Summary on Lecture 7, October 27, 2014

- Sets and subsets. Usually we work with a given "universe" \mathcal{U} which contains all our sets. First examples:
 - (1) { $n \in \mathbf{Z}_+ \mid n^2 = 9$ } = {3}; (2) { $n \in \mathbf{Z} \mid n^2 = 9$ } = {-3,3}; (3) { $n \in \mathbf{Z} \mid n^2 = 7$ } = \emptyset ;
 - (4) { $n \in \mathbf{R} \mid n^2 = 7$ } = { $-\sqrt{7}, \sqrt{7}$ }.

Definition. Let A, B be two sets. Then $A \subseteq B$ iff $\forall x[(x \in A) \to (x \in B)]$ is a tautology. Then we say that A is a subset of B. Next, the sets A, B are equal iff $A \subseteq B$ and $B \subseteq A$. Then we write $A \subset B$ iff $A \subseteq B$ and $A \neq B$. If $A \subset B$, we say that A is proper subset of B.

Here are short ways to define:

$$\begin{array}{ll} A \subset B & \Longleftrightarrow & [(A \subset B) \land (A \neq B)] \\ A = B & \Longleftrightarrow & [(A \subseteq B) \land (B \subseteq A)] \end{array}$$

Theorem 1. Let $B, C \subset \mathcal{U}$. Then

- (a) $A \subseteq B, B \subseteq C \iff A \subseteq C;$
- (b) $A \subset B$, $B \subset C \iff A \subset C$;
- (c) $A \subseteq B$, $B \subseteq C \iff A \subseteq C$;
- (d) $A \subset B$, $B \subset C \iff A \subset C$.

We give a proof of (b) assuming (a). We already know that $A \subseteq C$. We should show that $A \neq C$. By assumption, $A \subset B$, thus there exists $x \in B$, such that $x \notin A$. Since $B \subseteq C$, $x \in C$. We found an element $x \in C$ such that $x \notin A$, i.e., $A \subset C$.

Special sets: \emptyset , \mathcal{U} . By definition, an empty set, denoted by \emptyset , is a set with no elements. In particular, $\emptyset \subset A$ for any set A.

Theorem 2. Let $A \subset \mathcal{U}$. Then $\emptyset \subseteq A$. If $A \neq \emptyset$, then $\emptyset \subset A$.

Give a proof of Theorem 2.

Again, let $A \subset \mathcal{U}$. We consider the set of all subsets of A:

$$\mathcal{P}(A) = \{ B \mid B \subseteq A \}.$$

Assume that A is a finite set, $A = \{a_1, \ldots, a_n\}$, i.e. |A| = n. Lemma. Assume |A| = n. Then $|\mathcal{P}(A)| = 2^n$.

Proof. Let $\Sigma = \{0, 1\}$ be the binary alphabet. Consider the set of words Σ^n , i.e., all binary words of length n. We notice that every word in Σ^n corresponds to a subset in A. Place all elements of A next to a binary sequence:

$$a_1 \ a_2 \ a_3 \ \cdots \ a_{k-1} \ a_k \ a_{k+1} \ \cdots \ a_n$$

 $0 \ 1 \ 0 \ \cdots \ 0 \ 1 \ 0 \ \cdots \ 1$

Then all 1's in binary sequence mark the elements to choose for a subset B. Clearly any subset B gives a corresponding binary sequence as well. Thus $|\mathcal{P}(A)| = |\Sigma^n| = 2^n$.

For the same A, let $k \leq n = |A|$, we define

$$\mathcal{P}_k(A) = \{ B \mid (B \subseteq A) \land (|B| = k) \}.$$

Then it is easy to see that $|\mathcal{P}_k(A)| = \binom{n}{k}$. Summing up, we obtain the formula:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

We prove again the Pascal's formula.

Lemma. Let $k \le n+1$. Then $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$. **Proof.** Let $A = \{a_1, \ldots, a_n, z\}$. Consider the set $\mathcal{P}_r(A)$. It splits into two subsets: $\mathcal{P}_r(A) = \mathcal{P}_k(A)_z \cup \mathcal{P}_r(A)_{\neg z}$, where $\mathcal{P}_k(A)_z$ contains all subset $B \subset A$ which contain the element z, and $\mathcal{P}_k(A)_{\neg z}$ contains all subset $B \subset A$ which do contain the element z. Clearly, $|\mathcal{P}_k(A)_z| = \binom{n}{k-1}$ since for $B \in \mathcal{P}_k(A)_z$, it is enough to choose all elements but z. Then $|\mathcal{P}_k(A)_{\neg z}| = \binom{n}{k}$ since for $B \in \mathcal{P}_k(A)_z$, it is enough to choose all elements from the set $\{a_1, \ldots, a_n\}$. Also, it is clear that the sets $\mathcal{P}_k(A)_z$ and $\mathcal{P}_r(A)_{\neg z}$ do not intsersect. \Box

$$(x \in A \cup B) \iff (x \in A) \lor (x \in B)$$
$$(x \in A \cap B) \iff (x \in A) \land (x \in B)$$
$$(x \in \bar{A}) \iff (x \notin A)$$

We say that A and B are disjoint if $A \cap B = \emptyset$.

Theorem 3. Let $A, B \subset \mathcal{U}$. The following statements are equivalent:

- (a) $A \subseteq B$ (b) $A \cup B = A$ (c) $A \cap B = A$
- (b) $\bar{B} \subseteq \bar{A}$

Exercise. Prove Theorem 3.

The following identities to prove:

(1)
$$\overline{A} = A$$

(2) $\overline{A \cup B} = \overline{A} \cap \overline{B}$

- $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (3) $A \cup B = B \cup A$
- $(5) A \cap B = B \cap A$ $A \cap B = B \cap A$
- (4) $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
- (5) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- (6) $A \cup A = A$ $A \cap A = A$ (7) $A \cup \emptyset = A$
- $A \cap \mathcal{U} = A$
- (8) $A \cup \overline{A} = \mathcal{U}$ $A \cap \overline{A} = \emptyset$ (9) $A \cup \mathcal{U} = \mathcal{U}$

$$A \cap \emptyset = \emptyset$$

(10) $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$

Exercise. Prove (5) and (10) above.

• Counting again. Let A_1 , A_2 be finite sets. We recall that $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$. Now we would like to understand the case of three sets:

$$A_1 \cup (A_2 \cup A_3)| = |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)|$$
$$= |A_1| + |A_2| + |A_3| - |A_2 \cap A_3| - |A_1 \cap (A_2 \cup A_3)|$$

We notice:

$$A_1 \cap (A_2 \cup A_3) = (A_1 \cap A_2) \cup (A_1 \cap A_3),$$

where we see:

$$\begin{aligned} |A_1 \cap (A_2 \cup A_3)| &= |A_1 \cap A_2| + |A_1 \cap A_3| - |(A_1 \cap A_2) \cap (A_1 \cap A_3)| \\ &= |A_1 \cap A_2| + |A_1 \cap A_3| - |A_1 \cap A_2 \cap A_3|. \end{aligned}$$

We obtain the formula:

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

Question: What would be a general formula for A_1, \ldots, A_n ?

• Well-Ordering Principle. We recall the Well-Ordering Principle:

If $A \subset \mathbf{Z}_+$, and $A \neq \emptyset$, then there exists a smallest element in A.

• Mathematical Induction. Let S(n) be an open proposition, where $n \in \mathbb{Z}_+$.

Theorem 4. Assume that

(B) S(1) is a true statement

(I) $S(k) \to S(k+1)$ is true for all k.

Then S(n) vis a true statement for each n.

Proof. Assume Theorem 4 is false. Then there exists an open statement S(n) which satisfies (B) and (I), however, there exists $m \in \mathbb{Z}_+$ such that S(m) is false. We consider the set:

$$A = \{ m \in \mathbf{Z}_+ \mid S(m) \text{ is false } \}$$

By the assumption, $A \neq \emptyset$. Then there exists a smallest element n_0 in A, i.e., $S(n_0)$ false, and S(n) is true for all $n < n_0$. We notice that $n_0 > 1$ since S(1) is true. Then we see that $S(n_0 - 1)$ is true statement. Then the implication $S(n_0 - 1) \rightarrow S(n_0)$ is true statement; thus $S(n_0)$ is true. Contradiction.

Exercises:

(1) Prove that
$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2};$$

(2) Prove that $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6};$
(3) Prove that $\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4};$

- (4) Prove that $8^n 2^n$ is divisible by 6 for every $n \in \mathbf{Z}_+$.
- (5) Prove that $11^n 4^n$ is divisible by 7 for every $n \in \mathbf{Z}_+$.
- (6) Prove that $8^{n+2} + 9^{2n+1}$ is divisible by 73 for every $n \in \mathbb{Z}_+$.

• Quantifiers. We introduce two important notations:

"
$$\forall$$
" "for all"
" \exists " "exists"

- (a) Let p(n) means " $n^2 = n$ ", where $n \in \mathbb{Z}$. Then we have the statements: $\forall n \ p(n) \iff \forall n \ (n^2 = n)$ $\exists n \ p(n) \iff \exists n \ (n^2 = n)$
- (b) Let p(n) means "n + 2 is even", where $n \in \mathbb{Z}$. Then we have the statements: $\forall n \ p(n) \iff \forall n \ (n+2 \text{ is even})$ F $\exists n \ p(n) \iff \exists n \ (n+2 \text{ is even})$ T $\forall n \ \neg p(n) \iff \forall n \ \neg (n+2 \text{ is even}) \iff \forall n \ (n+2 \text{ is odd})$ F $\exists n \ \neg p(n) \iff \exists n \ \neg (n+2 \text{ is even}) \iff \exists n \ (n+2 \text{ is odd})$ T

 \mathbf{F}

Т

We notice the following tautologies:

 $\neg(\exists x \ p(x)) \Longleftrightarrow \forall x \ \neg p(x)$ $\neg(\forall x \ p(x)) \Longleftrightarrow \exists x \ \neg p(x)$

More examples:

(a)	Let $x, y \in \mathbf{R}$.	
	$\forall x \ \forall y \ (x+y=y+x)$	Т

- (c) Let $n \in \mathbb{Z}$. $\forall n \ (n \leq 2^n)$ F $\forall n \ [(n \leq 2^n) \land (n \geq 4)]$ T Here n = 3 is a counterexample for the firts statement. The second one is hard to prove

Here n = 3 is a counterexample for the firts statement. The second one is hard to prove (we'll learn it soon: induction).

- (d) Let $x, y \in \mathbf{R}$. $\forall x \ \forall y \ [(x > y) \rightarrow (x^2 > y^2)]$ F The counterexample: x = 1, = -2.
- (e) Let $x, y \in \mathbf{R}_+$. $\forall x \ \forall y \ [(x > y) \to (x^2 > y^2)]$ T
- (f) Let $x, y \in \mathbf{R}$, and $p(x) := (x \ge 0), q(x) := (x^2 \ge 0).$ $\exists x \ (p(x) \to q(x))$ $\forall x \ (p(x) \to q(x))$ F
- (g) We notice that the implication $\forall x \ p(x) \to \exists x \ p(x)$ is a tautology.
- (h) Let $x \in \mathbf{Z}_+$. $\forall x \ (x^2 \ge 1)$ T Let $x \in \mathbf{Z}$. $\forall x \ (x^2 \ge 1)$ F

- (i) Important tautology: $\forall x \ (p(x) \to q(x)) \iff \forall x \ (\neg q(x) \to \neg p(x))$
- (j) More tautologies:

$$\exists x \ (p(x) \land q(x)) \Longrightarrow (\exists x \ p(x)) \land (\exists x \ q(x))$$

We notice that the implication

$$(\exists x \ p(x)) \land (\exists x \ q(x)) \to \exists x \ (p(x) \land q(x))$$

is not a tautology. Example: $p(x) = (x < 1), q(x) = (x \ge 1)$. Then the statement $(\exists x \ p(x)) \land (\exists x \ q(x))$ is true, but the statement $\exists x \ (p(x) \land q(x))$ is false. More tautologies:

$$\exists x \ (p(x) \lor q(x)) \iff (\exists x \ p(x)) \lor (\exists x \ q(x))$$
$$\forall x \ (p(x) \land q(x)) \iff (\forall x \ p(x)) \land (\forall x \ q(x))$$
$$(\forall x \ p(x)) \lor (\forall x \ q(x)) \Longrightarrow \forall x \ (p(x) \lor q(x))$$

We notice that the implication

$$\forall x \ (p(x) \lor q(x)) \to (\forall x \ p(x)) \lor (\forall x \ q(x))$$

is not a tautology. The same example: $p(x) = (x < 1), q(x) = (x \ge 1)$. Then the statement $\forall x \ (p(x) \lor q(x))$ is true, but the statement $(\forall x \ p(x)) \lor (\forall x \ q(x))$ is false.

- (k) Let $x, y \in \mathbf{R}$. Then the statement $\forall x \exists y \ (x + y = 25)$ is true. Indeed for any given x = a, we can find y = 25 a so that x + y = 25.
- (1) However the statement $\exists y \forall x \ (x+y=25)$ is false. Indeed assume that there exists y=b so that for every x we have x+b=25. Then this is true for x=25-b, but not for all x.
- (m) Check that the statement $\forall y \ \forall x \ (x+y=25)$ is false, and the statement $\exists x \ \exists y \ (x+y=25)$ is true.

Limits. Next we discuss definitions of $\lim_{n \to \infty} x_n$ and $\lim_{x \to a} f(x)$.

• Let $\{x_n\}$ be a sequence of real numbers. Then $\lim_{n\to\infty} x_n = A$ if and only if for every $\epsilon > 0$ there exists an integer N such that for every n (n > N) implies that $|x_n - A| < \epsilon$. In our terms, the following proposition

$$\forall \epsilon > 0 \; \exists N \; \forall n [(n > N) \to (|x_n - A| < \epsilon)]$$

is true. What does it mean that $\lim_{n \to \infty} x_n \neq A$? The answer:

$$\neg (\forall \epsilon > 0 \ \exists N \ \forall n[(n > N) \to (|x_n - A| < \epsilon)]) \iff \exists \epsilon > 0 \ \forall N \ \exists n \ \neg [(n > N) \to (|x_n - A| < \epsilon)]$$
$$\iff \exists \epsilon > 0 \ \forall N \ \exists n[(n > N) \land (|x_n - A| \ge \epsilon)].$$

• Let f(x) be a function. We say that $\lim_{x \to a} f(x) = L$ is for every $\epsilon > 0$ there exists $\delta > 0$ such that for every x the inequality $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$. In our terms, the following proposition

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x [(0 < |x - a| \rightarrow (|f(x) - L| < \epsilon)]$$

is true. What does it mean that $\lim_{x \to a} f(x) \neq L$? The answer:

$$\neg \{ \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x [(0 < |x - a| \rightarrow (|f(x) - L| < \epsilon)] \} \iff$$
$$\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x \neg [(0 < |x - a| \rightarrow (|f(x) - L| < \epsilon)] \iff$$
$$\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x [(0 < |x - a| \land (|f(x) - L| \ge \epsilon)].$$

Those two examples are very important to understand really well.

• Give examples when $\lim_{n \to \infty} x_n \neq A$ and $\lim_{x \to a} f(x) \neq L$.