEW

(1) Prove that $n^{5}-n$ is divisible by 5 for all integers $n \geq 1$.
(2) Prove that $2^{2 n+1}+1$ is divisible by 3 for all integers $n \geq 1$.
(3) Prove that $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 for all integers $n \geq 1$.
(4) Let $n$ be a positive odd integer. Prove that there exists an integer $a>0$ such that the last digit of $n^{a}$ is equal to 1 .
(5) Prove the inequalities: $2^{n}<\binom{2 n}{n}<4^{n}$ for all integers $n \geq 2$.
(6) Prove that $n^{3}+5 n$ is divisible by 6 for all integers $n \geq 1$.
(7) Prove the identity:

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

(8) Prove the identity:

$$
1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

(9) Prove that $n^{2}>n+1$ for $n \geq 2$.
(10) Prove the identity:

$$
r+r^{2}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1}
$$

for all integers $n \geq 1$.
(11) For how many seven-digit integers have the sum of their digits equal to 46 ?
(12) Prove that $8^{n+2}+9^{2 n+1}$ is divisible by 73 for all integers $n \geq 1$.
(13) Prove the inequalities: $\sqrt{n} \leq \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 2 \sqrt{n}-1$ for all integers $n \geq 1$.
(14) Solve the Diophantine equations:

- $2000 x+643 y=1$,
- $1647 x+788 y=1$,
- $1647 x+788 y=24$.
(15) How many odd numbers between 100,000 and $1,000,000$ have no two digits the same?
(16) Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$.
- How many functions are there from the set $A$ to the set $B$ ?
- How many of these functions map $A$ onto $B$ ?
- How many ways are there to put 5 objects to 3 identical boxes so that no box will be left empty?
(17) How many integers between 1 and 10,000 (including 1 and 10,000) are not divisible by 2 , 5 , or 17 ?
(18) Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7}, a_{8}, a_{9}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$.
(a) How many functions are there from the set $A$ to the set $B$ ?
(b) How many of these functions map $A$ onto $B$ ?
(c) How many ways are there to put 9 objects to 4 identical boxes so that no box will be left empty?
(19) Let $n, k$ be positive integers.
- Let $n>k$. Prove the identity: $\sum_{r=0}^{n-1}(-1)^{r}\binom{n}{n-r}(n-r)^{k}=0$.
- Prove the identity: $\sum_{r=0}^{n-1}(-1)^{r}\binom{n}{n-r}(n-r)^{n}=n$ !.
(20) How many positive integral solutions are there of the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{7}+x_{8}+x_{9}=27 ?
$$

(21) How many ways are there to put 21 objects in 5 boxes with at least 8 objects in one of the boxes?
(22) Let $n=d_{1} d_{2} \cdots d_{s}$ be an integer, where $d_{1}, d_{2}, \ldots, d_{s}$ are decimal digits. Prove that $n$ is divisible by 3 if and only if the sum $d_{1}+d_{2}+\cdots+d_{s}$ is divisible by 3 .
(23) Write a binary decomposition of 2013, 2014 and 2015.
(24) Prove that for any positive integer $n \geq 1$ the number $n^{2}-2$ is not divisible by 3 .
(25) Let $F_{n}$ be the $n$-the Fibonacci number. Prove that

$$
\sum_{i=1}^{n} \frac{F_{i-1}}{2^{i}}=1-\frac{F_{n+2}}{2^{n}}
$$

for any positive integer $n$.
(26) Find the last two digits of the integer $2014^{2011}$.

