
Math 231, Fall 2014 Boris Botvinnik

Summary on Lecture 2, October 1, 2014

Notation: a1 + · · ·+ an =

n∑
i=1

ai.

Let A = {a1, . . . , an} . How many subsets of size k are there in A? In other words, how many selections
of k elements with no reference to their order are there? The asnwer:(

n
k

)
=

n!

(n− k)! k!
=

P (n, k)

k!
.

Conventions: 0! = 1,

(
n
0

)
=

n!

n! 0!
= 1.

Examples: There are 52 cards and then there are(
52
5

)
=

52 · 51 · 50 · 49 · 48

5!
= 2, 598, 960

different “hands”.

(1) Full house. Recall that “full house” means that a “hand” has 3 cards of one value, and 2 of
another. Say, if we have 3 Jacks, and 2 8’s, we say that this is a full house of the type (J, 8).
Then there are 13 · 12 different types of “full houses”. Then we can choose 3 out of 4 suits for J ,
and 2 out of 4 for 8. Here the number of “full houses”:

13 · 12 ·
(

4
3

)
·
(

4
2

)
= 13 · 12 · 4 · 6 = 3, 744

(2) Two pairs. Recall that “two pairs” means that a “hand” has 2 cards of one value, 2 of the
second, and the remaining card of the third value. Say, if we have 2 queens and 2 4’s, we denote

such type of “two pairs” as the set {Q, 4} . Clearly there are

(
13
2

)
types of “two pairs”. Here

the number of “two pairs”: (
13
2

)
·
(

4
2

)
·
(

4
2

)
· 44 = 123, 552

(2) Straights. Recall that “royal flush” is a hand with 10, J, Q, K, A of the same suit. Clearly
there are 4 royal flushes. Then a “straight flush” is “straight”, say, 8,9,10,J,Q, of the same suit.
A hand with A,2,3,4,5 is also a straight. Then a hand is “straight” if it is straight, but it is not
“royal flush” or “straight flush”. For each straight we can keep a record of the top card. This
gives 10 types of straights. Then there are 4 choices for each card. Thus there are 10 ·45 = 10, 240
“straights” including ‘royal flushes” and “straight flushes”. Since there are 36 “straight flushes”,
the number of “straights” is 10, 240− (4 + 36) = 10, 200.

(3) Count the number of poker hands of the following kinds:

(a) “four of the kind”;

(b) “flush” but not “royal flush”;

(c) “three of the kind”;

(d) “one pair”.
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(4) Let Σ = {0, 1, 2} be an alphabet. For each word (string) x̄ = x1 . . . xr ∈ Σr , we define a weight
w(x̄) = x1 + · · ·+ xr . How many words of length 2n have even weight? Hint: consider the cases
2n = 4, 6, 8. The answer:

n∑
i=0

(
2n
2i

)
22n−2i.

We notice:

(
n
k

)
=

(
n

n− k

)
=

n!

(n− k)! · k!
.

Theorem 1. (Binomial theorem)

(x + y)n =
n∑

r=0

(
n
r

)
xryn−r =

n∑
r=0

(
n

n− r

)
xryn−r.

Examples:
n∑

r=0

(
n
r

)
= (1 + 1)n = 2n

n∑
r=0

(−1)r
(

n
r

)
= (1− 1)n = 0

Pascal’s triangle: Prove that

(
n + 1
k

)
=

(
n
k

)
+

(
n

k − 1

)
. This gives us the Pascal’s triange:

1 (x + y)0

1 1 (x + y)1

1 2 1 (x + y)2

1 3 3 1 (x + y)3

1 4 6 4 1 (x + y)4

1 5 10 5 1 (x + y)5

1 6 15 15 6 1 (x + y)6

1 7 21 30 21 7 1 (x + y)7

1 8 28 51 51 28 8 1 (x + y)8

1 9 36 79 102 79 36 9 1 (x + y)9

Notation: Let n = n1 + · · ·+ ns . Then we denote

(
n

n1 . . . ns

)
= n!

n1!···ns!
.

Theorem 2. (Multinomial theorem)

(x1 + · · ·+ xs)
n =

∑
n1+···+ns

(
n

n1 . . . ns

)
xn1
1 · · ·x

ns
s .

Examples:

(x1 + x2 + x3)
7 =

∑
n1+n2+n3=7

(
7

n1 . . . ns

)
xn1
1 xn2

2 xn3
3

Say, the monomial x21x
3
2x

2
3 has the coefficient(

7
2 3 2

)
=

7!

2!3!2!
=

7 · 6 · 5 · 4 · 3 · 2
2 · 2 · 3 · 2

= 7 · 6 · 5 = 210
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Placing objects to boxes.

Theorem. There are

(
r + n− 1
n− 1

)
=

(
r + n− 1

r

)
ways to place r identical objects to n distin-

guishable boxes.

Proof. First, we let r = 6, n = 4. We’ll represent objects by six 0’s, and we add three l’s to serve as
dividers among the four boxes. We claim that there is a one-to-one correspondence between the strings
consisting of six 0’s and three l’s and the ways to place the five 0’s into four boxes. For example:

000110001 7→ 000| |000| 7→ 000 000

100100010 7→ |00| 000 |0 7→ 00 000 0

Thus, in general case every string of r 0’ and (n − 1) 1’s corresponds to a placement of r identical
objects to n distinguishable boxes. Clearly, every placement of r identical objects to n distinguishable
boxes gives such a string. Then it is easy to count how many strings like that do we have. Indeed, the
length of the string is (r + n − 1), then we have to choose places for 1’ (we have (n − 1) of 1’s), or,

equivalently, for 0’s (we have r 0’s). We get the answer:

(
r + n− 1
n− 1

)
=

(
r + n− 1

r

)
.

Selection with repetition. Now we would like to “reverse” the process of placement r identical
objects to n distinguishable boxes. To explain what’s going on, we let r = 6, n = 4 again. Moreover,
we label 4 boxes with the letters P, N, D, Q which stand for “penny”, “nickel”, “dime” and “quarter”.
Now we would like to count, how many ways are there to select 6 coins with repetition out of those
four boxes? What we can do here is to first select 6 coins, say, 2 N’s, 3 D’s and 1 Q, then we can
place them back to their original boxes. In other words, it is exactly the same number as the number
of placements 6 identical objects to 4 distinguishable boxes. In general, we have the same answer as

above:

(
r + n− 1
n− 1

)
=

(
r + n− 1

r

)
.

Exercises:

(1) Determine number of integral solutions xi ≥ 0, i = 1, . . . , n of the equation x1 + · · ·+ xn = r .

(2) Determine number of integral solutions xi ≥ 1, i = 1, . . . , n of the equation x1 + · · ·+ xn = r .

(3) Determine number of integral solutions xi ≥ 0, i = 1, . . . , n of the inequality x1 + · · ·+ xn ≤ r .

(4) Determine number of integral solutions xi ≥ 0, i = 1, . . . , n of the inequality x1 + · · ·+ xn < r .

(5) Determine how many integers between 1 and 1,000,000 have the sum of their digits equal to 9?

(6) Determine how many integers between 1 and 1,000,000 have the sum of their digits equal to 10?

(7) Determine how many integers between 1 and 1,000,000 have the sum of their digits equal to 14?

(8) Determine how many integers between 1 and 1,000,000 have the sum of their digits equal to 21?
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