
Math 231, Fall 2014 Boris Botvinnik

Summary on Lecture 7, October 27, 2014

• Sets and subsets. Usually we work with a given “universe” U which contains all our sets.
First examples:

(1) { n ∈ Z+ | n2 = 9 } = {3} ;
(2) { n ∈ Z | n2 = 9 } = {−3, 3} ;
(3) { n ∈ Z | n2 = 7 } = ∅ ;
(4) { n ∈ R | n2 = 7 } = {−

√
7,
√

7} .

Definition. Let A,B be two sets. Then A ⊆ B iff ∀x[(x ∈ A)→ (x ∈ B)] is a tautology. Then
we say that A is a subset of B . Next, the sets A , B are equal iff A ⊆ B and B ⊆ A . Then we
write A ⊂ B iff A ⊆ B and A 6= B . If A ⊂ B , we say that A is proper subset of B .

Here are short ways to define:

A ⊂ B ⇐⇒ [(A ⊂ B) ∧ (A 6= B)]
A = B ⇐⇒ [(A ⊆ B) ∧ (B ⊆ A)]

Theorem 1. Let B,C ⊂ U . Then

(a) A ⊆ B , B ⊆ C ⇐⇒ A ⊆ C ;

(b) A ⊂ B , B ⊆ C ⇐⇒ A ⊂ C ;

(c) A ⊆ B , B ⊂ C ⇐⇒ A ⊂ C ;

(d) A ⊂ B , B ⊂ C ⇐⇒ A ⊂ C .

We give a proof of (b) assuming (a). We already know that A ⊆ C . We should show that A 6= C .
By assumption, A ⊂ B , thus there exists x ∈ B , such that x /∈ A . Since B ⊆ C , x ∈ C . We
found an element x ∈ C such that x /∈ A , i.e., A ⊂ C .

Special sets: ∅, U . By definition, an empty set, denoted by ∅ , is a set with no elements. In
particular, ∅ ⊂ A for any set A .

Theorem 2. Let A ⊂ U . Then ∅ ⊆ A . If A 6= ∅ , then ∅ ⊂ A .

Give a proof of Theorem 2.

Again, let A ⊂ U . We consider the set of all subsets of A :

P(A) = { B | B ⊆ A }.

Assume that A is a finite set, A = {a1, . . . , an} , i.e. |A| = n .

Lemma. Assume |A| = n . Then |P(A)| = 2n .

Proof. Let Σ = {0, 1} be the binary alphabet. Consider the set of words Σn , i.e., all binary
words of length n . We notice that every word in Σn corresponds to a subset in A . Place all
elements of A next to a binary sequence:

a1 a2 a3 · · · ak−1 ak ak+1 · · · an
0 1 0 · · · 0 1 0 · · · 1

Then all 1’s in binary sequence mark the elements to choose for a subset B . Clearly any subset
B gives a corresponding binary sequence as well. Thus |P(A)| = |Σn| = 2n . �
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For the same A , let k ≤ n = |A| , we define

Pk(A) = { B | (B ⊆ A) ∧ (|B| = k) }.

Then it is easy to see that |Pk(A)| =
(
n
k

)
. Summing up, we obtain the formula:

n∑
k=0

(
n
k

)
= 2n

We prove again the Pascal’s formula.

Lemma. Let k ≤ n+ 1. Then

(
n+ 1
k

)
=

(
n
k

)
+

(
n

k − 1

)
.

Proof. Let A = {a1, . . . , an, z} . Consider the set Pr(A). It splits into two subsets: Pr(A) =
Pk(A)z ∪ Pr(A)¬z , where Pk(A)z contains all subset B ⊂ A which contain the element z , and

Pk(A)¬z contains all subset B ⊂ A which do contain the element z . Clearly, |Pk(A)z| =
(

n
k − 1

)
since for B ∈ Pk(A)z , it is enough to choose all elements but z . Then |Pk(A)¬z| =

(
n
k

)
since

for B ∈ Pk(A)z , it is enough to choose all elements from the set {a1, . . . , an} . Also, it is clear
that the sets Pk(A)z and Pr(A)¬z do not intsersect. �

We define A ∪B , A ∩B and Ā :

(x ∈ A ∪B)⇐⇒ (x ∈ A) ∨ (x ∈ B)
(x ∈ A ∩B)⇐⇒ (x ∈ A) ∧ (x ∈ B)
(x ∈ Ā)⇐⇒ (x /∈ A)

We say that A and B are disjoint if A ∩B = ∅ .
Theorem 3. Let A,B ⊂ U . The following statements are equivalent:

(a) A ⊆ B
(b) A ∪B = A

(c) A ∩B = A

(b) B̄ ⊆ Ā

Exercise. Prove Theorem 3.

The following identities to prove:

(1) A = A

(2) A ∪B = A ∩B
A ∩B = A ∪B

(3) A ∪B = B ∪A
A ∩B = B ∩A

(4) A ∪ (B ∪ C) = (A ∪B) ∪ C
A ∩ (B ∩ C) = (A ∩B) ∩ C

(5) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
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(6) A ∪A = A
A ∩A = A

(7) A ∪ ∅ = A
A ∩ U = A

(8) A ∪A = U
A ∩A = ∅

(9) A ∪ U = U
A ∩ ∅ = ∅

(10) A ∪ (A ∩B) = A
A ∩ (A ∪B) = A

Exercise. Prove (5) and (10) above.

• Counting again. Let A1 , A2 be finite sets. We recall that |A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2| .
Now we would like to understand the case of three sets:

|A1 ∪ (A2 ∪A3)| = |A1|+ |A2 ∪A3| − |A1 ∩ (A2 ∪A3)|

= |A1|+ |A2|+ |A3| − |A2 ∩A3| − |A1 ∩ (A2 ∪A3)|

We notice:
A1 ∩ (A2 ∪A3) = (A1 ∩A2) ∪ (A1 ∩A3),

where we see:

|A1 ∩ (A2 ∪A3)| = |A1 ∩A2|+ |A1 ∩A3| − |(A1 ∩A2) ∩ (A1 ∩A3)|

= |A1 ∩A2|+ |A1 ∩A3| − |A1 ∩A2 ∩A3|.

We obtain the formula:

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|+ |A1 ∩A2 ∩A3|

Question: What would be a general formula for A1, . . . , An?

• Well-Ordering Principle. We recall the Well-Ordering Principle:

If A ⊂ Z+ , and A 6= ∅ , then there exists a smallest element in A .

• Mathematical Induction. Let S(n) be an open proposition, where n ∈ Z+ .

Theorem 4. Assume that
(B) S(1) is a true statement
(I) S(k)→ S(k + 1) is true for all k .

Then S(n) vis a true statement for each n .

Proof. Assume Theorem 4 is false. Then there exists an open statement S(n) which satisfies (B)
and (I), however, there exists m ∈ Z+ such that S(m) is false. We consider the set:

A = { m ∈ Z+ | S(m) is false }

By the assumption, A 6= ∅ . Then there exists a smallest element n0 in A , i.e., S(n0) false, and
S(n) is true for all n < n0 . We notice that n0 > 1 since S(1) is true. Then we see that S(n0−1)
is true statement. Then the implication S(n0− 1)→ S(n0) is true statement; thus S(n0) is true.
Contradiction.
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Exercises:

(1) Prove that
n∑

k=0

k =
n(n+ 1)

2
;

(2) Prove that

n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6
;

(3) Prove that

n∑
k=0

k3 =
n2(n+ 1)2

4
;

(4) Prove that 8n − 2n is divisible by 6 for every n ∈ Z+ .

(5) Prove that 11n − 4n is divisible by 7 for every n ∈ Z+ .

(6) Prove that 8n+2 + 92n+1 is divisible by 73 for every n ∈ Z+ .

4



• Quantifiers. We introduce two important notations:

“∀” “for all”

“∃” “exists”

(a) Let p(n) means “n2 = n”, where n ∈ Z . Then we have the statements:
∀n p(n)⇐⇒ ∀n (n2 = n) F
∃n p(n)⇐⇒ ∃n (n2 = n) T

(b) Let p(n) means “n+ 2 is even”, where n ∈ Z . Then we have the statements:
∀n p(n)⇐⇒ ∀n (n+ 2 is even) F
∃n p(n)⇐⇒ ∃n (n+ 2 is even) T
∀n ¬p(n)⇐⇒ ∀n ¬(n+ 2 is even)⇐⇒ ∀n (n+ 2 is odd) F
∃n ¬p(n)⇐⇒ ∃n ¬(n+ 2 is even)⇐⇒ ∃n (n+ 2 is odd) T

We notice the following tautologies:

¬(∃x p(x))⇐⇒ ∀x ¬p(x)

¬(∀x p(x))⇐⇒ ∃x ¬p(x)

More examples:

(a) Let x, y ∈ R .
∀x ∀y (x+ y = y + x) T

(b) Let n ∈ Z .
∀n [(n is a prime)→ (n is a odd) F
∀n [((n is a prime) ∧ (n ≥ 3))→ (n is a odd)] T

(c) Let n ∈ Z .
∀n (n ≤ 2n) F
∀n [(n ≤ 2n) ∧ (n ≥ 4)] T
Here n = 3 is a counterexample for the firts statement. The second one is hard to prove
(we’ll learn it soon: induction).

(d) Let x, y ∈ R .
∀x ∀y [(x > y)→ (x2 > y2)] F
The counterexample: x = 1, = −2.

(e) Let x, y ∈ R+ .
∀x ∀y [(x > y)→ (x2 > y2)] T

(f) Let x, y ∈ R , and p(x) := (x ≥ 0), q(x) := (x2 ≥ 0).
∃x (p(x)→ q(x)) T
∀x (p(x)→ q(x)) F

(g) We notice that the implication ∀x p(x)→ ∃x p(x) is a tautology.

(h) Let x ∈ Z+ .
∀x (x2 ≥ 1) T
Let x ∈ Z .
∀x (x2 ≥ 1) F
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(i) Important tautology: ∀x (p(x)→ q(x))⇐⇒ ∀x (¬q(x)→ ¬p(x))

(j) More tautologies:
∃x (p(x) ∧ q(x)) =⇒ (∃x p(x)) ∧ (∃x q(x))

We notice that the implication

(∃x p(x)) ∧ (∃x q(x))→ ∃x (p(x) ∧ q(x))

is not a tautology. Example: p(x) = (x < 1), q(x) = (x ≥ 1). Then the statement
(∃x p(x)) ∧ (∃x q(x)) is true, but the statement ∃x (p(x) ∧ q(x)) is false. More tautologies:

∃x (p(x) ∨ q(x))⇐⇒ (∃x p(x)) ∨ (∃x q(x))

∀x (p(x) ∧ q(x))⇐⇒ (∀x p(x)) ∧ (∀x q(x))

(∀x p(x)) ∨ (∀x q(x)) =⇒ ∀x (p(x) ∨ q(x))

We notice that the implication

∀x (p(x) ∨ q(x))→ (∀x p(x)) ∨ (∀x q(x))

is not a tautology. The same example: p(x) = (x < 1), q(x) = (x ≥ 1). Then the
statement ∀x (p(x) ∨ q(x)) is true, but the statement (∀x p(x)) ∨ (∀x q(x)) is false.

(k) Let x, y ∈ R . Then the statement ∀x ∃y (x+ y = 25) is true. Indeed for any given x = a ,
we can find y = 25− a so that x+ y = 25.

(l) However the statement ∃y ∀x (x + y = 25) is false. Indeed assume that there exists y = b
so that for every x we have x+ b = 25. Then this is true for x = 25− b , but not for all x .

(m) Check that the statement ∀y ∀x (x+ y = 25) is false, and the statement ∃x ∃y (x+ y = 25)
is true.

Limits. Next we discuss definitions of lim
n→∞

xn and lim
x→a

f(x).

• Let {xn} be a sequence of real numbers. Then lim
n→∞

xn = A if and only if for every ε > 0 there

exists an integer N such that for every n (n > N) implies that |xn − A| < ε . In our terms, the
following proposition

∀ε > 0 ∃N ∀n[(n > N)→ (|xn −A| < ε)]

is true. What does it mean that lim
n→∞

xn 6= A? The answer:

¬(∀ε > 0 ∃N ∀n[(n > N)→ (|xn −A| < ε)]) ⇐⇒ ∃ε > 0 ∀N ∃n ¬[(n > N)→ (|xn −A| < ε)]

⇐⇒ ∃ε > 0 ∀N ∃n[(n > N) ∧ (|xn −A| ≥ ε)].

• Let f(x) be a function. We say that lim
x→a

f(x) = L is for every ε > 0 there exists δ > 0 such that

for every x the inequality 0 < |x − a| < δ implies |f(x) − L| < ε . In our terms, the following
proposition

∀ε > 0 ∃δ > 0 ∀x[(0 < |x− a| → (|f(x)− L| < ε)]
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is true. What does it mean that lim
x→a

f(x) 6= L? The answer:

¬{∀ε > 0 ∃δ > 0 ∀x[(0 < |x− a| → (|f(x)− L| < ε)]} ⇐⇒

∃ε > 0 ∀δ > 0 ∃x¬[(0 < |x− a| → (|f(x)− L| < ε)] ⇐⇒

∃ε > 0 ∀δ > 0 ∃x[(0 < |x− a| ∧ (|f(x)− L| ≥ ε)].

Those two examples are very important to understand really well.

• Give examples when lim
n→∞

xn 6= A and lim
x→a

f(x) 6= L .
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