Summary on Lecture 4, October 8, 2014

(1) Propositions. A proposition will be any sentence that is either true or false, but not both. The following examples are propositions:
(a) Napoleon lived in the 20th century.
(b) $2 \times 7=14$.
(c) $2+3=7$.
(d) The number 4 is positive and the number 3 is negative.
(e) If a set has n elements, then it has 2^{n} subsets.
(f) $2 n+n$ is a prime number for infinitely many n.
(g) Every even integer greater than 2 is the sum of two prime numbers.
(h) If the Earth is flat, then $2+3=4$.

The following sentences are not propositions:
(a) Putin is a bad president.
(b) $x-y=y-x$.
(c) $A^{2}=0$ implies $A=0$.
(d) Math is fun.
(e) What a beautiful sunset!
(f) Get up and work.
(2) If p, q are propositions, we can form new "compound propositions":
$\neg p$: "not p "
$p \vee q$: " p or q "
$p \wedge q: " p$ and $q "$
$p \rightarrow q$: " p implies q " or " p is sufficient for q ", or " q is necessary for p ".
$p \leftrightarrow q:$ " p is and only if q " or " p is sufficient and necessary for q ".
The propositions $p \rightarrow q, q \rightarrow p, \neg q \rightarrow \neg p$ appear to be related and are sometimes confused with each other. It is important to keep them straight. The proposition $q \rightarrow p$ is called the converse of the proposition $p \rightarrow q$. As we will see, it has a different meaning from $p \rightarrow q$. It turns out that $p \rightarrow q$ is equivalent to $\neg q \rightarrow \neg p$, which is called the contrapositive of $p \rightarrow q$.
Consider the sentence "If it is raining, then there are clouds in the sky". This is the compound proposition $p \rightarrow q$, where $p=$ "it is raining" and $q=$ "there are clouds in the sky" (true).
The converse of $p \rightarrow q$ reads: "If there are clouds in the sky then it is raining" (false).
The contrapositive of $p \rightarrow q$ reads: "If there are no clouds in the sky, then it is not raining." (true).

Examples:

(1) If -1 is a positive number, then $2+2=5$. True: the hypothesis is obviously false, thus no matter what the conclusion, the implication holds
(2) If -1 is a positive number, then $2+2=4$ True: for the same reason as above.
(3) If $\sin x=0$ then $x=0$. False: If $x=2 \pi$, then $\sin \pi=0$, but $\pi \neq 0$.

Basic true-false tables:

p	$\neg p$					
0	1					
1	0		p	q	$p \vee q$	
:---:	:---:	:---:				
0	0	0				
1	0	1				
0	1	1				
1	1	1	\quad	p	q	$p \wedge q$
:---:	:---:	:---:				
0	0	0				
1	0	0				
0	1	0				
1	1	1	\quad	p	q	$p \rightarrow q$
:---:	:---:	:---:				
0	0	1				
1	0	0				
0	1	1				
1	1	1	\quad	p	q	$p \leftrightarrow q$
:---:	:---:	:---:	:---:			
0	0	1				
1	0	0				
0	1	0				
1	1	1				

Two compound propositions s_{1} and s_{2} are equivalent if s_{1} is true if and only if s_{1} is true. Then we write $s_{1} \Longleftrightarrow s_{2}$.

Exercises:

(1) Show that $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are equivalent.
(2) Show that $p \rightarrow q$ and $\neg p \vee q$ are equivalent.
(3) Show that $\neg(p \vee q)$ and $\neg p \wedge \neg q$ are equivalent.
(4) Show that $\neg(p \wedge q)$ and $\neg p \vee \neg q$ are equivalent.

We denote by \mathbf{T}_{0} a tautology, i.e. a proposition which is always true, and by \mathbf{F}_{0} a contradiction, i.e. a proposition which is always false.

Examples to analyze:

(1) $(p \vee \neg p) \Longleftrightarrow \mathbf{T}_{0}$;
(2) $(p \wedge \neg p) \Longleftrightarrow \mathbf{F}_{0}$;
(3) $\left(p \vee \mathbf{F}_{0}\right) \Longleftrightarrow p$;
(4) $\left(p \vee \mathbf{T}_{0}\right) \Longleftrightarrow \mathbf{T}_{0}$;
(5) $\left(p \wedge \mathbf{F}_{0}\right) \Longleftrightarrow \mathbf{F}_{0}$;
(6) $\left(p \wedge \mathbf{T}_{0}\right) \Longleftrightarrow p$;

More examples to analyze:
(7) $[(p \rightarrow r) \wedge(q \rightarrow r)] \Longleftrightarrow[(p \vee q) \rightarrow r]$;
(8) $[(p \rightarrow q) \wedge(p \rightarrow r)] \Longleftrightarrow[p \rightarrow(q \wedge r)]$;
(9) $[(p \wedge q) \rightarrow r] \Longleftrightarrow[p \rightarrow(q \rightarrow r)]$;
(10) $(p \rightarrow q) \Longleftrightarrow\left[(p \wedge \neg q) \rightarrow \mathbf{F}_{0}\right]$.

