- More examples on the principle of inclusion and exclusion:
(3) Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}, B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$. Then $N=|\mathcal{F}(A, B)|=5^{6}$,

$$
\begin{array}{ll}
N & =5^{6} \\
N\left(c_{i}\right) & =4^{6} \\
N\left(c_{i_{1}} c_{i_{2}}\right) & =3^{6} \\
N\left(c_{1} c_{2} c_{2} c_{3}\right) & =2^{6} \\
N\left(c_{i_{1}} c_{i_{2}} c_{3} c_{i_{4}}\right) & =1^{6}
\end{array}
$$

We obtain the answer:

$$
\begin{aligned}
\left|\mathcal{F}^{\text {onto }}(A, B)\right| & =5^{6}-\binom{5}{1} 4^{6}+\binom{5}{2} 3^{6}-\binom{5}{3} 2^{6}+\binom{5}{4} 1^{6} \\
& =15,625-5 \cdot 4,096+10 \cdot 729-10 \cdot 64+5 \cdot 1 \\
& =15,625-20,480+7,290-640+5=1,800
\end{aligned}
$$

(4) Euler function. For given positive integer n, consider the set of numbers m such that $1 \leq m<n$ and $\operatorname{gcd}(m, n)=1$. Leonhard Euler defined the function:

$$
\phi(n)=\|\{m \mid 1 \leq m<n, \text { and } \operatorname{gcd}(m, n)=1\} \mid .
$$

Here is the values of $\phi(n)$ for some n :

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

There is a simple formula to compute $\phi(n)$. Recall that for every integer n there exist primes p_{1}, \ldots, p_{s} and positive e_{1}, \ldots, e_{s} such that $n=p_{1}^{e_{1}} \cdots p_{s}^{e_{s}}$. Here is the formula:

$$
\phi(n)=n \prod_{i=1}^{s}\left(1-\frac{1}{p_{i}}\right)
$$

Example: Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} p_{4}^{e_{4}}$, and $S=\{1, \ldots, n\}$. We notice that for $m<n$ with $\geq(m, n)>1, m$ has to be divisible by one of the primes p_{i}. We say that " m satifies c_{i} " iff $p_{i} \mid m$. Let

$$
S_{i}=\left\{m \in S\left|p_{i}\right| m\right\}, i=1,2,3,4 .
$$

Then $N=|S|=n, N\left(c_{i}\right)=\left|S_{i}\right|=\frac{n}{p_{i}}$. Then $N\left(c_{i} c_{j}\right)=\frac{n}{p_{i} p_{j}}, N\left(c_{i} c_{j} c_{k}\right)=\frac{n}{p_{i} p_{j} p_{k}}$, $N\left(c_{1} c_{2} c_{3} c_{4}\right)=\frac{n}{p_{1} p_{2} p_{3} p_{4}}$. Then

$$
\begin{aligned}
N\left(\bar{c}_{1} \bar{c}_{2} \bar{c}_{3} \bar{c}_{4}\right)= & n-\left(\frac{n}{p_{1}}+\frac{n}{p_{2}}+\frac{n}{p_{3}}+\frac{n}{p_{4}}\right)+\left(\frac{n}{p_{1} p_{2}}+\frac{n}{p_{1} p_{3}}+\frac{n}{p_{1} p_{4}}+\frac{n}{p_{2} p_{3}}+\frac{n}{p_{2} p_{4}}+\frac{n}{p_{2} p_{4}}\right) \\
& -\left(\frac{n}{p_{1} p_{2} p_{3}}+\frac{n}{p_{1} p_{2} p_{4}}+\frac{n}{p_{1} p_{3} p_{4}}+\frac{n}{p_{2} p_{3} p_{4}}\right)+\frac{n}{p_{1} p_{2} p_{3} p_{4}}
\end{aligned}
$$

It is easy to check:

$$
N\left(\bar{c}_{1} \bar{c}_{2} \bar{c}_{3} \bar{c}_{4}\right)=\frac{n\left(p_{1}-1\right)\left(p_{2}-1\right)\left(p_{3}-1\right)\left(p_{4}-1\right)}{p_{1} p_{2} p_{3} p_{4}}=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right)\left(1-\frac{1}{p_{3}}\right)\left(1-\frac{1}{p_{4}}\right) .
$$

Examples: (1) Let p be a prime. Then $\phi(p)=p-1$, and $\phi\left(p^{k}\right)=p^{k-1}(p-1)$.
(2) Since $2014=2 \cdot 19 \cdot 53$, we obtain:

$$
\phi(2014)=2 \cdot 19 \cdot 53\left(1-\frac{1}{2}\right)\left(1-\frac{1}{19}\right)\left(1-\frac{1}{53}\right)=18 \cdot 52=936 .
$$

- Recursive definitions. There are many mathematical objects which we can define only recursively. We start with well-known example:
(1) Fibonacci numbers F_{n}. We define:
(B) $F_{0}=0, F_{1}=1$,
(R) $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.

Here are the first few values of F_{n} :

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

We prove that $\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}$ by induction. Indeed, it's true if $n=1$.
Assume $\sum_{i=1}^{k} F_{i}^{2}=F_{k} F_{k+1}$. Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} F_{i}^{2} & =\sum_{i=1}^{k} F_{i}^{2}+F_{k+1}^{2} \\
& =F_{k} F_{k+1}+F_{k+1}^{2}=F_{k+1}\left(F_{k}+F_{k+1}\right)=F_{k+1} F_{k+2}
\end{aligned}
$$

(2) We define a sequence of numbers a_{n} as:
(B) $a_{0}=1, a_{1}=1, a_{2}=1$, and
(R) $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$.

Here are the first few values of a_{n} :

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a_{n}	1	1	1	1	2	3	5	8	13	21	34	55	89	144	233	377

We notice that $a_{n}=F_{n-1}$ for $n \geq 3$. We would like to prove that $a_{n+2} \geq(\sqrt{2})^{n}$ for all $n \geq 0$. Indeed, it's true if $n=0,1$. Assume $a_{k+2} \geq(\sqrt{2})^{k}$ for all $k=0,1, \ldots, n$. We should prove that $a_{n+3} \geq(\sqrt{2})^{n+1}$. We have:

$$
\begin{aligned}
a_{n+3}=a_{n+2}+a_{n+1} & \geq(\sqrt{2})^{n}+(\sqrt{2})^{n-1} \\
& =(\sqrt{2})^{n-1}(\sqrt{2}+1) \geq(\sqrt{2})^{n-1} \cdot 2=(\sqrt{2})^{n+1}
\end{aligned}
$$

Here we use that $\sqrt{2}+1 \geq 2$ and $2=(\sqrt{2})^{2}$.
(3) We can define recursively the binomial coefficients $\binom{n}{r}$:
(B) $\binom{n}{0}=1,\binom{n}{0}=0$ if $r<0$ and $r>n$.
(R) $\binom{n+1}{r}=\binom{n}{r}+\binom{n}{r-1}$.
(4) We define factorial $\operatorname{FAC}(n)$:
(B) $\operatorname{FAC}(0)=1$
(R) $\operatorname{FAC}(n)=\operatorname{FAC}(n-1) \cdot n$ for $n \geq 1$.
(5) We define the Harmonic numbers H_{n} :
(B) $H_{1}=1$
(R) $H_{n}=H_{n-1}+\frac{1}{n}$ for $n \geq 2$.
(6) We define the sequence $\operatorname{SEC}(n)$:
(B) $\operatorname{SEC}(0)=1$
(R) $\operatorname{SEC}(n+1)=\frac{n+1}{\operatorname{SEC}(0)}$.

Exercise. Use induction to prove that the sequence $\operatorname{SEC}(n)$ is well-defined.
(7) We define the sequence $T(n)$ as follows:
(B) $T(1)=1$
(R) $T(n)=2 \cdot T\left(\left\lfloor\frac{n-1}{2}\right\rfloor\right)$ for $n \geq 2$.

We compute a couple of values of $T(n)$:

$$
\begin{aligned}
T(73) & =2 \cdot T(36)=2^{2} \cdot T(18)=2^{3} \cdot T(9)=2^{4} \cdot T(4)=2^{5} \cdot T(2)=2^{6} \\
T(2014) & =2 \cdot T(1007)=2^{2} \cdot T(503)=2^{3} \cdot T(251)=2^{4} \cdot T(125)=2^{5} \cdot T(62) \\
& =2^{6} \cdot T(31)=2^{7} \cdot T(15) 2^{8} \cdot T(7)=2^{9} \cdot T(3)=2^{10}
\end{aligned}
$$

Exercise. Use induction to prove that $T(n)=\max \left\{k \mid 2^{k} \leq n\right\}$.
Exercise. Define a sequence $S(n)$ such that $S(n)=\min \left\{k \mid n \leq 2^{k}\right\}$.
Exercise. Let p be a prime. Define recursively a sequence $T_{p}(n)$ such that

$$
T(n)=\max \left\{k \mid p^{k} \leq n\right\} .
$$

Exercise. Let p be a prime. Define recursively a sequence $S_{p}(n)$ such that

$$
S_{p} ;(n)=\min \left\{k \mid n \leq p^{k}\right\} .
$$

Exercise. Define recursively what does it mean "well-formed formula", see Ex. 17, p. 220.

