FINAL EXAM REVIEW, PART I

- (1) Let $A = \{a_1, \ldots, a_9\} \subset \{1, 2, \ldots, 25\}$. Prove that there exist two different subsets $B = \{b_1, \ldots, b_5\} \subset A$ and $B' = \{b'_1, \ldots, b'_5\} \subset A$ such that $b_1 + \cdots + b_5 = b'_1 + \cdots + b_5$.
- (2) Let k be an odd integer. Prove that there exists n such that k divides $2^n 1$.
- (3) Prove that $n^5 n$ is divisible by 10 for all integers $n \ge 1$.
- (4) Prove that $n^3 n$ is divisible by 6 for all integers $n \ge 1$.
- (5) Prove the identity:

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

(6) Prove the identity:

$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$

- (7) Prove that $n^2 > n+1$ for $n \ge 2$.
- (8) Prove that $11^n 4^n$ is divisible by 7 for all n.
- (9) Prove that $3^{2n+3} + 40n 27$ is divisible by 64 for any $n \ge 1$.

(10) Prove the inequalities:
$$\sqrt{n} \le \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \le 2\sqrt{n} - 1$$
 for all integers $n \ge 1$.

- (11) Solve the Diophantine equations:
 - 2013x + 741y = 3,
 - 2017x + 2013y = 1

(12) Let $A = \{a_1, \ldots, a_{10}\}$ be a subset of $\{1, 2, 3, \ldots, 50\}$. Show that there exist two subsets

$$B = \{b_1, b_2, b_3, b_4\}, \quad B' = \{b'_1, b'_2, b'_3, b'_4\}, \quad B, B' \subset A,$$

such that $B \neq B'$ and $b_1 + b_2 + b_3 + b_4 = b'_1 + b'_2 + b'_3 + b'_4$.

- (13) How many odd numbers between 100,000 and 1,000,000 have no two digits the same?
- (14) How many positive divisors does $2^3 \cdot 5^4 \cdot 7^3$ have?
- (15) Let $A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$ and $B = \{b_1, b_2, b_3, b_4\}.$
 - How many functions are there from the set A to the set B?
 - How many of these functions map A onto B?
 - How many ways are there to put 6 objects to 4 distinct identical boxes so that no box will be left empty?
 - How many ways are there to put 6 objects to 4 identical boxes so that no box will be left empty?
- (16) How many integers between 1 and 10,000 (including 1 and 10,000) are not divisible by 2, 5, or 17?
- (17) We are given the letters I, I, I, I, M, P, P, S, S, S, S.
 - How many different words, i.e., strings, can be made using all of those letters?
 - How many of those words have all the I's together?
 - How many of those words read the same backward and forward?
 - If the letters are arranged in random order, what is the probability that they spell **MISSISSIPPI**?

(18) Let p be a prime.

- Prove that $\begin{pmatrix} p \\ r \end{pmatrix}$ is a multiple of p for 0 < r < p. Hint: $p! = \begin{pmatrix} p \\ r \end{pmatrix} \cdot r! \cdot (p-r)!$.
- Prove that $(a+b)^p \equiv a^p + b^p \mod p$ for all integers a and b.

(19) Let $A = \{a_1, a_2, a_3, a_4, a_5, a_7, a_8, a_9\}$ and $B = \{b_1, b_2, b_3, b_4\}.$

- (a) How many functions are there from the set A to the set B?
- (b) How many of these functions map A onto B?
- (c) How many ways are there to put 9 objects to 4 identical boxes so that no box will be left empty?
- (20) Let $A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}$ be a set of positive integers. Prove that there exist $i, j, i \neq j$ such that $a_i + a_j$ or $a_i a_j$ is divisible by 10.
- (21) Let n, k be positive integers.

• Let
$$n > k$$
. Prove the identity: $\sum_{r=0}^{n-1} (-1)^r \binom{n}{n-r} (n-r)^k = 0$.
• Prove the identity: $\sum_{r=0}^{n-1} (-1)^r \binom{n}{n-r} (n-r)^n = n!$.

(22) Show that for any positive integer $n \sum_{j=0}^{n} \binom{n}{j} 2^{j} = 3^{n}$.

(25) How many positive integral solutions of the equation

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_7 + x_8 + x_9 = 27?$$

- (23) How many ways are there to put 21 objects in 5 boxes with at least 8 objects in one box?
- (24) Let $n = d_1 d_2 \cdots d_s$ be an integer, where d_1, d_2, \ldots, d_s are decimal digits. Prove that n is divisible by 3 if and only if the sum $d_1 + d_2 + \cdots + d_s$ is divisible by 3.
- (25) Let k, n be positive integers. Explain why there exists the greatest common divisor gcd(k, n).
- (26) Write a binary decomposition of 2013, 2014 and 2015.
- (27) Compute the value $\phi(2014)$, where ϕ is the Euler function.
- (28) Let n be a positive integer and n is not a prime number. Prove that there exists a prime p such that p divides n.
- (29) Prove that for any positive integer $n \ge 1$ the number $n^2 2$ is not divisible by 3.
- (30) Let $b_0 = b_1 = b_2 = 1$, and $b_n = b_{n-1} + b_{n-3}$.
 - (a) Prove that $b_n \ge (\sqrt{2})^{n-2}$ for $n \ge 3$.
 - (b) Prove that $b_n \leq \left(\frac{3}{2}\right)^{n-1}$ for $n \geq 1$.
- (31) For how many seven-digit integers have the sum of their digits equal to 47?

PART 2: MORE PROBLEMS ON MATHEMATICAL INDUCTION

- (1) Prove that $2n^3 + 3n^2 + n$ is divisible by 6 for any $n \ge 1$.
- (2) Prove that $7^n 2^n$ is divisible by 5 for any $n \ge 1$.
- (3) Prove that $3^{2n+3} + 40n 27$ is divisible by 64 for any $n \ge 1$.
- (4) Prove that $5^{2n+1} \cdot 2^{n+2} + 3^{n+2} \cdot 2^{2n+1}$ is divisible by 19 for any $n \ge 1$.
- (5) Prove the following identity for any $n \ge 1$:

1+3+5+...+(2n-1) =
$$\sum_{i=1}^{n} (2i-1) = n^2$$
.

(6) Prove the following identity for any $n \ge 1$:

$$1^{2} + 4^{2} + 7^{2} + \dots + (3n-2)^{2} = \sum_{i=1}^{n} (3i-2)^{2} = \frac{n(6n^{2} - 3n - 1)}{2}.$$

(7) Prove the following identity for any $n \ge 1$:

$$2^{2} + 5^{2} + 8^{2} + \dots + (3n-1)^{2} = \sum_{i=1}^{n} (3i-1) = \frac{n(6n^{2} + 3n - 1)}{2}$$

(8) Prove the following identity for any $n \ge 1$:

$$1 \cdot 2 + 2 \cdot 4 + \dots + n(n+2) = \sum_{i=1}^{n} i(i+2) = \frac{n(n+1)(2n+7)}{6}.$$

- (9) Prove that $3^{2n} 1$ is divisible by 8 for any $n \ge 1$.
- (10) Let $x \ge -1$. Prove that $(1+x)^n \ge 1 + nx$ for any $n \ge 1$.
- (11) Prove that $n! < n^n$ for any $n \ge 2$.
- (12) Prove the following identity for any $n \ge 1$:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(n-1)n} = \sum_{i=1}^{n-1} \frac{1}{i(i+1)} = \frac{n-1}{n}.$$

(13) Prove the following identity for any $n \ge 1$:

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)} = \sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}.$$

(14) Prove the following identity for any $n \ge 1$:

$$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdots\left(1-\frac{1}{n}\right) = \prod_{i=2}^{n}\left(1-\frac{1}{i}\right) = \frac{1}{n}$$