Summary on Lecture 7, October 27, 2014

- Sets and subsets. Usually we work with a given "universe" \mathcal{U} which contains all our sets. First examples:
(1) $\left\{n \in \mathbf{Z}_{+} \mid n^{2}=9\right\}=\{3\}$;
(2) $\left\{n \in \mathbf{Z} \mid n^{2}=9\right\}=\{-3,3\}$;
(3) $\left\{n \in \mathbf{Z} \mid n^{2}=7\right\}=\emptyset$;
(4) $\left\{n \in \mathbf{R} \mid n^{2}=7\right\}=\{-\sqrt{7}, \sqrt{7}\}$.

Definition. Let A, B be two sets. Then $A \subseteq B$ iff $\forall x[(x \in A) \rightarrow(x \in B)]$ is a tautology. Then we say that A is a subset of B. Next, the sets A, B are equal iff $A \subseteq B$ and $B \subseteq A$. Then we write $A \subset B$ iff $A \subseteq B$ and $A \neq B$. If $A \subset B$, we say that A is proper subset of B.
Here are short ways to define:

$$
\begin{aligned}
& A \subset B \quad \Longleftrightarrow \quad[(A \subset B) \wedge(A \neq B)] \\
& A=B \quad \Longleftrightarrow[(A \subseteq B) \wedge(B \subseteq A)]
\end{aligned}
$$

Theorem 1. Let $B, C \subset \mathcal{U}$. Then
(a) $A \subseteq B, B \subseteq C \Longleftrightarrow A \subseteq C$;
(b) $A \subset B, B \subseteq C \Longleftrightarrow A \subset C$;
(c) $A \subseteq B, B \subset C \Longleftrightarrow A \subset C$;
(d) $A \subset B, B \subset C \Longleftrightarrow A \subset C$.

We give a proof of (b) assuming (a). We already know that $A \subseteq C$. We should show that $A \neq C$. By assumption, $A \subset B$, thus there exists $x \in B$, such that $x \notin A$. Since $B \subseteq C, x \in C$. We found an element $x \in C$ such that $x \notin A$, i.e., $A \subset C$.
Special sets: \emptyset, \mathcal{U}. By definition, an empty set, denoted by \emptyset, is a set with no elements. In particular, $\emptyset \subset A$ for any set A.
Theorem 2. Let $A \subset \mathcal{U}$. Then $\emptyset \subseteq A$. If $A \neq \emptyset$, then $\emptyset \subset A$.
Give a proof of Theorem 2.
Again, let $A \subset \mathcal{U}$. We consider the set of all subsets of A :

$$
\mathcal{P}(A)=\{B \mid B \subseteq A\} .
$$

Assume that A is a finite set, $A=\left\{a_{1}, \ldots, a_{n}\right\}$, i.e. $|A|=n$.
Lemma. Assume $|A|=n$. Then $|\mathcal{P}(A)|=2^{n}$.
Proof. Let $\Sigma=\{0,1\}$ be the binary alphabet. Consider the set of words Σ^{n}, i.e., all binary words of length n. We notice that every word in Σ^{n} corresponds to a subset in A. Place all elements of A next to a binary sequence:

$$
\begin{array}{ccccccccc}
a_{1} & a_{2} & a_{3} & \cdots & a_{k-1} & a_{k} & a_{k+1} & \cdots & a_{n} \\
0 & 1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 1
\end{array}
$$

Then all 1's in binary sequence mark the elements to choose for a subset B. Clearly any subset B gives a corresponding binary sequence as well. Thus $|\mathcal{P}(A)|=\left|\Sigma^{n}\right|=2^{n}$.

For the same A, let $k \leq n=|A|$, we define

$$
\mathcal{P}_{k}(A)=\{B \mid(B \subseteq A) \wedge(|B|=k)\} .
$$

Then it is easy to see that $\left|\mathcal{P}_{k}(A)\right|=\binom{n}{k}$. Summing up, we obtain the formula:

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

We prove again the Pascal's formula.
Lemma. Let $k \leq n+1$. Then $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof. Let $A=\left\{a_{1}, \ldots, a_{n}, z\right\}$. Consider the set $\mathcal{P}_{r}(A)$. It splits into two subsets: $\mathcal{P}_{r}(A)=$ $\mathcal{P}_{k}(A)_{z} \cup \mathcal{P}_{r}(A)_{\neg z}$, where $\mathcal{P}_{k}(A)_{z}$ contains all subset $B \subset A$ which contain the element z, and $\mathcal{P}_{k}(A)_{\neg z}$ contains all subset $B \subset A$ which do contain the element z. Clearly, $\left|\mathcal{P}_{k}(A)_{z}\right|=\binom{n}{k-1}$ since for $B \in \mathcal{P}_{k}(A)_{z}$, it is enough to choose all elements but z. Then $\left|\mathcal{P}_{k}(A)_{\neg z}\right|=\binom{n}{k}$ since for $B \in \mathcal{P}_{k}(A)_{z}$, it is enough to choose all elements from the set $\left\{a_{1}, \ldots, a_{n}\right\}$. Also, it is clear that the sets $\mathcal{P}_{k}(A)_{z}$ and $\mathcal{P}_{r}(A)_{\neg z}$ do not intsersect.
We define $A \cup B, A \cap B$ and \bar{A} :

$$
\begin{aligned}
& (x \in A \cup B) \Longleftrightarrow(x \in A) \vee(x \in B) \\
& (x \in A \cap B) \Longleftrightarrow(x \in A) \wedge(x \in B) \\
& (x \in \bar{A}) \Longleftrightarrow(x \notin A)
\end{aligned}
$$

We say that A and B are disjoint if $A \cap B=\emptyset$.
Theorem 3. Let $A, B \subset \mathcal{U}$. The following statements are equivalent:
(a) $A \subseteq B$
(b) $A \cup B=A$
(c) $A \cap B=A$
(b) $\bar{B} \subseteq \bar{A}$

Exercise. Prove Theorem 3.
The following identities to prove:
(1) $\overline{\bar{A}}=A$
(2) $\overline{A \cup B}=\bar{A} \cap \bar{B}$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

(3) $A \cup B=B \cup A$
$A \cap B=B \cap A$
(4) $A \cup(B \cup C)=(A \cup B) \cup C$
$A \cap(B \cap C)=(A \cap B) \cap C$
(5) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(6) $A \cup A=A$
$A \cap A=A$
(7) $A \cup \emptyset=A$
$A \cap \mathcal{U}=A$
(8) $A \cup \bar{A}=\mathcal{U}$
$A \cap \bar{A}=\emptyset$
(9) $A \cup \mathcal{U}=\mathcal{U}$
$A \cap \emptyset=\emptyset$
(10) $A \cup(A \cap B)=A$
$A \cap(A \cup B)=A$
Exercise. Prove (5) and (10) above.

- Counting again. Let A_{1}, A_{2} be finite sets. We recall that $\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|$. Now we would like to understand the case of three sets:

$$
\begin{aligned}
\left|A_{1} \cup\left(A_{2} \cup A_{3}\right)\right| & =\left|A_{1}\right|+\left|A_{2} \cup A_{3}\right|-\left|A_{1} \cap\left(A_{2} \cup A_{3}\right)\right| \\
& =\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{2} \cap A_{3}\right|-\left|A_{1} \cap\left(A_{2} \cup A_{3}\right)\right|
\end{aligned}
$$

We notice:

$$
A_{1} \cap\left(A_{2} \cup A_{3}\right)=\left(A_{1} \cap A_{2}\right) \cup\left(A_{1} \cap A_{3}\right)
$$

where we see:

$$
\begin{aligned}
\left|A_{1} \cap\left(A_{2} \cup A_{3}\right)\right| & =\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|-\left|\left(A_{1} \cap A_{2}\right) \cap\left(A_{1} \cap A_{3}\right)\right| \\
& =\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|-\left|A_{1} \cap A_{2} \cap A_{3}\right| .
\end{aligned}
$$

We obtain the formula:

$$
\left|A_{1} \cup A_{2} \cup A_{3}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right|-\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right|
$$

Question: What would be a general formula for A_{1}, \ldots, A_{n} ?

- Well-Ordering Principle. We recall the Well-Ordering Principle:

If $A \subset \mathbf{Z}_{+}$, and $A \neq \emptyset$, then there exists a smallest element in A.

- Mathematical Induction. Let $S(n)$ be an open proposition, where $n \in \mathbf{Z}_{+}$.

Theorem 4. Assume that
(B) $S(1)$ is a true statement
(I) $S(k) \rightarrow S(k+1)$ is true for all k.

Then $S(n)$ vis a true statement for each n.
Proof. Assume Theorem 4 is false. Then there exists an open statement $S(n)$ which satisfies (B) and (I), however, there exists $m \in \mathbf{Z}_{+}$such that $S(m)$ is false. We consider the set:

$$
A=\left\{m \in \mathbf{Z}_{+} \mid S(m) \text { is false }\right\}
$$

By the assumption, $A \neq \emptyset$. Then there exists a smallest element n_{0} in A, i.e., $S\left(n_{0}\right)$ false, and $S(n)$ is true for all $n<n_{0}$. We notice that $n_{0}>1$ since $S(1)$ is true. Then we see that $S\left(n_{0}-1\right)$ is true statement. Then the implication $S\left(n_{0}-1\right) \rightarrow S\left(n_{0}\right)$ is true statement; thus $S\left(n_{0}\right)$ is true. Contradiction.

Exercises:

(1) Prove that $\sum_{k=0}^{n} k=\frac{n(n+1)}{2}$;
(2) Prove that $\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$;
(3) Prove that $\sum_{k=0}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$;
(4) Prove that $8^{n}-2^{n}$ is divisible by 6 for every $n \in \mathbf{Z}_{+}$.
(5) Prove that $11^{n}-4^{n}$ is divisible by 7 for every $n \in \mathbf{Z}_{+}$.
(6) Prove that $8^{n+2}+9^{2 n+1}$ is divisible by 73 for every $n \in \mathbf{Z}_{+}$.

- Quantifiers. We introduce two important notations:

> " $\forall "$ "for all"
> " \exists " "exists"
(a) Let $p(n)$ means " n " $=n$ ", where $n \in \mathbf{Z}$. Then we have the statements:

$$
\begin{array}{ll}
\forall n p(n) \Longleftrightarrow \forall n\left(n^{2}=n\right) & \mathrm{F} \\
\exists n p(n) \Longleftrightarrow \exists n\left(n^{2}=n\right) & \mathrm{T}
\end{array}
$$

b) Let $p(n)$ means " $n+2$ is even", where $n \in \mathbf{Z}$. Then we have the statements:
$\forall n p(n) \Longleftrightarrow \forall n(n+2$ is even $) \quad \mathrm{F}$
$\exists n p(n) \Longleftrightarrow \exists n(n+2$ is even $) \quad \mathrm{T}$
$\forall n \neg p(n) \Longleftrightarrow \forall n \neg(n+2$ is even $) \Longleftrightarrow \forall n(n+2$ is odd $) \quad \mathrm{F}$
$\exists n \neg p(n) \Longleftrightarrow \exists n \neg(n+2$ is even $) \Longleftrightarrow \exists n(n+2$ is odd $) \quad \mathrm{T}$
We notice the following tautologies:

$$
\begin{aligned}
& \neg(\exists x p(x)) \Longleftrightarrow \forall x \neg p(x) \\
& \neg(\forall x p(x)) \Longleftrightarrow \exists x \neg p(x)
\end{aligned}
$$

More examples:

(a) Let $x, y \in \mathbf{R}$.
$\forall x \forall y(x+y=y+x)$
T
(b) Let $n \in \mathbf{Z}$.
$\forall n[(n$ is a prime $) \rightarrow(n$ is a odd $)$
$\forall n[((n$ is a prime $) \wedge(n \geq 3)) \rightarrow(n$ is a odd $)]$
(c) Let $n \in \mathbf{Z}$.
$\forall n\left(n \leq 2^{n}\right)$
F
$\forall n\left[\left(n \leq 2^{n}\right) \wedge(n \geq 4)\right] \quad$ T
Here $n=3$ is a counterexample for the firts statement. The second one is hard to prove (we'll learn it soon: induction).
(d) Let $x, y \in \mathbf{R}$.
$\forall x \forall y\left[(x>y) \rightarrow\left(x^{2}>y^{2}\right)\right]$
The counterexample: $x=1,=-2$.
(e) Let $x, y \in \mathbf{R}_{+}$.
$\forall x \forall y\left[(x>y) \rightarrow\left(x^{2}>y^{2}\right)\right]$
(f) Let $x, y \in \mathbf{R}$, and $p(x):=(x \geq 0), q(x):=\left(x^{2} \geq 0\right)$.
$\exists x(p(x) \rightarrow q(x))$
$\forall x(p(x) \rightarrow q(x))$
(g) We notice that the implication $\forall x p(x) \rightarrow \exists x p(x)$ is a tautology.
(h) Let $x \in \mathbf{Z}_{+}$.
$\forall x\left(x^{2} \geq 1\right)$
Let $x \in \mathbf{Z}$.
$\forall x\left(x^{2} \geq 1\right)$
(i) Important tautology: $\forall x(p(x) \rightarrow q(x)) \Longleftrightarrow \forall x(\neg q(x) \rightarrow \neg p(x))$
(j) More tautologies:

$$
\exists x(p(x) \wedge q(x)) \Longrightarrow(\exists x p(x)) \wedge(\exists x q(x))
$$

We notice that the implication

$$
(\exists x p(x)) \wedge(\exists x q(x)) \rightarrow \exists x(p(x) \wedge q(x))
$$

is not a tautology. Example: $p(x)=(x<1), q(x)=(x \geq 1)$. Then the statement $(\exists x p(x)) \wedge(\exists x q(x))$ is true, but the statement $\exists x(p(x) \wedge q(x))$ is false. More tautologies:

$$
\begin{aligned}
& \exists x(p(x) \vee q(x)) \Longleftrightarrow(\exists x p(x)) \vee(\exists x q(x)) \\
& \forall x(p(x) \wedge q(x)) \Longleftrightarrow(\forall x p(x)) \wedge(\forall x q(x)) \\
& (\forall x p(x)) \vee(\forall x q(x)) \Longrightarrow \forall x(p(x) \vee q(x))
\end{aligned}
$$

We notice that the implication

$$
\forall x(p(x) \vee q(x)) \rightarrow(\forall x p(x)) \vee(\forall x q(x))
$$

is not a tautology. The same example: $p(x)=(x<1), q(x)=(x \geq 1)$. Then the statement $\forall x(p(x) \vee q(x))$ is true, but the statement $(\forall x p(x)) \vee(\forall x q(x))$ is false.
(k) Let $x, y \in \mathbf{R}$. Then the statement $\forall x \exists y(x+y=25)$ is true. Indeed for any given $x=a$, we can find $y=25-a$ so that $x+y=25$.
(l) However the statement $\exists y \forall x \quad(x+y=25)$ is false. Indeed assume that there exists $y=b$ so that for every x we have $x+b=25$. Then this is true for $x=25-b$, but not for all x.
(m) Check that the statement $\forall y \forall x \quad(x+y=25)$ is false, and the statement $\exists x \exists y(x+y=25)$ is true.

Limits. Next we discuss definitions of $\lim _{n \rightarrow \infty} x_{n}$ and $\lim _{x \rightarrow a} f(x)$.

- Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Then $\lim _{n \rightarrow \infty} x_{n}=A$ if and only if for every $\epsilon>0$ there exists an integer N such that for every $n(n>N)$ implies that $\left|x_{n}-A\right|<\epsilon$. In our terms, the following proposition

$$
\forall \epsilon>0 \exists N \forall n\left[(n>N) \rightarrow\left(\left|x_{n}-A\right|<\epsilon\right)\right]
$$

is true. What does it mean that $\lim _{n \rightarrow \infty} x_{n} \neq A$? The answer:

$$
\begin{aligned}
\neg\left(\forall \epsilon>0 \exists N \forall n\left[(n>N) \rightarrow\left(\left|x_{n}-A\right|<\epsilon\right)\right]\right) & \Longleftrightarrow \exists \epsilon>0 \forall N \exists n \neg\left[(n>N) \rightarrow\left(\left|x_{n}-A\right|<\epsilon\right)\right] \\
& \Longleftrightarrow \exists \epsilon>0 \forall N \exists n\left[(n>N) \wedge\left(\left|x_{n}-A\right| \geq \epsilon\right)\right]
\end{aligned}
$$

- Let $f(x)$ be a function. We say that $\lim _{x \rightarrow a} f(x)=L$ is for every $\epsilon>0$ there exists $\delta>0$ such that for every x the inequality $0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$. In our terms, the following proposition

$$
\forall \epsilon>0 \exists \delta>0 \forall x[(0<|x-a| \rightarrow(|f(x)-L|<\epsilon)]
$$

is true. What does it mean that $\lim _{x \rightarrow a} f(x) \neq L$? The answer:

$$
\begin{aligned}
\neg\{\forall \epsilon>0 \exists \delta>0 \forall x[(0<|x-a| \rightarrow(|f(x)-L|<\epsilon)]\} & \Longleftrightarrow \\
\exists \epsilon>0 \forall \delta>0 \exists x \neg[(0<|x-a| \rightarrow(|f(x)-L|<\epsilon)] & \Longleftrightarrow \\
\exists \epsilon>0 \forall \delta>0 \exists x[(0<|x-a| \wedge(|f(x)-L| \geq \epsilon)] . &
\end{aligned}
$$

Those two examples are very important to understand really well.

- Give examples when $\lim _{n \rightarrow \infty} x_{n} \neq A$ and $\lim _{x \rightarrow a} f(x) \neq L$.

