Summary on Lecture 4, October 8, 2014

- (1) **Propositions.** A proposition will be any sentence that is either true or false, but not both. The following examples are propositions:
 - (a) Napoleon lived in the 20th century.
 - (b) $2 \times 7 = 14$.
 - (c) 2+3=7.
 - (d) The number 4 is positive and the number 3 is negative.
 - (e) If a set has n elements, then it has 2^n subsets.
 - (f) 2n + n is a prime number for infinitely many n.
 - (g) Every even integer greater than 2 is the sum of two prime numbers.
 - (h) If the Earth is flat, then 2 + 3 = 4.

The following sentences are not propositions:

- (a) Putin is a bad president.
- (b) x y = y x.
- (c) $A^2 = 0$ implies A = 0.
- (d) Math is fun.
- (e) What a beautiful sunset!
- (f) Get up and work.
- (2) If p, q are propositions, we can form new "compound propositions":
 - $\begin{array}{l} \neg p \colon \text{``not } p " \\ p \lor q \colon \text{``p or } q " \\ p \land q \colon \text{``p or } q " \\ p \land q \colon \text{``p and } q " \\ p \to q \colon \text{``p implies } q " \text{ or ``p is sufficient for } q ", \text{ or ``q is necessary for } p ". \\ p \leftrightarrow q \colon \text{``p is and only if } q " \text{ or ``p is sufficient and necessary for } q ". \end{array}$

The propositions $p \to q$, $q \to p$, $\neg q \to \neg p$ appear to be related and are sometimes confused with each other. It is important to keep them straight. The proposition $q \to p$ is called the **converse** of the proposition $p \to q$. As we will see, it has a different meaning from $p \to q$. It turns out that $p \to q$ is equivalent to $\neg q \to \neg p$, which is called the **contrapositive** of $p \to q$.

Consider the sentence "If it is raining, then there are clouds in the sky". This is the compound proposition $p \to q$, where p = "it is raining" and q = "there are clouds in the sky" (true).

The converse of $p \to q$ reads: "If there are clouds in the sky then it is raining" (false).

The contrapositive of $p \to q$ reads: "If there are no clouds in the sky, then it is not raining." (true).

Examples:

- (1) If -1 is a positive number, then 2+2=5. True: the hypothesis is obviously false, thus no matter what the conclusion, the implication holds
- (2) If -1 is a positive number, then 2+2=4 **True:** for the same reason as above.
- (3) If $\sin x = 0$ then x = 0. False: If $x = 2\pi$, then $\sin \pi = 0$, but $\pi \neq 0$.

q

0

0

1

p

0

1

0

1 1

Basic true-false tables:

q

0

0

1

1

 $p \lor q$

0

1

1

1

			p
p	$\neg p$		0
0	1		1
1	0		0
		,	1

$p \wedge q$	p	q	$p \rightarrow q$		p	q	
0	0	0	1		0	0	
0	1	0	0		1	0	
0	0	1	1	1	0	1	
1	1	1	1	1	1	1	

 $p \leftrightarrow q$

1

0

0

1

Two compound propositions s_1 and s_2 are equivalent if s_1 is true if and only if s_1 is true. Then we write $s_1 \iff s_2$.

Exercises:

- (1) Show that $p \to q$ and $\neg q \to \neg p$ are equivalent.
- (2) Show that $p \to q$ and $\neg p \lor q$ are equivalent.
- (3) Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are equivalent.
- (4) Show that $\neg(p \land q)$ and $\neg p \lor \neg q$ are equivalent.

We denote by \mathbf{T}_0 a *tautology*, i.e. a proposition which is always true, and by \mathbf{F}_0 a *contradiction*, i.e. a proposition which is always false.

Examples to analyze:

(1)
$$(p \lor \neg p) \iff \mathbf{T}_0;$$

(2)
$$(p \land \neg p) \iff \mathbf{F}_0;$$

- (3) $(p \lor \mathbf{F}_0) \iff p;$
- (4) $(p \lor \mathbf{T}_0) \iff \mathbf{T}_0;$
- (5) $(p \wedge \mathbf{F}_0) \iff \mathbf{F}_0;$
- (6) $(p \wedge \mathbf{T}_0) \iff p;$

More examples to analyze:

- (7) $[(p \to r) \land (q \to r)] \iff [(p \lor q) \to r];$
- (8) $[(p \to q) \land (p \to r)] \iff [p \to (q \land r)];$
- (9) $[(p \land q) \rightarrow r] \iff [p \rightarrow (q \rightarrow r)];$
- (10) $(p \to q) \iff [(p \land \neg q) \to \mathbf{F}_0].$