Summary on Lecture 8, October 29, 2014

- More examples on induction:

(7) Prove that $5^{n+1}+2 \cdot 3^{n}+1$ is divisible by 8 for every $n \in \mathbf{Z}_{+}$.

Proof. Let $n=1$. Then $5^{1+1}+2 \cdot 3^{1}+1=32$. OK
Assume that $5^{k+1}+2 \cdot 3^{k}+1=8 \cdot \ell$. Consider the case $n=k+1$.

$$
\begin{aligned}
5^{k+2}+2 \cdot 3^{k+1}+1 & =5 \cdot 5^{k+1}+5 \cdot 2 \cdot 3^{k}+5 \cdot 1-5 \cdot 2 \cdot 3^{k}-5 \cdot 1+2 \cdot 3^{k+1}+1 \\
& =5 \cdot\left(5^{k+1}+2 \cdot 3^{k}+1\right)-10 \cdot 3^{k}+6 \cdot 3^{k}-4 \\
& =5 \cdot\left(5^{k+1}+2 \cdot 3^{k}+1\right)-4\left(3^{k}+1\right) .
\end{aligned}
$$

By induction, $5 \cdot\left(5^{k+1}+2 \cdot 3^{k}+1\right)$ is divisible by 8 , then $\left(3^{k}+1\right)$ is always even. Hence $4\left(3^{k}+1\right)$ is divisible by 8 . We obtain that $5^{k+2}+2 \cdot 3^{k+1}+1$ is divisible by 8 .
(8) We define the harmonic numbers: $H_{1}=1, H_{2}=1+\frac{1}{2}, H_{3}=1+\frac{1}{2}+\frac{1}{3}$, and $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$. Prove that $H_{2^{n}} \geq 1+\frac{1}{n}$.
Proof. Let $n=1$, then $H_{2}=1+\frac{1}{2}$. By induction, we have $H_{2^{k}} \geq 1+\frac{k}{2}$. Then we have:

$$
\begin{aligned}
H_{2^{k+1}} & =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{k}}+\frac{1}{2^{k}+1}+\frac{1}{2^{k}+2}+\cdots+\frac{1}{2^{k}+2^{k}} \\
& =H_{2^{k}}+\frac{1}{2^{k}+1}+\frac{1}{2^{k}+2}+\cdots+\frac{1}{2^{k}+2^{k}} .
\end{aligned}
$$

We notice that $2^{k}+i \leq 2^{k}+2^{k}$ for each $i=1,2, \ldots, 2^{k}$. Then we have that $\frac{1}{2^{k}+i} \geq \frac{1}{2^{k}+2^{k}}$. Then we have:

$$
\begin{aligned}
H_{2^{k+1}} & =H_{2^{k}}+\frac{1}{2^{k}+1}+\frac{1}{2^{k}+2}+\cdots+\frac{1}{2^{k}+2^{k}} . \\
& \geq H_{2^{k}}+\frac{2^{k}}{2^{k}+2^{k}} \\
& =H_{2^{k}}+\frac{2^{k}}{2 \cdot 2^{k}} \\
& =H_{2^{k}}+\frac{1}{2}
\end{aligned}
$$

By induction, $H_{2^{k}} \geq 1+\frac{k}{2}$. Then we have:

$$
H_{2^{k+1}} \geq H_{2^{k}}+\frac{1}{2} \geq 1+\frac{k}{2}+\frac{1}{2}=1+\frac{k+1}{2} .
$$

Remark. ${ }^{1}$ In particular, it means that $\lim _{n \rightarrow \infty} H_{n}=\infty$.
(9) Prove that $n^{2}>n+1$ for all $n \geq 2$.
(10) Prove the following inequalities for all $n \in \mathbf{Z}_{+}$:

$$
\sqrt{n} \leq \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2 \sqrt{n}-1
$$

[^0]- The principle of inclusion and exclusion. We start with an example. Let $S=\{1,2, \ldots, 10,000\}$. We choose two primes $p_{1}=7$ and $p_{2}=11$, and we let

$$
\begin{aligned}
& S_{1}:=\left\{n \in S \mid n \text { is divisible by } p_{1}=7\right\} \\
& S_{2}:=\left\{n \in S \mid n \text { is divisible by } p_{2}=11\right\} .
\end{aligned}
$$

We say that " $n \in S$ satisfies a property c_{1} " iff $n \in S_{1}$, and " $n \in S$ satisfies a property c_{2} " iff $n \in S_{2}$. We use the notations: $N\left(c_{1}\right)=\left|S_{1}\right|, N\left(c_{2}\right)=\left|S_{2}\right|, N\left(c_{1} c_{2}\right)=\left|S_{1} \cap S_{2}\right|$. Then in these terms, we have:

$$
\left|S_{1} \cup S_{2}\right|=\left|S_{1}\right|+\left|S_{2}\right|-\left|S_{1} \cap S_{2}\right|=N\left(c_{1}\right)+N\left(c_{2}\right)-N\left(c_{1} c_{2}\right) .
$$

Then we denote:

$$
\begin{aligned}
& N\left(\bar{c}_{1} c_{2}\right)=\left|\bar{S}_{1} \cap S_{2}\right|=\mid\left\{n \in S \mid n \text { does not satisfy } c_{1} \text { and satisfies } c_{2}\right\} \mid \\
& N\left(c_{1} \bar{c}_{2}\right)=\left|S_{1} \cap \bar{S}_{2}\right|=\mid\left\{n \in S \mid n \text { satisfies } c_{1} \text { and does not satisfy } c_{2}\right\} \mid \\
& N\left(\bar{c}_{1} \bar{c}_{2}\right)=\left|\bar{S}_{1} \cap \bar{S}_{2}\right|=\mid\left\{n \in S \mid n \text { does not satisfy } c_{1} \text { and does not satisfy } c_{2}\right\} \mid .
\end{aligned}
$$

We compute: $N\left(c_{1}\right)=\left\lfloor\frac{10,000}{7}\right\rfloor=1,428, N\left(c_{2}\right)=\left\lfloor\frac{10,000}{11}\right\rfloor=909, N\left(c_{1} c_{2}\right)=\left\lfloor\frac{10,000}{77}\right\rfloor=129$. Then:

$$
\begin{aligned}
N\left(\bar{c}_{1} c_{2}\right) & =N\left(c_{2}\right)-N\left(c_{1} c_{2}\right)=909-129=780, \\
N\left(c_{1} \bar{c}_{2}\right) & =N\left(c_{1}\right)-N\left(c_{1} c_{2}\right)=1,428-129=1,299, \\
N\left(\bar{c}_{1} \bar{c}_{2}\right) & =N-\left[N\left(c_{1}\right)+N\left(c_{2}\right)-N\left(c_{1} c_{2}\right)\right] \\
& =10,000-[1,428+909-129]=1,792 .
\end{aligned}
$$

We add one more condition: $n \in S$ satisfies c_{3} iff n is divisible by 23 . Then we compute $N\left(\bar{c}_{1} \bar{c}_{2} \bar{c}_{3}\right)$:

$$
\begin{aligned}
N\left(\bar{c}_{1} \bar{c}_{2} \bar{c}_{3}\right) & =\left|\bar{S}_{1} \cap \bar{S}_{2} \cap \bar{S}_{3}\right|=\left|\overline{S_{1} \cup S_{2} \cup S_{3}}\right| \\
& =N-\left[\left(N\left(c_{1}\right)+N\left(c_{2}\right)+N\left(c_{3}\right)\right)-\left(\left(N\left(c_{1} c_{2}\right)+N\left(c_{1} c_{3}\right)+N\left(c_{2} c_{3}\right)\right)+N\left(c_{1} c_{2} c_{3}\right)\right]\right. \\
& =7,456
\end{aligned}
$$

Exercise. Verify this calculation.
Theorem. Let S be a finite set, and c_{1}, \ldots, c_{k} be some conditions on elements of S. Then

$$
N\left(\bar{c}_{1} \cdots \bar{c}_{k}\right)=N+\sum_{\ell=1}^{k}(-1)^{\ell} \sum_{1 \leq i_{1}<\cdots<i_{\ell} \leq k} N\left(c_{i_{1}} \cdots c_{i_{\ell}}\right),
$$

where $N=|S|, N\left(c_{i_{1}} \cdots c_{i_{\ell}}\right)=\left|S_{i_{1}} \cap \cdots \cap S_{i_{\ell}}\right|$, and $N\left(\bar{c}_{1} \cdots \bar{c}_{k}\right)=\left|\overline{S_{1} \cup \cdots \cup S_{k}}\right|$.
Important Examples. (1) Let $A=\{1,2, \ldots, 999,999\}$. Count how many elements $n \in A$ have the property that a sum of digits of n is equal to 35 ?

Solution. Let x_{1}, \ldots, x_{6} denote digits of $n=x_{1} \ldots x_{6}$. Then the condition on n is equivalent to the following question. Consider the equation $x_{1}+x_{2}+x c_{3}+x_{4}+x_{5}+x_{6}=35$, and the integers x_{i} are such that $0 \leq x_{i} \leq 9, i=1, \ldots, 6$. How many integral solutions (i.e. when all x_{i} are integers) are there?

First, we consider all solutions of the equation $x_{1}+x_{2}+x c_{3}+x_{4}+x_{5}+x_{6}=35$ such that $0 \leq x_{i}$, $i=1, \ldots, 6$. We denote the set of all such solutions by S . For each $i=1,2,3,4,5,6$, we say that a solution $x_{1} \ldots x_{6}$ satisfies the property c_{i} if $x_{i} \geq 10$. We denote by S_{i} the set of solutions satisfying c_{i}. Then we compute:

$$
\begin{array}{cl}
N & =|\mathrm{S}|=\binom{35+6-1}{6-1}=\binom{40}{5} \\
N\left(c_{i}\right) & =\left|\mathrm{S}_{i}\right|=\binom{25+6-1}{6-1}=\binom{30}{5} \\
N\left(c_{i_{1}} c_{i_{2}}\right) & =\left|\mathrm{S}_{i_{1}} \cap \mathrm{~S}_{i_{2}}\right|=\binom{15+6-1}{6-1}=\binom{20}{5} \\
N\left(c_{i_{1}} c_{i_{2}} c_{i_{3}}\right) & =\left|\mathrm{S}_{i_{1}} \cap \mathrm{~S}_{i_{2}} \cap \mathrm{~S}_{i_{3}}\right|=\binom{5+6-1}{6-1}=\binom{10}{5} \\
N\left(c_{i_{1}} c_{i_{2}} c_{i_{3}} c_{i_{4}}\right)=N\left(c_{i_{1}} c_{i_{2}} c_{i_{3}} c_{i_{4}} c_{i_{5}}\right)=N\left(c_{1} c_{2} c_{3} c_{4} c_{5} c_{6}\right)=0
\end{array}
$$

Then we compute the answer:

$$
N\left(\bar{c}_{1} \bar{c}_{2} \bar{c}_{3} \bar{c}_{4} \bar{c}_{5} \bar{c}_{6}\right)=\binom{40}{5}-\binom{6}{1} \cdot\binom{30}{5}+\binom{6}{2} \cdot\binom{20}{5}-\binom{6}{3} \cdot\binom{10}{5}
$$

(2) Let $A=\left\{a_{1}, \ldots, a_{m}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$. A function $f: A \rightarrow B$ is a rule which for each element $a_{i} \in A$ assigns an element $f\left(a_{i}\right) \in B$. Let $\mathcal{F}(A, B)$ be the set of all functions $f: A \rightarrow B$.
Exercise. Prove that $|\mathcal{F}(A, B)|=n^{m}$.
Let $f: A \rightarrow B$ be a function. We denote by $f(A)=\{f(a) \mid a \in A\} \subset B$ the image of f. We say that a function $f: A \rightarrow B$ is onto iff $f(A)=B$. Let $\mathcal{F}^{\text {onto }}(A, B) \subset \mathcal{F}(A, B)$ be the set of all functions $f: A \rightarrow B$ which are onto.
Question: What is the size of the set $\mathcal{F}^{\text {onto }}(A, B)$?
Solution. We denote $\mathcal{F}:=\mathcal{F}(A, B)$. Then we say that a function $f: A \rightarrow B$ satisfies c_{i} iff $b_{i} \notin f(A)$, where $i=1, \ldots, n$. We denote by \mathcal{F}_{i} the set of all functions satisfying c_{i}. Then we have:

$$
\begin{aligned}
N & =|\mathcal{F}|=n^{m} \\
N\left(c_{i}\right) & =\left|\mathcal{F}_{i}\right|=(n-1)^{m} \\
N\left(c_{i_{1}} c_{i_{2}}\right) & =\left|\mathcal{F}_{i_{1}} \cap \mathcal{F}_{i_{2}}\right|=(n-2)^{m} \\
N\left(c_{i_{1}} c_{i_{2}} c_{i_{3}}\right) & =\left|\mathcal{F}_{i_{1}} \cap \mathcal{F}_{i_{2}} \cap \mathcal{F}_{i_{3}}\right|=(n-3)^{m} \\
N\left(c_{i_{1}} \cdots c_{i_{k}}\right) & =\left|\mathcal{F}_{i_{1}} \cap \cdots \cap \mathcal{F}_{i_{k}}\right|=(n-k)^{m}
\end{aligned}
$$

We obtain the answer:

$$
\left|\mathcal{F}^{\text {onto }}(A, B)\right|=n^{m}-\binom{n}{1}(n-1)^{m}+\binom{n}{2}(n-2)^{m}-\cdots(-1)^{k}\binom{n}{k}(n-k)^{m}+\cdots(-1)^{n-1}\binom{n}{n-1} 1^{m}
$$

[^0]: ${ }^{1}$ For those who are good friends with calculus

