Math 231, Fall 2014 Boris Botvinnik
Summary on Lecture 7, October 27, 2014

e Sets and subsets. Usually we work with a given “universe” U which contains all our sets.
First examples:

(1) {n€Zy|n®=9}={3}

(2) {n€Z|n®=9}={-33}

(3) {n€Z|n®=7}=0;

@) {neR|n?=7}={-V7VT}.

Definition. Let A, B be two sets. Then A C B iff Vz[(x € A) — (z € B)] is a tautology. Then

we say that A is a subset of B. Next, the sets A, B are equal iff A C B and B C A. Then we
write AC B iff AC B and A# B. If AC B, we say that A is proper subset of B.

Here are short ways to define:
ACB <= [(ACB)A(A# B)
A=B <= [[ACB)A(BCA)
Theorem 1. Let B,C C U. Then
(a) ACB,BCC < ACC;
(b)) ACB,BCC < AcCC(;
(c) ACB,BCC < AcCC,
(d AcB,BcC < AcCC.
We give a proof of (b) assuming (a). We already know that A C C'. We should show that A # C.

By assumption, A C B, thus there exists € B, such that x ¢ A. Since B C C, x € C. We
found an element = € C' such that z ¢ A, ie., ACC.

Special sets: (), U. By definition, an empty set, denoted by ), is a set with no elements. In
particular, ) C A for any set A.

Theorem 2. Let ACU. Then ) C A. If A# (), then () C A.
Give a proof of Theorem 2.

Again, let A C U. We consider the set of all subsets of A:
P(A)={B|BCA}
Assume that A is a finite set, A = {a1,...,a,}, i.e. |[A] =n.

Lemma. Assume |A| =n. Then |P(A)| =2".

Proof. Let ¥ = {0,1} be the binary alphabet. Consider the set of words X", i.e., all binary
words of length n. We notice that every word in X" corresponds to a subset in A. Place all
elements of A next to a binary sequence:

ay a2 a3z -+ QaQg—1 Ak Q41 - Gn
o 1 0 --- 0 1 0 e 1

Then all 1’s in binary sequence mark the elements to choose for a subset B. Clearly any subset
B gives a corresponding binary sequence as well. Thus |P(A)| = || = 2". O



For the same A, let k < n = |A|, we define

Pe(A)={ B | (BCA)A(IB|=F) }.

Then it is easy to see that |Py(A)| = < Z ) . Summing up, we obtain the formula:

n n .
(+)=
k=0

We prove again the Pascal’s formula.

n—+1 n n
. < . = .
Lemma. Let £k <n+1 Then( 1 > <k>+<k—1>

Proof. Let A = {ai,...,an,2}. Consider the set P.(A). It splits into two subsets: Pr(A) =
Pr(A), UPr(A)-, where Pi(A), contains all subset B C A which contain the element z, and

Pr(A)- contains all subset B C A which do contain the element z. Clearly, |Py(A).| = < i ﬁ 1 )

since for B € Pi(A),, it is enough to choose all elements but z. Then |Pr(A)-,| = < Z > since

for B € Pr(A)., it is enough to choose all elements from the set {a1,...,an}. Also, it is clear
that the sets Pr(A), and Pr(A)-, do not intsersect. O

We define AUB, ANB and A:
(re AUB) <= (x € A)V (z € B)
(e ANB) <« (r€ A)A(z € B)
(reA) < (x ¢ A)

We say that A and B are disjoint if ANB = 0.

Theorem 3. Let A, B C U. The following statements are equivalent:

Exercise. Prove Theorem 3.

The following identities to prove:

(1) A=A
(2) AUB=ANB
ANB=AUB
(3) AUB=BUA
ANB=BnNA
(4) Au(BuC)=(AuB)UC
N(BNC)=(AnB)NC
(5) AU(BNC)=(AuB)N(AuUCQC)
NBUC)=(ANB)U(ANC)



(6) AUA=A

ANA=A
(7) Aub=A
ANU=A
(8) AUA=U
ANA=10
(9) AuU=U
ANDP=10

(10) AU(ANnB)=A
AN(AuB)=A

Exercise. Prove (5) and (10) above.

Counting again. Let A;, Ay be finite sets. We recall that |A; U As| = |A1] + |A2| — |A1 N Agl.
Now we would like to understand the case of three sets:

’Al U (A2 UA3)| = |A1’ + ’AQ UA3‘ — ’Al N (AQ UA3)|

= [Au| + [A2] + [As] — [A2 N A3| — [A1 N (A2 U A3)
We notice:
AN (AU A3) = (A1 N Ag) U (A1 N As),
where we see:

‘Al N (A2 UA3)’ = ’Al ﬂAQ\ + ’Al ﬁAg‘ — ’(Al ﬂAg) N (A1 ﬂAg)’

= |A1 ﬂAQ\ + ’Al ﬁAg‘ — ’Al N As ﬂA3’.
We obtain the formula:
|A1 UAsU A3| = |A1| + |A2‘ + ’A3| — |A1 N A2| — |A1 ﬁA3| — |A2 ﬂA5| + |A1 NAsN A3|
Question: What would be a general formula for Aq,..., 4,7

Well-Ordering Principle. We recall the Well-Ordering Principle:
If ACZ,,and A# (), then there exists a smallest element in A.

Mathematical Induction. Let S(n) be an open proposition, where n € Z .

Theorem 4. Assume that

(B) S(1) is a true statement

(I) S(k) — S(k+1) is true for all k.

Then S(n) vis a true statement for each n.

Proof. Assume Theorem 4 is false. Then there exists an open statement S(n) which satisfies (B)
and (I), however, there exists m € Zy such that S(m) is false. We consider the set:

A={meZi| S(m)is false }

By the assumption, A # (). Then there exists a smallest element ng in A, i.e., S(ng) false, and
S(n) is true for all n < ng. We notice that ng > 1 since S(1) is true. Then we see that S(ng—1)
is true statement. Then the implication S(ng— 1) — S(ng) is true statement; thus S(ng) is true.
Contradiction.



Exercises:

. 1
(1) Prove that Zk - n(n;);
k=0
- 1)(2n+1
(2) Prove that ijQ — n(n + )6( n+ );
k=0
n 9 9
+ 1)
Prove that $ &% = "D
(3) Prove tha Z v :

k=0
(4) Prove that 8" — 2™ is divisible by 6 for every n € Z .

(5) Prove that 11™ — 4™ is divisible by 7 for every n € Z .
(6) Prove that 82 4+ 92n+1 s divisible by 73 for every n € Z .



e Quantifiers. We introduce two important notations:

“ v?? “for all??

[43 3 b LCeXiStSU

(a) Let p(n) means “n? =n”, where n € Z. Then we have the statements:
Vn p(n) <= Vn (n? =n)
In p(n) <= In (n? =n)
(b) Let p(n) means “n+ 2 is even”, where n € Z. Then we have the statements:
Vn p(n) <= Vn (n+ 2 is even)
In p(n) <= 3n (n+ 2 is even)
Vn —p(n) <= Vn =(n+ 2 is even) <= V¥n (n + 2 is odd)
In —p(n) <= 3In ~(n+2 is even) <= 3In (n + 2 is odd)

We notice the following tautologies:

=3z p(x)) == Vo —p(z)

—(Vz p(x)) <= Iz —p(x)
More examples:

(a) Let z,y € R.

VeVy (x+y=y+x)
(b) Let n € Z.

Vn [(n is a prime) — (n is a odd)

Vn [((n is a prime) A (n > 3)) — (n is a odd)]
(c) Let n € Z.

Vn (n <27)

Vn [(n <2") A (n > 4)]

H
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Here n = 3 is a counterexample for the firts statement. The second one is hard to prove

(we’ll learn it soon: induction).
(d) Let z,y € R.

Vo Vy [(z > y) = (2% > 3?)]

The counterexample: =1, = —2.

(e) Let z,y € Ry .
Vo Vy [(z > y) = (2% > y?)]
(f) Let z,y € R, and p(z) := (z > 0), ¢(z) := (2 > 0).
Jz (p(z) — q(z))
Ve (p(z) — g(x))
(g) We notice that the implication Va p(x) — 3z p(z) is a tautology.
(h) Let x € Z,..
Vo (22 > 1)
Let x € Z.
Vo (22 > 1)



(i) Important tautology: Vz (p(z) — q(x)) <= Vz (—q(z) — —p(x))
(j) More tautologies:
3z (p(z) A g(x)) = G p(x)) A Bz q(x))

We notice that the implication
(Fz p(z)) A (Fz q(2)) = Fo (p(z) A ()

is not a tautology. Example: p(z) = (z < 1), ¢(x) = (¢ > 1). Then the statement
(3x p(z)) A (3z g(x)) is true, but the statement Iz (p(z) A g(x)) is false. More tautologies:

Az (p(x) V q(x)) <= (G p(z)) vV (3 q(x))
Vo (p(z) A q(z)) <= (Vo p(z)) A (Ve ()

(Vz p(x)) v (Yo g(2)) = Vo (p(2) V ¢())
We notice that the implication
vz (p(z) v q(z)) = (Vo p(z)) vV (Ve q(z))
is not a tautology. The same example: p(x) = (x < 1), ¢(z) = (r > 1). Then the

statement Vz (p(z) V ¢(x)) is true, but the statement (Vz p(x))V (Vz ¢(x)) is false.

(k) Let z,y € R. Then the statement Yz Jy (z + y = 25) is true. Indeed for any given = = a,
we can find y = 25 — a so that « +y = 25.

(1) However the statement Jy Vax (x + y = 25) is false. Indeed assume that there exists y = b
so that for every x we have x + b = 25. Then this is true for x = 25 — b, but not for all z.

(m) Check that the statement Vy Vo (x+y = 25) is false, and the statement 3z Jy (z+y = 25)

is true.

Limits. Next we discuss definitions of lim z, and lim f(z).
n—o0 T—a

Let {z,} be a sequence of real numbers. Then h_)m xn = A if and only if for every € > 0 there
n—0o0

exists an integer N such that for every n (n > N) implies that |z, — A| < €. In our terms, the

following proposition
Ve >0 3N Vn[(n > N) = (|Jz, — A] < €)]

is true. What does it mean that li_>m Ty # A? The answer:
(Ve > 03N Vn[(n>N) = (Jz, —A| <e€)]) < Fe>0VN In =[(n > N) = (|z, — A < ¢€)]
<= de>0VN In[(n > N) A (Jxn, — A| > €)].

Let f(z) be a function. We say that lim f(x) = L is for every € > 0 there exists § > 0 such that
r—a

for every x the inequality 0 < |z — a| < § implies |f(z) — L| < €. In our terms, the following
proposition
Ve>030>0Vz[(0<|z—a|l = (|f(z) - L| <€)



is true. What does it mean that ligl f(z) # L? The answer:
—{Ve>035>0Vz[(0 < |z —a|] = (|f(z) — L| < e)]} —
Je>0V0>03x-[(0< |z —a| = (|f(z) — L| <e€)] <=

de > 0V0 >0 3z[(0 < |z —a| A (|f(x) — L| > ¢)].
Those two examples are very important to understand really well.

e Give examples when ILm xn # A and ligl f(z) # L.



