
Math 231, Fall 2014 Boris Botvinnik

Summary on Lecture 6, October 15, 2014

• Two proofs.

(1) Show that n2 − 2 is not divisible by 5 for every n ∈ Z+ .
Proof. We consider the cases: (a) n = 5k , (b) n = 5k + 1, (c) n = 5k + 2, (d) n = 5k + 3,
(e) n = 5k + 4.
(a): We have n2 − 2 = 25k2 − 2 is not divisible by 5.
(b): We have n2 − 2 = 25k2 + 10k + 1− 2 = 5(5k2 + 2k)− 1 is not divisible by 5.
(c): We have n2 − 2 = 25k2 + 20k + 4− 2 = 5(5k2 + 4k) + 2 is not divisible by 5.
(d): We have n2 − 2 = 25k2 + 30k + 9− 2 = 5(5k2 + 6k + 1) + 2 is not divisible by 5.
(e): We have n2 − 2 = 25k2 + 40k + 16− 2 = 5(5k2 + 8k + 3) + 1 is not divisible by 5.
Thus n2 − 2 is not divisible by 5 for every n ∈ Z+ .

(2) Show that n4 − n2 is divisible by 3 for every n ∈ Z+ .
Proof. We notice that n4−n2 = n2(n2−1) = n2(n−1)(n+1). Then we consider the cases:
(a) n = 3k , (b) n = 3k + 1, (c) n = 3k + 2.
(a): Then n2 is divisible by 3.
(b): Then n− 1 is divisible by 3.
(c): Then n+ 1 is divisible by 3.
Thus n4 − n2 is divisible by 3 for every n ∈ Z+ .

(3) Show that n4 − n2 is even for every n ∈ Z+ .

(4) Show that n4 − n2 is divisible by 6 for every n ∈ Z+ .

• Quantifiers. We introduce two important notations:

“∀” “for all”

“∃” “exists”

(a) Let p(n) means “n2 = n”, where n ∈ Z . Then we have the statements:
∀n p(n)⇐⇒ ∀n (n2 = n) F
∃n p(n)⇐⇒ ∃n (n2 = n) T

(b) Let p(n) means “n+ 2 is even”, where n ∈ Z . Then we have the statements:
∀n p(n)⇐⇒ ∀n (n+ 2 is even) F
∃n p(n)⇐⇒ ∃n (n+ 2 is even) T
∀n ¬p(n)⇐⇒ ∀n ¬(n+ 2 is even)⇐⇒ ∀n (n+ 2 is odd) F
∃n ¬p(n)⇐⇒ ∃n ¬(n+ 2 is even)⇐⇒ ∃n (n+ 2 is odd) T

We notice the following tautologies:

¬(∃x p(x))⇐⇒ ∀x ¬p(x)

¬(∀x p(x))⇐⇒ ∃x ¬p(x)

More examples:

(a) Let x, y ∈ R .
∀x ∀y (x+ y = y + x) T

1



(b) Let n ∈ Z .
∀n [(n is a prime)→ (n is a odd) F
∀n [((n is a prime) ∧ (n ≥ 3))→ (n is a odd)] T

(c) Let n ∈ Z .
∀n (n ≤ 2n) F
∀n [(n ≤ 2n) ∧ (n ≥ 4)] T
Here n = 3 is a counterexample for the firts statement. The second one is hard to prove
(we’ll learn it soon: induction).

(d) Let x, y ∈ R .
∀x ∀y [(x > y)→ (x2 > y2)] F
The counterexample: x = 1, = −2.

(e) Let x, y ∈ R+ .
∀x ∀y [(x > y)→ (x2 > y2)] T

(f) Let x, y ∈ R , and p(x) := (x ≥ 0), q(x) := (x2 ≥ 0).
∃x (p(x)→ q(x)) T
∀x (p(x)→ q(x)) F

(g) We notice that the implication ∀x p(x)→ ∃x p(x) is a tautology.

(h) Let x ∈ Z+ .
∀x (x2 ≥ 1) T
Let x ∈ Z .
∀x (x2 ≥ 1) F

(i) Important tautology: ∀x (p(x)→ q(x))⇐⇒ ∀x (¬q(x)→ ¬p(x))

(j) More tautologies:
∃x (p(x) ∧ q(x)) =⇒ (∃x p(x)) ∧ (∃x q(x))

We notice that the implication

(∃x p(x)) ∧ (∃x q(x))→ ∃x (p(x) ∧ q(x))

is not a tautology. Example: p(x) = (x < 1), q(x) = (x ≥ 1). Then the statement
(∃x p(x)) ∧ (∃x q(x)) is true, but the statement ∃x (p(x) ∧ q(x)) is false. More tautologies:

∃x (p(x) ∨ q(x))⇐⇒ (∃x p(x)) ∨ (∃x q(x))

∀x (p(x) ∧ q(x))⇐⇒ (∀x p(x)) ∧ (∀x q(x))

(∀x p(x)) ∨ (∀x q(x)) =⇒ ∀x (p(x) ∨ q(x))

We notice that the implication

∀x (p(x) ∨ q(x))→ (∀x p(x)) ∨ (∀x q(x))

is not a tautology. The same example: p(x) = (x < 1), q(x) = (x ≥ 1). Then the
statement ∀x (p(x) ∨ q(x)) is true, but the statement (∀x p(x)) ∨ (∀x q(x)) is false.

(k) Let x, y ∈ R . Then the statement ∀x ∃y (x+ y = 25) is true. Indeed for any given x = a ,
we can find y = 25− a so that x+ y = 25.
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(l) However the statement ∃y ∀x (x + y = 25) is false. Indeed assume that there exists y = b
so that for every x we have x+ b = 25. Then this is true for x = 25− b , but not for all x .

(m) Check that the statement ∀y ∀x (x+ y = 25) is false, and the statement ∃x ∃y (x+ y = 25)
is true.

Limits. Next we discuss definitions of lim
n→∞

xn and lim
x→a

f(x).

• Let {xn} be a sequence of real numbers. Then lim
n→∞

xn = A if and only if for every ε > 0 there

exists an integer N such that for every n (n > N) implies that |xn − A| < ε . In our terms, the
following proposition

∀ε > 0 ∃N ∀n[(n > N)→ (|xn −A| < ε)]

is true. What does it mean that lim
n→∞

xn 6= A? The answer:

¬(∀ε > 0 ∃N ∀n[(n > N)→ (|xn −A| < ε)]) ⇐⇒ ∃ε > 0 ∀N ∃n ¬[(n > N)→ (|xn −A| < ε)]

⇐⇒ ∃ε > 0 ∀N ∃n[(n > N) ∧ (|xn −A| ≥ ε)].

• Let f(x) be a function. We say that lim
x→a

f(x) = L is for every ε > 0 there exists δ > 0 such that

for every x the inequality 0 < |x − a| < δ implies |f(x) − L| < ε . In our terms, the following
proposition

∀ε > 0 ∃δ > 0 ∀x[(0 < |x− a| → (|f(x)− L| < ε)]

is true. What does it mean that lim
x→a

f(x) 6= L? The answer:

¬{∀ε > 0 ∃δ > 0 ∀x[(0 < |x− a| → (|f(x)− L| < ε)]} ⇐⇒

∃ε > 0 ∀δ > 0 ∃x¬[(0 < |x− a| → (|f(x)− L| < ε)] ⇐⇒

∃ε > 0 ∀δ > 0 ∃x[(0 < |x− a| ∧ (|f(x)− L| ≥ ε)].

Those two examples are very important to understand really well.

• Give examples when lim
n→∞

xn 6= A and lim
x→a

f(x) 6= L .
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