Math 231, Fall 2014 Boris Botvinnik

Summary on Lecture 2, October 1, 2014

n
Notation: a1 + -+ a, = Z a;.
i=1

Let A={aj,...,a,}. How m_any subsets of size k are there in A7 In other words, how many selections
of k elements with no reference to their order are there? The asnwer:

(Z) ~(n —nk!:)! Ko P(ka)'

|
Conventions: 0! =1, < " ) n.

Conlol

0

Examples: There are 52 cards and then there are

(52) _52-51-50-49-48

; & = 2,598, 960

different “hands”.

(1)

3)

Full house. Recall that “full house” means that a “hand” has 3 cards of one value, and 2 of
another. Say, if we have 3 Jacks, and 2 8’s, we say that this is a full house of the type (J,8).
Then there are 13- 12 different types of “full houses”. Then we can choose 3 out of 4 suits for J,
and 2 out of 4 for 8. Here the number of “full houses”:

13-12-<§)-<;1>:13-12-4-6:3,744

Two pairs. Recall that “two pairs” means that a “hand” has 2 cards of one value, 2 of the
second, and the remaining card of the third value. Say, if we have 2 queens and 2 4’s, we denote

1
such type of “two pairs” as the set {Q,4}. Clearly there are ( 23

(2)(2) (-

Straights. Recall that “royal flush” is a hand with 10, J, Q, K, A of the same suit. Clearly
there are 4 royal flushes. Then a “straight flush” is “straight”, say, 8,9,10,J,Q, of the same suit.
A hand with A,2,3,4,5 is also a straight. Then a hand is “straight” if it is straight, but it is not
“royal flush” or “straight flush”. For each straight we can keep a record of the top card. This
gives 10 types of straights. Then there are 4 choices for each card. Thus there are 10-4° = 10, 240
“straights” including ‘royal flushes” and “straight flushes”. Since there are 36 “straight flushes”,
the number of “straights” is 10,240 — (4 + 36) = 10, 200.

> types of “two pairs”. Here

the number of “two pairs”:

Count the number of poker hands of the following kinds:

(a) “four of the kind”;

(b) “flush” but not “royal flush”;
(c) “three of the kind”;

(d)

“one pair”.



(4) Let ¥ = {0,1,2} be an alphabet. For each word (string) & = x;...2, € ¥", we define a weight
w(z) =x1 + -+ + x,. How many words of length 2n have even weight? Hint: consider the cases

2n = 4,6,8. The answer:
n
Z 21\ gan-2i
21 '

=0

. ny\ n B n!
We notice: <k>_<n—k>_(n—k)!-k!'

Theorem 1. (Binomial theorem)

Examples:

Pascal’s triangle: Prove that ( ntl ) = ( " ) + ( 1 " ) . This gives us the Pascal’s triange:

k k -1

1 (z+y)°

11 (z+y)!

121 (z+y)?

1331 (z+y)3

14641 (z+y)*

151051 (z +y)°

16151561 (x +1y)°

1721302171 (z+y)”

182851512881 (xz+y)8

193679102793691 (z+y)°
Notation: Let n =mn; + --- + ns. Then we denote ( " > = n,”i',
ni...Ng 1o Ts:

Theorem 2. (Multinomial theorem)

n
(w14 +a5)" = Z <n1.“ns>$7fl-":ﬁgs-

nit-+ns
Examples:
(v1 + 290 +23)7 = Z < . 7 ) ey ey’
ni+na2+nz=7 Lol
Say, the monomial x2z3z3 has the coefficient

7 7T 7-6-5-4-
(232)2!3!2! 5.2.3.9 05 =210
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Placing objects to boxes.

-1 -1
Theorem. There are (T ;T_L 1 > = <T +Z ) ways to place r identical objects to n distin-

guishable boxes.

Proof. First, we let » =6, n = 4. We'll represent objects by six 0’s, and we add three I’s to serve as
dividers among the four boxes. We claim that there is a one-to-one correspondence between the strings
consisting of six 0’s and three I’s and the ways to place the five 0’s into four boxes. For example:

000110001 ~ 000][000] + [000 | [000| |

100100010+ [00[000|0 +~ | | 00 ] 000 [ O |

Thus, in general case every string of r 0’ and (n — 1) 1’s corresponds to a placement of r identical
objects to n distinguishable boxes. Clearly, every placement of r identical objects to n distinguishable
boxes gives such a string. Then it is easy to count how many strings like that do we have. Indeed, the
length of the string is (r +n — 1), then we have to choose places for 1’ (we have (n — 1) of 1’s), or,
equivalently, for 0’s (we have r 0’s). We get the answer: ( " j; " I L > = < rt 7; -1 ) .

Selection with repetition. Now we would like to “reverse” the process of placement r identical
objects to n distinguishable boxes. To explain what’s going on, we let » = 6, n = 4 again. Moreover,
we label 4 boxes with the letters P, N, D, Q which stand for “penny”, “nickel”, “dime” and “quarter”.
Now we would like to count, how many ways are there to select 6 coins with repetition out of those
four boxes? What we can do here is to first select 6 coins, say, 2 N’s, 3 D’s and 1 Q, then we can
place them back to their original boxes. In other words, it is exactly the same number as the number
of placements 6 identical objects to 4 distinguishable boxes. In general, we have the same answer as

<r+n—1> <r+n—1>
above: = .
n—1 r
Exercises:

1) Determine number of integral solutions x; > 0, i = 1,...,n of the equation 1 +--- 4+ x, = r.

2) Determine number of integral solutions x; > 1, ¢ =1,...,n of the equation xy + -+ z, = 7.

3) Determine number of integral solutions x; > 0, ¢ = 1,...,n of the inequality x1 + -+ z, < 7.

5) Determine how many integers between 1 and 1,000,000 have the sum of their digits equal to 97

6) Determine how many integers between 1 and 1,000,000 have the sum of their digits equal to 107

7) Determine how many integers between 1 and 1,000,000 have the sum of their digits equal to 147

(1)
(2)
(3)
(4) Determine number of integral solutions z; > 0, i = 1,...,n of the inequality =1 + -+ + x, <.
()
(6)
(7)
(8)

Determine how many integers between 1 and 1,000,000 have the sum of their digits equal to 217



