Summary on Lecture 2, October 1, 2014

Notation: $a_{1}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}$.
Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$. How many subsets of size k are there in A ? In other words, how many selections of k elements with no reference to their order are there? The asnwer:

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}=\frac{P(n, k)}{k!}
$$

Conventions: $0!=1,\binom{n}{0}=\frac{n!}{n!0!}=1$.
Examples: There are 52 cards and then there are

$$
\binom{52}{5}=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5!}=2,598,960
$$

different "hands".
(1) Full house. Recall that "full house" means that a "hand" has 3 cards of one value, and 2 of another. Say, if we have 3 Jacks, and 28 's, we say that this is a full house of the type $(J, 8)$. Then there are $13 \cdot 12$ different types of "full houses". Then we can choose 3 out of 4 suits for J, and 2 out of 4 for 8 . Here the number of "full houses":

$$
13 \cdot 12 \cdot\binom{4}{3} \cdot\binom{4}{2}=13 \cdot 12 \cdot 4 \cdot 6=3,744
$$

(2) Two pairs. Recall that "two pairs" means that a "hand" has 2 cards of one value, 2 of the second, and the remaining card of the third value. Say, if we have 2 queens and 24 's, we denote such type of "two pairs" as the set $\{Q, 4\}$. Clearly there are $\binom{13}{2}$ types of "two pairs". Here the number of "two pairs":

$$
\binom{13}{2} \cdot\binom{4}{2} \cdot\binom{4}{2} \cdot 44=123,552
$$

(2) Straights. Recall that "royal flush" is a hand with $10, \mathrm{~J}, \mathrm{Q}, \mathrm{K}, \mathrm{A}$ of the same suit. Clearly there are 4 royal flushes. Then a "straight flush" is "straight", say, $8,9,10, \mathrm{~J}, \mathrm{Q}$, of the same suit. A hand with $\mathrm{A}, 2,3,4,5$ is also a straight. Then a hand is "straight" if it is straight, but it is not "royal flush" or "straight flush". For each straight we can keep a record of the top card. This gives 10 types of straights. Then there are 4 choices for each card. Thus there are $10 \cdot 4^{5}=10,240$ "straights" including 'royal flushes" and "straight flushes". Since there are 36 "straight flushes", the number of "straights" is $10,240-(4+36)=10,200$.
(3) Count the number of poker hands of the following kinds:
(a) "four of the kind";
(b) "flush" but not "royal flush";
(c) "three of the kind";
(d) "one pair".
(4) Let $\Sigma=\{0,1,2\}$ be an alphabet. For each word (string) $\bar{x}=x_{1} \ldots x_{r} \in \Sigma^{r}$, we define a weight $w(\bar{x})=x_{1}+\cdots+x_{r}$. How many words of length $2 n$ have even weight? Hint: consider the cases $2 n=4,6,8$. The answer:

$$
\sum_{i=0}^{n}\binom{2 n}{2 i} 2^{2 n-2 i}
$$

We notice: $\binom{n}{k}=\binom{n}{n-k}=\frac{n!}{(n-k)!\cdot k!}$.
Theorem 1. (Binomial theorem)

$$
(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r}=\sum_{r=0}^{n}\binom{n}{n-r} x^{r} y^{n-r} .
$$

Examples:

$$
\begin{aligned}
\sum_{r=0}^{n}\binom{n}{r} & =(1+1)^{n}=2^{n} \\
\sum_{r=0}^{n}(-1)^{r}\binom{n}{r} & =(1-1)^{n}=0
\end{aligned}
$$

Pascal's triangle: Prove that $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$. This gives us the Pascal's triange:

$$
\begin{aligned}
& 1 \quad(x+y)^{0} \\
& 11 \quad(x+y)^{1} \\
& 121 \\
& 1331 \\
& 14641 \\
& 151051 \quad(x+y)^{5} \\
& 16151561 \quad(x+y)^{6} \\
& 1721302171 \\
& 182851512881 \\
& 193679102793691 \\
& \begin{array}{l}
(x+y)^{0} \\
(x+y)^{1}
\end{array} \\
& (x+y)^{2} \\
& (x+y)^{3} \\
& (x+y)^{4} \\
& \begin{array}{l}
(x+y)^{6} \\
(x+y)^{7}
\end{array} \\
& (x+y)^{8}
\end{aligned}
$$

Notation: Let $n=n_{1}+\cdots+n_{s}$. Then we denote $\binom{n}{n_{1} \ldots n_{s}}=\frac{n!}{n_{1}!\cdots n_{s}!}$.
Theorem 2. (Multinomial theorem)

$$
\left(x_{1}+\cdots+x_{s}\right)^{n}=\sum_{n_{1}+\cdots+n_{s}}\binom{n}{n_{1} \ldots n_{s}} x_{1}^{n_{1}} \cdots x_{s}^{n_{s}}
$$

Examples:

$$
\left(x_{1}+x_{2}+x_{3}\right)^{7}=\sum_{n_{1}+n_{2}+n_{3}=7}\binom{7}{n_{1} \ldots n_{s}} x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}}
$$

Say, the monomial $x_{1}^{2} x_{2}^{3} x_{3}^{2}$ has the coefficient

$$
\left(\begin{array}{cc}
7 \\
23 & 2
\end{array}\right)=\frac{7!}{2!3!2!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{2 \cdot 2 \cdot 3 \cdot 2}=7 \cdot 6 \cdot 5=210
$$

Placing objects to boxes.

Theorem. There are $\binom{r+n-1}{n-1}=\binom{r+n-1}{r}$ ways to place r identical objects to n distinguishable boxes.

Proof. First, we let $r=6, n=4$. We'll represent objects by six 0 's, and we add three l's to serve as dividers among the four boxes. We claim that there is a one-to-one correspondence between the strings consisting of six 0 's and three l's and the ways to place the five 0 's into four boxes. For example:

$$
\begin{aligned}
& 000110001 \mapsto 000\left||000| \mapsto \begin{array}{|l|l|l|l|}
\hline 000 & & 000 & \\
\hline
\end{array} 100100010 \mapsto\right| 00|000| 0 \mapsto \begin{array}{|l|l|l|l|}
\hline & \mapsto 000 & 000 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Thus, in general case every string of $r 0$ ' and $(n-1)$'s corresponds to a placement of r identical objects to n distinguishable boxes. Clearly, every placement of r identical objects to n distinguishable boxes gives such a string. Then it is easy to count how many strings like that do we have. Indeed, the length of the string is $(r+n-1)$, then we have to choose places for 1^{\prime} (we have ($n-1$) of 1 's), or, equivalently, for 0 's (we have $r 0$'s). We get the answer: $\binom{r+n-1}{n-1}=\binom{r+n-1}{r}$.
Selection with repetition. Now we would like to "reverse" the process of placement r identical objects to n distinguishable boxes. To explain what's going on, we let $r=6, n=4$ again. Moreover, we label 4 boxes with the letters P, N, D, Q which stand for "penny", "nickel", "dime" and "quarter". Now we would like to count, how many ways are there to select 6 coins with repetition out of those four boxes? What we can do here is to first select 6 coins, say, 2 N's, 3 D's and 1 Q, then we can place them back to their original boxes. In other words, it is exactly the same number as the number of placements 6 identical objects to 4 distinguishable boxes. In general, we have the same answer as above: $\binom{r+n-1}{n-1}=\binom{r+n-1}{r}$.

Exercises:

(1) Determine number of integral solutions $x_{i} \geq 0, i=1, \ldots, n$ of the equation $x_{1}+\cdots+x_{n}=r$.
(2) Determine number of integral solutions $x_{i} \geq 1, i=1, \ldots, n$ of the equation $x_{1}+\cdots+x_{n}=r$.
(3) Determine number of integral solutions $x_{i} \geq 0, i=1, \ldots, n$ of the inequality $x_{1}+\cdots+x_{n} \leq r$.
(4) Determine number of integral solutions $x_{i} \geq 0, i=1, \ldots, n$ of the inequality $x_{1}+\cdots+x_{n}<r$.
(5) Determine how many integers between 1 and $1,000,000$ have the sum of their digits equal to 9 ?
(6) Determine how many integers between 1 and $1,000,000$ have the sum of their digits equal to 10 ?
(7) Determine how many integers between 1 and $1,000,000$ have the sum of their digits equal to 14 ?
(8) Determine how many integers between 1 and $1,000,000$ have the sum of their digits equal to 21 ?

