Summary on Lecture 9, November 3, 2014

• More examples on the principle of inclusion and exclusion:

(3) Let
$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}, B = \{b_1, b_2, b_3, b_4, b_5\}.$$
 Then $N = |\mathcal{F}(A, B)| = 5^6$,

$$N = 5^6$$

$$N(c_i) = 4^6$$

$$N(c_{i_1}c_{i_2}) = 3^6$$

$$N(c_{i_1}c_{i_2}c_{i_3}) = 2^6$$

$$N(c_{i_1}c_{i_2}c_{i_3}c_{i_4}) = 1^6$$

We obtain the answer:

$$\mathcal{F}^{\text{onto}}(A,B)| = 5^{6} - {5 \choose 1} 4^{6} + {5 \choose 2} 3^{6} - {5 \choose 3} 2^{6} + {5 \choose 4} 1^{6}$$

= 15,625 - 5 \cdot 4,096 + 10 \cdot 729 - 10 \cdot 64 + 5 \cdot 1
= 15,625 - 20,480 + 7,290 - 640 + 5 = 1,800

(4) **Euler function.** For given positive integer n, consider the set of numbers m such that $1 \le m < n$ and gcd(m, n) = 1. Leonhard Euler defined the function:

$$\phi(n) = \|\{ m \mid 1 \le m < n, \text{ and } gcd(m, n) = 1 \} \|$$
.

Here is the values of $\phi(n)$ for some n:

There is a simple formula to compute $\phi(n)$. Recall that for every integer n there exist primes p_1, \ldots, p_s and positive e_1, \ldots, e_s such that $n = p_1^{e_1} \cdots p_s^{e_s}$. Here is the formula:

$$\phi(n) = n \prod_{i=1}^{s} \left(1 - \frac{1}{p_i} \right)$$

Example: Let $n = p_1^{e_1} p_2^{e_2} p_3^{e_3} p_4^{e_4}$, and $S = \{1, \ldots, n\}$. We notice that for m < n with $\geq (m, n) > 1$, *m* has to be divisible by one of the primes p_i . We say that "*m* satisfies c_i " iff $p_i | m$. Let

$$S_i = \{ m \in S \mid p_i \mid m \}, i = 1, 2, 3, 4\}$$

Then N = |S| = n, $N(c_i) = |S_i| = \frac{n}{p_i}$. Then $N(c_ic_j) = \frac{n}{p_ip_j}$, $N(c_ic_jc_k) = \frac{n}{p_ip_jp_k}$, $N(c_1c_2c_3c_4) = \frac{n}{p_1p_2p_3p_4}$. Then

$$N(\bar{c}_1\bar{c}_2\bar{c}_3\bar{c}_4) = n - \left(\frac{n}{p_1} + \frac{n}{p_2} + \frac{n}{p_3} + \frac{n}{p_4}\right) + \left(\frac{n}{p_1p_2} + \frac{n}{p_1p_3} + \frac{n}{p_1p_4} + \frac{n}{p_2p_3} + \frac{n}{p_2p_4} + \frac{n}{p_2p_4}\right) - \left(\frac{n}{p_1p_2p_3} + \frac{n}{p_1p_2p_4} + \frac{n}{p_1p_3p_4} + \frac{n}{p_2p_3p_4}\right) + \frac{n}{p_1p_2p_3p_4}$$

It is easy to check:

$$N(\bar{c}_1\bar{c}_2\bar{c}_3\bar{c}_4) = \frac{n(p_1-1)(p_2-1)(p_3-1)(p_4-1)}{p_1p_2p_3p_4} = n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\left(1-\frac{1}{p_3}\right)\left(1-\frac{1}{p_4}\right)$$

Examples: (1) Let p be a prime. Then $\phi(p) = p - 1$, and $\phi(p^k) = p^{k-1}(p-1)$. (2) Since $2014 = 2 \cdot 19 \cdot 53$, we obtain:

$$\phi(2014) = 2 \cdot 19 \cdot 53 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{19}\right) \left(1 - \frac{1}{53}\right) = 18 \cdot 52 = 936.$$

- **Recursive definitions.** There are many mathematical objects which we can define only *recursively.* We start with well-known example:
 - (1) **Fibonacci numbers** F_n . We define:
 - (B) $F_0 = 0, F_1 = 1,$

(R) $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Here are the first few values of F_n :

	n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ſ	F_n	0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610

We prove that $\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$ by induction. Indeed, it's true if n = 1.

Assume $\sum_{i=1}^{k} F_i^2 = F_k F_{k+1}$. Then

$$\sum_{i=1}^{k+1} F_i^2 = \sum_{i=1}^k F_i^2 + F_{k+1}^2$$
$$= F_k F_{k+1} + F_{k+1}^2 = F_{k+1} (F_k + F_{k+1}) = F_{k+1} F_{k+2}.$$

(2) We define a sequence of numbers a_n as:

(B) $a_0 = 1$, $a_1 = 1$, $a_2 = 1$, and (R) $a_n = a_{n-1} + a_{n-2}$ for $n \ge 3$. Here are the first few values of a_n :

We notice that $a_n = F_{n-1}$ for $n \ge 3$. We would like to prove that $a_{n+2} \ge (\sqrt{2})^n$ for all $n \ge 0$. Indeed, it's true if n = 0, 1. Assume $a_{k+2} \ge (\sqrt{2})^k$ for all $k = 0, 1, \ldots, n$. We should prove that $a_{n+3} \ge (\sqrt{2})^{n+1}$. We have:

$$a_{n+3} = a_{n+2} + a_{n+1} \ge (\sqrt{2})^n + (\sqrt{2})^{n-1}$$

= $(\sqrt{2})^{n-1}(\sqrt{2}+1) \ge (\sqrt{2})^{n-1} \cdot 2 = (\sqrt{2})^{n+1}.$

Here we use that $\sqrt{2} + 1 \ge 2$ and $2 = (\sqrt{2})^2$.

(3) We can define recursively the binomial coefficients $\binom{n}{r}$:

(B)
$$\binom{n}{0} = 1$$
, $\binom{n}{0} = 0$ if $r < 0$ and $r > n$.
(R) $\binom{n+1}{r} = \binom{n}{r} + \binom{n}{r-1}$.

- (4) We define factorial FAC(n): (B) FAC(0) = 1(R) $FAC(n) = FAC(n-1) \cdot n$ for $n \ge 1$.
- (5) We define the Harmonic numbers H_n : (B) $H_1 = 1$
 - (R) $H_n = H_{n-1} + \frac{1}{n}$ for $n \ge 2$.
- (6) We define the sequence SEC(n): (B) SEC(0) = 1(R) $SEC(n+1) = \frac{n+1}{SEC(0)}$.

Exercise. Use induction to prove that the sequence SEC(n) is well-defined.

(7) We define the sequence T(n) as follows: (B) T(1) = 1(R) $T(n) = 2 \cdot T(\lfloor \frac{n-1}{2} \rfloor)$ for $n \ge 2$. We compute a couple of values of T(n): $T(73) = 2 \cdot T(36) = 2^2 \cdot T(18) = 2^3 \cdot T(9) = 2^4 \cdot T(4) = 2^5 \cdot T(2) = 2^6$

$$T(2014) = 2 \cdot T(1007) = 2^2 \cdot T(503) = 2^3 \cdot T(251) = 2^4 \cdot T(125) = 2^5 \cdot T(62)$$

$$= 2^{6} \cdot T(31) = 2^{7} \cdot T(15)2^{8} \cdot T(7) = 2^{9} \cdot T(3) = 2^{10}$$

Exercise. Use induction to prove that $T(n) = \max\{k \mid 2^k \le n\}$.

Exercise. Define a sequence S(n) such that $S(n) = \min\{k \mid n \leq 2^k\}$.

Exercise. Let p be a prime. Define recursively a sequence $T_p(n)$ such that

$$T(n) = \max\{ k \mid p^k \le n \}.$$

Exercise. Let p be a prime. Define recursively a sequence $S_p(n)$ such that

$$S_p; (n) = \min\{ k \mid n \le p^k \}.$$

Exercise. Define recursively what does it mean "well-formed formula", see Ex. 17, p. 220.