Summary on Lecture 6, October 15, 2014

- Two proofs.

(1) Show that $n^{2}-2$ is not divisible by 5 for every $n \in \mathbf{Z}_{+}$.

Proof. We consider the cases: (a) $n=5 k$, (b) $n=5 k+1$, (c) $n=5 k+2$, (d) $n=5 k+3$, (e) $n=5 k+4$.
(a): We have $n^{2}-2=25 k^{2}-2$ is not divisible by 5 .
(b): We have $n^{2}-2=25 k^{2}+10 k+1-2=5\left(5 k^{2}+2 k\right)-1$ is not divisible by 5 .
(c): We have $n^{2}-2=25 k^{2}+20 k+4-2=5\left(5 k^{2}+4 k\right)+2$ is not divisible by 5 .
(d): We have $n^{2}-2=25 k^{2}+30 k+9-2=5\left(5 k^{2}+6 k+1\right)+2$ is not divisible by 5 .
(e): We have $n^{2}-2=25 k^{2}+40 k+16-2=5\left(5 k^{2}+8 k+3\right)+1$ is not divisible by 5 .

Thus $n^{2}-2$ is not divisible by 5 for every $n \in \mathbf{Z}_{+}$.
(2) Show that $n^{4}-n^{2}$ is divisible by 3 for every $n \in \mathbf{Z}_{+}$.

Proof. We notice that $n^{4}-n^{2}=n^{2}\left(n^{2}-1\right)=n^{2}(n-1)(n+1)$. Then we consider the cases:
(a) $n=3 k$, (b) $n=3 k+1$, (c) $n=3 k+2$.
(a): Then n^{2} is divisible by 3 .
(b): Then $n-1$ is divisible by 3 .
(c): Then $n+1$ is divisible by 3 .

Thus $n^{4}-n^{2}$ is divisible by 3 for every $n \in \mathbf{Z}_{+}$.
(3) Show that $n^{4}-n^{2}$ is even for every $n \in \mathbf{Z}_{+}$.
(4) Show that $n^{4}-n^{2}$ is divisible by 6 for every $n \in \mathbf{Z}_{+}$.

- Quantifiers. We introduce two important notations:
$" \forall "$ "for all"
" \exists " "exists"
(a) Let $p(n)$ means " $n^{2}=n$ ", where $n \in \mathbf{Z}$. Then we have the statements:
$\begin{array}{ll}\forall n p(n) \Longleftrightarrow \forall n\left(n^{2}=n\right) & \mathrm{F} \\ \exists n p(n) \Longleftrightarrow \exists n\left(n^{2}=n\right) & \mathrm{T}\end{array}$
(b) Let $p(n)$ means " $n+2$ is even", where $n \in \mathbf{Z}$. Then we have the statements:
$\forall n p(n) \Longleftrightarrow \forall n(n+2$ is even $)$
$\exists n p(n) \Longleftrightarrow \exists n(n+2$ is even $) \quad \mathrm{T}$
$\forall n \neg p(n) \Longleftrightarrow \forall n \neg(n+2$ is even $) \Longleftrightarrow \forall n(n+2$ is odd $) \quad \mathrm{F}$
$\exists n \neg p(n) \Longleftrightarrow \exists n \neg(n+2$ is even $) \Longleftrightarrow \exists n(n+2$ is odd $) \quad \mathrm{T}$
We notice the following tautologies:

$$
\begin{aligned}
& \neg(\exists x p(x)) \Longleftrightarrow \forall x \neg p(x) \\
& \neg(\forall x p(x)) \Longleftrightarrow \exists x \neg p(x)
\end{aligned}
$$

More examples:

(a) Let $x, y \in \mathbf{R}$.
$\forall x \forall y(x+y=y+x)$
(b) Let $n \in \mathbf{Z}$.
$\forall n[(n$ is a prime $) \rightarrow(n$ is a odd $)$
$\forall n[((n$ is a prime $) \wedge(n \geq 3)) \rightarrow(n$ is a odd $)] \quad \mathrm{T}$
(c) Let $n \in \mathbf{Z}$.
$\forall n\left(n \leq 2^{n}\right)$
$\forall n\left[\left(n \leq 2^{n}\right) \wedge(n \geq 4)\right]$
Here $n=3$ is a counterexample for the firts statement. The second one is hard to prove (we'll learn it soon: induction).
(d) Let $x, y \in \mathbf{R}$.
$\forall x \forall y\left[(x>y) \rightarrow\left(x^{2}>y^{2}\right)\right] \quad \mathrm{F}$
The counterexample: $x=1,=-2$.
(e) Let $x, y \in \mathbf{R}_{+}$.
$\forall x \forall y\left[(x>y) \rightarrow\left(x^{2}>y^{2}\right)\right]$
(f) Let $x, y \in \mathbf{R}$, and $p(x):=(x \geq 0), q(x):=\left(x^{2} \geq 0\right)$.
$\exists x(p(x) \rightarrow q(x))$
$\forall x(p(x) \rightarrow q(x))$
(g) We notice that the implication $\forall x p(x) \rightarrow \exists x p(x)$ is a tautology.
(h) Let $x \in \mathbf{Z}_{+}$.
$\forall x\left(x^{2} \geq 1\right)$
Let $x \in \mathbf{Z}$.
$\forall x\left(x^{2} \geq 1\right)$
(i) Important tautology: $\forall x(p(x) \rightarrow q(x)) \Longleftrightarrow \forall x(\neg q(x) \rightarrow \neg p(x))$
(j) More tautologies:

$$
\exists x(p(x) \wedge q(x)) \Longrightarrow(\exists x p(x)) \wedge(\exists x q(x))
$$

We notice that the implication

$$
(\exists x p(x)) \wedge(\exists x q(x)) \rightarrow \exists x(p(x) \wedge q(x))
$$

is not a tautology. Example: $p(x)=(x<1), q(x)=(x \geq 1)$. Then the statement $(\exists x p(x)) \wedge(\exists x q(x))$ is true, but the statement $\exists x(p(x) \wedge q(x))$ is false. More tautologies:

$$
\begin{aligned}
& \exists x(p(x) \vee q(x)) \Longleftrightarrow(\exists x p(x)) \vee(\exists x q(x)) \\
& \forall x(p(x) \wedge q(x)) \Longleftrightarrow(\forall x p(x)) \wedge(\forall x q(x)) \\
& (\forall x p(x)) \vee(\forall x q(x)) \Longrightarrow \forall x(p(x) \vee q(x))
\end{aligned}
$$

We notice that the implication

$$
\forall x(p(x) \vee q(x)) \rightarrow(\forall x p(x)) \vee(\forall x q(x))
$$

is not a tautology. The same example: $p(x)=(x<1), q(x)=(x \geq 1)$. Then the statement $\forall x(p(x) \vee q(x))$ is true, but the statement $(\forall x p(x)) \vee(\forall x q(x))$ is false.
(k) Let $x, y \in \mathbf{R}$. Then the statement $\forall x \exists y(x+y=25)$ is true. Indeed for any given $x=a$, we can find $y=25-a$ so that $x+y=25$.
(1) However the statement $\exists y \forall x \quad(x+y=25)$ is false. Indeed assume that there exists $y=b$ so that for every x we have $x+b=25$. Then this is true for $x=25-b$, but not for all x.
(m) Check that the statement $\forall y \forall x \quad(x+y=25)$ is false, and the statement $\exists x \exists y \quad(x+y=25)$ is true.

Limits. Next we discuss definitions of $\lim _{n \rightarrow \infty} x_{n}$ and $\lim _{x \rightarrow a} f(x)$.

- Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Then $\lim _{n \rightarrow \infty} x_{n}=A$ if and only if for every $\epsilon>0$ there exists an integer N such that for every $n(n>N)$ implies that $\left|x_{n}-A\right|<\epsilon$. In our terms, the following proposition

$$
\forall \epsilon>0 \exists N \forall n\left[(n>N) \rightarrow\left(\left|x_{n}-A\right|<\epsilon\right)\right]
$$

is true. What does it mean that $\lim _{n \rightarrow \infty} x_{n} \neq A$? The answer:

$$
\begin{aligned}
\neg\left(\forall \epsilon>0 \exists N \forall n\left[(n>N) \rightarrow\left(\left|x_{n}-A\right|<\epsilon\right)\right]\right) & \Longleftrightarrow \exists \epsilon>0 \forall N \exists n \neg\left[(n>N) \rightarrow\left(\left|x_{n}-A\right|<\epsilon\right)\right] \\
& \Longleftrightarrow \exists \epsilon>0 \forall N \exists n\left[(n>N) \wedge\left(\left|x_{n}-A\right| \geq \epsilon\right)\right] .
\end{aligned}
$$

- Let $f(x)$ be a function. We say that $\lim _{x \rightarrow a} f(x)=L$ is for every $\epsilon>0$ there exists $\delta>0$ such that for every x the inequality $0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$. In our terms, the following proposition

$$
\forall \epsilon>0 \exists \delta>0 \forall x[(0<|x-a| \rightarrow(|f(x)-L|<\epsilon)]
$$

is true. What does it mean that $\lim _{x \rightarrow a} f(x) \neq L$? The answer:

$$
\begin{aligned}
\neg\{\forall \epsilon>0 \exists \delta>0 \forall x[(0<|x-a| \rightarrow(|f(x)-L|<\epsilon)]\} & \Longleftrightarrow \\
\exists \epsilon>0 \forall \delta>0 \exists x \neg[(0<|x-a| \rightarrow(|f(x)-L|<\epsilon)] & \Longleftrightarrow \\
\exists \epsilon>0 \forall \delta>0 \exists x[(0<|x-a| \wedge(|f(x)-L| \geq \epsilon)] . &
\end{aligned}
$$

Those two examples are very important to understand really well.

- Give examples when $\lim _{n \rightarrow \infty} x_{n} \neq A$ and $\lim _{x \rightarrow a} f(x) \neq L$.

