FIRST MIDTERM REVIEW

(1) How many multiples of 6 are there between -7 and 2014 ?
(2) Twenty people are to be seated at three circular tables, one of which seats 5 , the second one seats 7 and the third one seats 8 people. How many different seating arrangements are possible?
(3) How many distinct five-digit integers can one make from the digits $1,2,2,3,3,5,7,7,8,9$?
(4) Prove that $\frac{(\ell k)!}{(\ell!)^{k}}$ is an integer. ${ }^{1}$
(5) How many seven-digit integers are there such that

- no digits are repeated and
- which are divisible by 4 ?
(6) How many arrangements of the letters in NEWTOWNMOUNTKENNEDY do not have consecutive N's? ${ }^{2}$
(7) Let $\Sigma=\{0,1,2,3\}$ be an alphabet. We consider strings (words) over Σ of length 12 , such as

$$
x_{1} x_{2} \ldots x_{12}, \quad x_{1}, \ldots, x_{12} \in \Sigma .
$$

Then we define a weight $w\left(x_{1} x_{2} \ldots x_{12}\right)=x_{1}+\cdots+x_{12}$. How many strings of length 12 have weight 4?
(8) Let S be a set of integers between 1 and $1,000,000$, i.e.

$$
S=\{1,2, \ldots, 1,000,000\} .
$$

- How many integers from S are multiples of 7 and also multiples of 37 ?
- How many integers from S are multiples of 7 or of 37 or both?
- How many integers from S are not divisible by either 7 or 37 ?
- How many integers from S are divisible by 7 or 37 , but not both?
(9) Show that for any positive integer $n>0$

$$
\sum_{j=0}^{n}\binom{n}{j} 2^{j}=3^{n}
$$

(10) What is the coefficient of $a^{5} b^{3} c^{2}$ in the expansion of $(a+b+c)^{10}$?
(11) Prove that

$$
\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r} .
$$

(12) For how many seven-digit integers have the sum of their digits equal to 9 ? 14 ?

[^0](13) How many positive integral solutions of the equation
$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}=23 ?
$$
(14) How many ways are there to put 14 objects in 3 boxes with at least 8 objects in one box?
(15) On the $x y$-plane, we can travel using the moves
$$
R:(x, y) \mapsto(x+1, y), \quad U:(x, y) \mapsto(x, y+1) .
$$

Every path from $(0,0)$ to (k, n) could be written as a sequence of $k R$'s and of $n U$'s. We are allowed to take only such paths that the number of U 's will never exceed the number of R 's along the path taken. How many such paths are there?
(16) Prove the following equivalence: $(p \wedge q) \Longleftrightarrow \neg(p \rightarrow \neg q)$.
(17) Prove the following implications: ${ }^{3}$

- $p \rightarrow[q \rightarrow(p \wedge q)]$
- $[(p \rightarrow q) \wedge \neg q] \rightarrow \neg p$
(18) Prove the following satement:

For any positive integer $n \geq 1$ the number $n^{2}-2$ is not divisible by 3 .
(19) Let \mathbf{F}_{0} stand for a contradiction. Prove that the statement $\left(\neg p \rightarrow \mathbf{F}_{0}\right) \rightarrow p$ is a tautology.
(20) Prove that the statement $[(p \wedge q) \vee(\neg p \wedge r)] \rightarrow(q \vee r)$ is a tautology.
(21) Prove that the statement $[(p \wedge q) \wedge[p \rightarrow(q \rightarrow r)] \rightarrow r$ is a tautology.
(22) Prove that $\sqrt{5}$ is irrational number.
(23) The following statements are tautologies
(a) $\mathbf{T} \quad \mathbf{F} \quad \neg(p \wedge \neg p)$
(b) $\mathbf{T} \quad \mathbf{F} \quad p \rightarrow(p \vee q)$
(c) $\mathbf{T} \quad \mathbf{F} \quad p \rightarrow(p \wedge q)$
(d) $\mathbf{T} \quad \mathbf{F} \quad(\neg p \vee q) \rightarrow(q \rightarrow p)$
(24) Prove that there is an infinite number of primes.
(25) Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Write what does it mean that $\lim _{n \rightarrow \infty} x_{n}=a$.
(26) Negate the statement $\forall x \exists y(p(x, y) \rightarrow q(x, y))$.
(27) Prove that the implication

$$
[\exists x(p(x) \wedge q(x))] \rightarrow[(\exists x p(x)) \wedge(\exists x q(x))]
$$

is a tautology. Show that the converse implication

$$
[(\exists x p(x)) \wedge(\exists x q(x))] \rightarrow[\exists x(p(x) \wedge q(x))]
$$

is not a tautology. Give an example.

[^1]
[^0]: ${ }^{1}$ Hint: try a combinatorial argument
 2 NEWTOWNMOUNTKENNEDY is a village in County Wicklow, Ireland

[^1]: ${ }^{3}$ i.e., to show that those implications are tautologies

