Summary on Lecture 5, October 13, 2014

- Logical equivalence. Recall that two propositions s_1 and s_2 are logically equivalent if s_1 is true if and only if s_2 is true. We use the notation: $s_1 \iff s_2$ Examples:
 - (a) $(p \to q) \iff (\neg p \lor q)$,
 - (b) $(p \to q) \iff (\neg q \to \neg q).$

• The Laws of logic.

(1) $\neg \neg p \iff p$	Double negation
(2) $\neg (p \lor q) \iff (\neg p \land \neg q)$	DeMorgan
$\neg (p \land q) \Longleftrightarrow (\neg p \lor \neg q)$	Laws
$(3) (p \lor q) \Longleftrightarrow (q \lor p)$	Commutativity
$(p \land q) \Longleftrightarrow (q \land p)$	Laws
$(4) \ (p \lor q) \lor r \Longleftrightarrow p \lor (q \lor r)$	Associativity
$(p \wedge q) \wedge r \Longleftrightarrow p \wedge (q \wedge r)$	Laws
(5) $[p \lor (q \land r)] \iff [(p \lor q) \land (p \lor r)]$	Distributive
$[p \land (q \lor r)] \Longleftrightarrow [(p \land q) \lor (p \land r)]$	Laws
$(6) p \wedge p \Longleftrightarrow p$	Idempotent
$p \lor p \Longleftrightarrow p$	Laws
(7) $p \lor \mathbf{F}_0 \Longleftrightarrow p$	Identity
$p \wedge \mathbf{T}_0 \Longleftrightarrow p$	Laws
(8) $p \land \neg p \iff \mathbf{F}_0$	Inverse
$p \lor \neg p \Longleftrightarrow \mathbf{T}_0$	Laws
(9) $p \wedge \neg \mathbf{F}_0 \iff \mathbf{F}_0$	Domination
$p \lor \neg \mathbf{T}_0 \Longleftrightarrow \mathbf{T}_0$	Laws
(10) $[p \lor (p \land q)] \iff p$	Absorption
$[p \land (p \lor q)] \Longleftrightarrow p$	Laws

	p	q	$p \lor (p \land q)$	$p \land (p \lor q)$
	1	1	1	1
(10)	1	0	1	1
	0	0	0	0
	0	0	0	0

	p	q	r	$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$
	0	0	0	0	0
	0	0	1	0	0
	0	1	0	0	0
(5)	1	0	0	1	1
	0	1	1	1	1
	1	0	1	0	0
	1	1	0	1	1
	1	1	1	1	1

- (a) Show that the implication $[p \wedge (p \to q)] \to q$ is a tautology.
- (b) Show that $(p \to q) \iff (p \land q)$ is not a tautology.
- (c) Show that the implication $(p \wedge q) \to (p \vee q)$ is a tautology.

• First examples of proofs.

(a) If n^2 is even, then n is even.

Proof. Indeed, assume that n is odd, i.e., n = 2k + 1, then $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1$ is odd. We showed that the implication

$$\{n \text{ is odd}\} \rightarrow \{n^2 \text{ is odd}\} (\neg q \rightarrow \neg p)$$

is true. It is equivalent to the implication

$$\{ n^2 \text{ is even} \} \rightarrow \{ n \text{ is even} \} (p \rightarrow q)$$

which is true as well.

(b) $\sqrt{2}$ is irrational number.

Proof. Assume that $\sqrt{2} = \frac{m}{n}$, where $m, n \in \mathbb{Z}_+$, $n \neq 0$, and m, n do not have common divisors, i.e., gcd(m,n) = 1. Then we have: $2n^2 = m^2$. Thus m^2 is even, then by (a), m is even, i.e., m = 2k. We obtain $2n^2 = 4k^2$ or $n^2 = 2k^2$, i.e., n is even as well. We obtain that m, n do have a common divisor 2. Contradiction. Thus $\sqrt{2}$ is irrational number.

Let $n, k \in \mathbb{Z}_+$. Recall that k divides n if $n = k \cdot i$ for some $i \in \mathbb{Z}_+$. We denote k|n if k divides n. Then a number $p \in \mathbb{Z}_+$ is prime if it has no divisors other than 1 and p. Here is the list of first few prime numbers:

 $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 83, 89, 97, 101, \ldots$ The closest two prime numbers to 2014 are 2011 and 2017.

There is a remarkable property of positive integers: Let $S \subset \mathbb{Z}_+$ be a non-empty subset. Then S has a minimal element, i.e. such $n_0 \in S$ that $n_0 \leq n$ for any $n \in S$. We will return this later on, this property is called Well Ordering Principle, see Chapter 3 of the textbook.

(c) Let $n \in \mathbb{Z}_+$. Then *n* is either a prime number or there exists a prime *p* such that *p* divides *n*.

Proof. Assume there are integers n which are not primes and no prime p divides n. Let S be a set of such integers, and $n_0 \in S$ is a minimal number. Since n_0 is not a prime, there exists $n_1 < n_0$ with divides n_0 . Since $n_1 < n_0$, n_1 is either prime or it is divisible by a prime. We arrive to a contradiction in both cases.

(d) Now we can follow Euclid (who notice that more than 2500 years ago) to prove the following **Theorem.** There is infinite number of primes.

Proof. Assume there exist only finite number of primes. Let $P = \{p_1, p_2, \ldots, p_k\}$ is the set of all prime numbers, |P| = k. Consider the integer: $p_{k+1} = p_1 \cdot p_2 \cdots p_k + 1$. The integer p_{k+1} is either pime or not. If p_{k+1} is not a prime, then it has to be divisible by some prime p_j , $j = 1, \ldots, k$, but it is not since the remainder will be 1. Thus p_{k+1} is a prime, and $p_{k+1} \in P$. Then |P| = k + 1, not |P| = k. This two properties cannot hold together. Contradiction.

• Contradiction and other rules of inference. Above we followed the same scheam: we assume that a statement p is wrong, or $\neg p$ is correct, and then we derived a contradiction. This is justified by the tautology $(\neg p \rightarrow \mathbf{F}_0) \rightarrow p$. This can be written as $\frac{\neg p \rightarrow \mathbf{F}_0}{\therefore p}$

Here $\neg p \rightarrow \mathbf{F}_0$ is a premise, and p is a conclusion. The sign " \therefore " means therefore, and the formula above reads " $\neg p \rightarrow \mathbf{F}_0$ is true, therefore, p true."

There are several standard rules of inference:

(1)	$\begin{array}{c} p \\ p \rightarrow q \\ \hline \vdots p \end{array}$	Modus Ponens or Rule of Detachment
(2)	$\begin{array}{c} p \to q \\ \hline q \to r \\ \hline \vdots & r \end{array}$	Law of Syllogism
(2)	$\begin{array}{c} p \to q \\ \hline \neg q \\ \hline \vdots \neg p \end{array}$	Modus Tollens
(3)	$\begin{array}{c} p \\ q \\ \hline \vdots p \wedge q \end{array}$	Rule of Conjunction
(4)	$\begin{array}{c} p \lor q \\ \hline \neg q \\ \hline \hline \ddots p \end{array}$	Rule of Disjunctive Syllogism
(5)	$\frac{\neg p \to \mathbf{F}_0}{\therefore p}$	Rule of Contradiction
(6)	$\frac{p \land q}{\therefore p}$	Rule of Disjunctive Amplification
(7)	$\frac{p}{\therefore \ p \lor q}$	Rule of Conjunctive Simplification
(8)	$\begin{array}{c} p \wedge q \\ p \rightarrow (q \rightarrow r) \\ \hline \therefore r \end{array}$	Rule of Conditional Proof
(9)	$\begin{array}{c} p \to r \\ q \to r \\ \hline \vdots (p \lor q) \to r \end{array}$	Rule of Proof by Cases
(10)	$\begin{array}{c} p \to q \\ r \to s \\ \hline p \lor r \\ \hline \vdots q \lor s \end{array}$	Constructive Dilemma
(11)	$\begin{array}{c} p \to q \\ r \to s \\ \hline \neg q \lor \neg r \\ \hline \vdots \neg p \lor \neg r \end{array}$	Destructive Dilemma