FINAL EXAM REVIEW, PART I

(1) Let $A=\left\{a_{1}, \ldots, a_{9}\right\} \subset\{1,2, \ldots, 25\}$. Prove that there exist two different subsets $B=\left\{b_{1}, \ldots, b_{5}\right\} \subset A$ and $B^{\prime}=\left\{b_{1}^{\prime}, \ldots, b_{5}^{\prime}\right\} \subset A$ such that $b_{1}+\cdots+b_{5}=b_{1}^{\prime}+\cdots+b_{5}$.
(2) Let k be an odd integer. Prove that there exists n such that k divides $2^{n}-1$.
(3) Prove that $n^{5}-n$ is divisible by 10 for all integers $n \geq 1$.
(4) Prove that $n^{3}-n$ is divisible by 6 for all integers $n \geq 1$.
(5) Prove the identity:

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(6) Prove the identity:

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}
$$

(7) Prove that $n^{2}>n+1$ for $n \geq 2$.
(8) Prove that $11^{n}-4^{n}$ is divisible by 7 for all n.
(9) Prove that $3^{2 n+3}+40 n-27$ is divisible by 64 for any $n \geq 1$.
(10) Prove the inequalities: $\sqrt{n} \leq \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 2 \sqrt{n}-1$ for all integers $n \geq 1$.
(11) Solve the Diophantine equations:

- $2013 x+741 y=3$,
- $2017 x+2013 y=1$
(12) Let $A=\left\{a_{1}, \ldots, a_{10}\right\}$ be a subset of $\{1,2,3, \ldots, 50\}$. Show that there exist two subsets

$$
B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}, \quad B^{\prime}=\left\{b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}, b_{4}^{\prime}\right\}, \quad B, B^{\prime} \subset A
$$

such that $B \neq B^{\prime}$ and $b_{1}+b_{2}+b_{3}+b_{4}=b_{1}^{\prime}+b_{2}^{\prime}+b_{3}^{\prime}+b_{4}^{\prime}$.
(13) How many odd numbers between 100,000 and $1,000,000$ have no two digits the same?
(14) How many positive divisors does $2^{3} \cdot 5^{4} \cdot 7^{3}$ have?
(15) Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$.

- How many functions are there from the set A to the set B ?
- How many of these functions map A onto B ?
- How many ways are there to put 6 objects to 4 distinct identical boxes so that no box will be left empty?
- How many ways are there to put 6 objects to 4 identical boxes so that no box will be left empty?
(16) How many integers between 1 and 10,000 (including 1 and 10,000) are not divisible by 2 , 5 , or 17 ?
$\mathbf{(1 7)}$ We are given the letters $\mathbf{I}, \mathbf{I}, \mathbf{I}, \mathbf{I}, \mathbf{M}, \mathbf{P}, \mathbf{P}, \mathbf{S}, \mathbf{S}, \mathbf{S}, \mathbf{S}$.
- How many different words, i.e., strings, can be made using all of those letters?
- How many of those words have all the I's together?
- How many of those words read the same backward and forward?
- If the letters are arranged in random order, what is the probability that they spell MISSISSIPPI?
(18) Let p be a prime.
- Prove that $\binom{p}{r}$ is a multiple of p for $0<r<p$. Hint: $p!=\binom{p}{r} \cdot r!\cdot(p-r)$!.
- Prove that $(a+b)^{p} \equiv a^{p}+b^{p} \quad \bmod p$ for all integers a and b.
(19) Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7}, a_{8}, a_{9}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$.
(a) How many functions are there from the set A to the set B ?
(b) How many of these functions map A onto B ?
(c) How many ways are there to put 9 objects to 4 identical boxes so that no box will be left empty?
(20) Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right\}$ be a set of positive integers. Prove that there exist $i, j, i \neq j$ such that $a_{i}+a_{j}$ or $a_{i}-a_{j}$ is divisible by 10 .
(21) Let n, k be positive integers.
- Let $n>k$. Prove the identity: $\sum_{r=0}^{n-1}(-1)^{r}\binom{n}{n-r}(n-r)^{k}=0$.
- Prove the identity: $\sum_{r=0}^{n-1}(-1)^{r}\binom{n}{n-r}(n-r)^{n}=n$!.
(22) Show that for any positive integer $n \sum_{j=0}^{n}\binom{n}{j} 2^{j}=3^{n}$.
(25) How many positive integral solutions of the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{7}+x_{8}+x_{9}=27 ?
$$

(23) How many ways are there to put 21 objects in 5 boxes with at least 8 objects in one box?
(24) Let $n=d_{1} d_{2} \cdots d_{s}$ be an integer, where $d_{1}, d_{2}, \ldots, d_{s}$ are decimal digits. Prove that n is divisible by 3 if and only if the sum $d_{1}+d_{2}+\cdots+d_{s}$ is divisible by 3 .
(25) Let k, n be positive integers. Explain why there exists the greatest common divisor $\operatorname{gcd}(k, n)$.
(26) Write a binary decomposition of 2013, 2014 and 2015.
(27) Compute the value $\phi(2014)$, where ϕ is the Euler function.
(28) Let n be a positive integer and n is not a prime number. Prove that there exists a prime p such that p divides n.
(29) Prove that for any positive integer $n \geq 1$ the number $n^{2}-2$ is not divisible by 3 .
(30) Let $b_{0}=b_{1}=b_{2}=1$, and $b_{n}=b_{n-1}+b_{n-3}$.
(a) Prove that $b_{n} \geq(\sqrt{2})^{n-2}$ for $n \geq 3$.
(b) Prove that $b_{n} \leq\left(\frac{3}{2}\right)^{n-1}$ for $n \geq 1$.
(31) For how many seven-digit integers have the sum of their digits equal to 47 ?

PART 2: MORE PROBLEMS ON MATHEMATICAL INDUCTION

(1) Prove that $2 n^{3}+3 n^{2}+n$ is divisible by 6 for any $n \geq 1$.
(2) Prove that $7^{n}-2^{n}$ is divisible by 5 for any $n \geq 1$.
(3) Prove that $3^{2 n+3}+40 n-27$ is divisible by 64 for any $n \geq 1$.
(4) Prove that $5^{2 n+1} \cdot 2^{n+2}+3^{n+2} \cdot 2^{2 n+1}$ is divisible by 19 for any $n \geq 1$.
(5) Prove the following identity for any $n \geq 1$:

$$
1+3+5+\cdots+(2 n-1)=\sum_{i=1}^{n}(2 i-1)=n^{2}
$$

(6) Prove the following identity for any $n \geq 1$:

$$
1^{2}+4^{2}+7^{2}+\cdots+(3 n-2)^{2}=\sum_{i=1}^{n}(3 i-2)^{2}=\frac{n\left(6 n^{2}-3 n-1\right)}{2}
$$

(7) Prove the following identity for any $n \geq 1$:

$$
2^{2}+5^{2}+8^{2}+\cdots+(3 n-1)^{2}=\sum_{i=1}^{n}(3 i-1)=\frac{n\left(6 n^{2}+3 n-1\right)}{2}
$$

(8) Prove the following identity for any $n \geq 1$:

$$
1 \cdot 2+2 \cdot 4+\cdots+n(n+2)=\sum_{i=1}^{n} i(i+2)=\frac{n(n+1)(2 n+7)}{6}
$$

(9) Prove that $3^{2 n}-1$ is divisible by 8 for any $n \geq 1$.
(10) Let $x \geq-1$. Prove that $(1+x)^{n} \geq 1+n x$ for any $n \geq 1$.
(11) Prove that $n!<n^{n}$ for any $n \geq 2$.
(12) Prove the following identity for any $n \geq 1$:

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-1) n}=\sum_{i=1}^{n-1} \frac{1}{i(i+1)}=\frac{n-1}{n} .
$$

(13) Prove the following identity for any $n \geq 1$:

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\sum_{i=1}^{n} \frac{1}{(2 i-1)(2 i+1)}=\frac{n}{2 n+1}
$$

(14) Prove the following identity for any $n \geq 1$:

$$
\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{n}\right)=\prod_{i=2}^{n}\left(1-\frac{1}{i}\right)=\frac{1}{n}
$$

