
Math 231, Fall 2014 Boris Botvinnik

Summary on Lecture 5, October 13, 2014

• Logical equivalence. Recall that two propositions s1 and s2 are logically equivalent if s1 is
true if and only if s2 is true. We use the notation: s1 ⇐⇒ s2 Examples:

(a) (p→ q)⇐⇒ (¬p ∨ q),

(b) (p→ q)⇐⇒ (¬q → ¬q).

• The Laws of logic.

(1) ¬¬p⇐⇒ p Double negation

(2) ¬(p ∨ q)⇐⇒ (¬p ∧ ¬q) DeMorgan
¬(p ∧ q)⇐⇒ (¬p ∨ ¬q) Laws

(3) (p ∨ q)⇐⇒ (q ∨ p) Commutativity
(p ∧ q)⇐⇒ (q ∧ p) Laws

(4) (p ∨ q) ∨ r ⇐⇒ p ∨ (q ∨ r) Associativity
(p ∧ q) ∧ r ⇐⇒ p ∧ (q ∧ r) Laws

(5) [p ∨ (q ∧ r)]⇐⇒ [(p ∨ q) ∧ (p ∨ r)] Distributive
[p ∧ (q ∨ r)]⇐⇒ [(p ∧ q) ∨ (p ∧ r)] Laws

(6) p ∧ p⇐⇒ p Idempotent
p ∨ p⇐⇒ p Laws

(7) p ∨ F0 ⇐⇒ p Identity
p ∧T0 ⇐⇒ p Laws

(8) p ∧ ¬p⇐⇒ F0 Inverse
p ∨ ¬p⇐⇒ T0 Laws

(9) p ∧ ¬F0 ⇐⇒ F0 Domination
p ∨ ¬T0 ⇐⇒ T0 Laws

(10) [p ∨ (p ∧ q)]⇐⇒ p Absorbtion
[p ∧ (p ∨ q)]⇐⇒ p Laws

(10)

p q p ∨ (p ∧ q) p ∧ (p ∨ q)

1 1 1 1

1 0 1 1

0 0 0 0

0 0 0 0

(5)

p q r p ∨ (q ∧ r) (p ∨ q) ∧ (p ∨ r)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

1 0 0 1 1

0 1 1 1 1

1 0 1 0 0

1 1 0 1 1

1 1 1 1 1

(a) Show that the implication [p ∧ (p→ q)]→ q is a tautology.

(b) Show that (p→ q)⇐⇒ (p ∧ q) is not a tautology.

(c) Show that the implication (p ∧ q)→ (p ∨ q) is a tautology.
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• First examples of proofs.

(a) If n2 is even, then n is even.
Proof. Indeed, assume that n is odd, i.e., n = 2k + 1, then n2 = (2k + 1)2 = 4k2 + 4k + 1
is odd. We showed that the implication

{ n is odd} → { n2 is odd} (¬q → ¬p)

is true. It is equivalent to the implication

{ n2 is even} → { n is even} (p→ q)

which is true as well.

(b)
√

2 is irrational number.
Proof. Assume that

√
2 = m

n , where m,n ∈ Z+ , n 6= 0, and m , n do not have common
divisors, i.e., gcd(m,n) = 1. Then we have: 2n2 = m2 . Thus m2 is even, then by (a), m
is even, i.e., m = 2k . We obtain 2n2 = 4k2 or n2 = 2k2 , i.e., n is even as well. We obtain
that m , n do have a common divisor 2. Contradiction. Thus

√
2 is irrational number.

Let n, k ∈ Z+ . Recall that k divides n if n = k · i for some i ∈ Z+ . We denote k|n if k divides
n . Then a number p ∈ Z+ is prime if it has no divisors other than 1 and p . Here is the list of
first few prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 83, 89, 97, 101, . . .
The closest two prime numbers to 2014 are 2011 and 2017.

There is a remarkable property of positive integers: Let S ⊂ Z+ be a non-empty subset. Then S
has a minimal element, i.e. such n0 ∈ S that n0 ≤ n for any n ∈ S . We will return this later on,
this property is called Well Ordering Principle, see Chapter 3 of the textbook.

(c) Let n ∈ Z+ . Then n is either a prime number or there exists a prime p such that p divides
n .
Proof. Assume there are integers n which are not primes and no prime p divides n . Let S
be a set of such integers, and n0 ∈ S is a minimal number. Since n0 is not a prime, there
exists n1 < n0 with divides n0 . Since n1 < n0 , n1 is either prime or it is divisible by a
prime. We arrive to a contradiction in both cases.

(d) Now we can follow Euclid (who notice that more than 2500 years ago) to prove the following
Theorem. There is infinite number of primes.
Proof. Assume there exist only finite number of primes. Let P = {p1, p2, . . . , pk} is the
set of all prime numbers, |P | = k . Consider the integer: pk+1 = p1 · p2 · · · pk + 1. The
integer pk+1 is either pime or not. If pk+1 is not a prime, then it has to be divisible by some
prime pj , j = 1, . . . , k , but it is not since the remainder will be 1. Thus pk+1 is a prime,
and pk+1 ∈ P . Then |P | = k + 1, not |P | = k . This two properties cannot hold together.
Contradiction.

• Contradiction and other rules of inference. Above we followed the same scheam: we assume
that a statement p is wrong, or ¬p is correct, and then we derived a contradiction. This is justified

by the tautology (¬p→ F0)→ p . This can be written as
¬p→ F0

∴ p

Here ¬p→ F0 is a premise, and p is a conclusion. The sign “∴” means therefore, and the formula
above reads “¬p→ F0 is true, therefore, p true.”
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There are several standard rules of inference:

(1)

p
p→ q

∴ p

Modus Ponens or Rule of Detachment

(2)

p→ q
q → r

∴ r

Law of Syllogism

(2)

p→ q
¬q

∴ ¬p
Modus Tollens

(3)

p
q

∴ p ∧ q

Rule of Conjunction

(4)

p ∨ q
¬q

∴ p

Rule of Disjunctive Syllogism

(5)
¬p→ F0

∴ p
Rule of Contradiction

(6)
p ∧ q

∴ p
Rule of Disjunctive Amplification

(7)
p

∴ p ∨ q
Rule of Conjunctive Simplification

(8)

p ∧ q
p→ (q → r)

∴ r

Rule of Conditional Proof

(9)

p→ r
q → r

∴ (p ∨ q)→ r

Rule of Proof by Cases

(10)

p→ q
r → s
p ∨ r

∴ q ∨ s

Constructive Dilemma

(11)

p→ q
r → s
¬q ∨ ¬r

∴ ¬p ∨ ¬r

Destructive Dilemma
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