
Math 231, Fall 2014 Boris Botvinnik

Summary on Lecture 14, November 26, 2014

• The Pigeon Hole Principle. The usual Pigeon-Hole Principle asserts that, if m objects are placed
in n boxes or pigeon-holes and if m > n , then some box will receive more than one object.

Examples.

(1) Let A = {a1, . . . , a1008} ⊂ S = {1, 2, . . . , 2014} . Then there exist ai, aj ∈ A such that ai divides
aj . Indeed, any number b ∈ S could be written as b = 2kc , where c is an odd number. Thus we
have that c ∈ T = {1, 3, . . . , 2013} , where |T | = 1007. Since there are 1008 integers in A , there
must be two integers ai = 2kici and aj = 2kjcj , where ci = cj . Then if ki ≥ kj , then aj divides
ai . If kj ≥ ki , then ai divides aj .

(2) Let k be a positive odd integer. Then there exists n such that k divides 2n − 1. Indeed, we
consider k + 1 numbers

21 − 1, 22 − 1, . . . , 2k − 1, 2k−1 − 1.

Then for each i = 1, . . . , k + 1, we divide 2i − 1 by k and find a remainder ri :

2i − 1 = k · qi + ri, 0 ≤ ri ≤ k − 1.

Sinnce we have k+1 remainders ri , and there are only k possible values, we conclude that ri = rj
for some i > j . Then the difference

(2i − 1)− (2j − 1) = 2i − 2j = 2j(2i−j − 1)

has to be divisible by k . Since k is odd, we conclude that (2i−j − 1) is divisible by k .

(3) Let A be a 10-element subset of {1, 2, 3, · · · , 50} . Then A has two different 4-element subsets,
the sums of whose elements are equal.

Indeed, let B = {b1, b2, b3, b4} ⊂ A . Then we notice that the minimal possible value of the sum
b1 + b2 + b3 + b4 is 1 + 2 + 3 + 4 = 10, and the maximal possible value is 47 + 48 + 49 + 50 = 194.
Then we count the size of the set

B = { B = {b1, b2, b3, b4} | B ⊂ A }.

Clearly, for given B , we just have to choose 4 elements out of 10. We obtain that

|B| =
(

10
4

)
=

10 · 9 · 8 · 7
4 · 3 · 2 · 1

= 10 · 3 · 7 = 210.

For each B = {b1, b2, b3, b4} ∈ B , we compute the value Σ(B) = b1 +b2 +b3 +b4 . We have noticed
that the values of Σ are in the range {10, 11, . . . , 194} . Since |B| = 210 > 194, there must be at
least two different B,B′ ∈ B with Σ(B) = Σ(B′).

(4) Consider nine nonnegative real numbers al, a2, a3, . . . , a9 with sum 90. First we show that there
must be three of the numbers having sum at least 30. This is easy because

90 = (a1 + a2 + a3) + (a4 + a5 + a6) + (a7 + a8 + a9),

so at least one of the sums in parentheses must be at least 30.
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Next, we show that there must be four of the numbers having sum at least 40. Consider the table:

a1 a2 a3 · · · a8 a9 90

a2 a3 a4 · · · a9 a1 90

a3 a4 a5 · · · a1 a2 90

a4 a5 a6 · · · a2 a3 90

Σ1 Σ2 Σ3 · · · Σ8 Σ9 360

Here we shifted the sequence of ai ’s, and Σj ’s are the sums of the elements in j -th column, and
the last column gives the sum of all ai ’s, which is 90. Then we must have that

Σ1 + Σ2 + · · ·+ Σ9 = 390.

This cannot happen if Σi < 40 for each i = 1, . . . , 9. Thus there exists i so that Σi ≥ 40.

(5) Exercise. Let al + a2 + a3 + · · ·+ a9 = 90 as above, and k = 5, 6, 7, 8. Prove that there exist k
numbers ai1 , . . . , aik such that ai1 + · · ·+ aik ≥ 10k .

• Pigeon-Hole Principle and rational numbers. Let k < n be two positive integers. We have a
decimal expansion:

k

n
= 0.d1d2d3 · · · dj · · · .

Sometimes this decimal expansion is finite, however, there are many examples when the expansion is
infinite:

1
3 = 0.333333333 · · · ,

7
11 = 0.63636363 · · · ,

29
54 = 0.5370370370 · · · .

We notice that in the above examples the groups of underlined digits are repeated, and, possibly, going
like that forever. We describe the above decimal decomposition of 7

11 and compare with the decimal

decomposition of the fraction k
n . We have:

10 · 7 = 6 · 11 + 4 or 10k = d1n + r1

10 · 4 = 3 · 11 + 7 or 10r1 = d2n + r2

10 · 7 = 6 · 11 + 4 or 10r2 = d3n + r3

10 · 4 = 3 · 11 + 7 or 10r3 = d4n + r4

10 · 7 = 6 · 11 + 4 or 10r4 = d5n + r5
· · · · · · · · · · · ·

For the fraction 7
11 , we have that the remainders r1 and r3 are the same. Since a division by 11 gives

a unique answer, we have that
d2 = d4 and r2 = r4.
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Similarly, d3 = d5 and r3 = r5 and so on. We obtain:

4 = r1 = r3 = r5 = · · · = r2i−1 = · · · , 7 = r2 = r4 = r6 = · · · = r2i = · · · ,

3 = d2 = d4 = d6 = · · · = d2i = · · · , 6 = d3 = d5 = d7 = · · · = d2i+1 = · · · .
Theorem. Let 0 < k < n be two integers and

k

n
= 0.d1d2d3 · · · dj · · · (1)

be a corresponding decimal expansion. Then there exist integers s, t > 0 such that the blocks of t digits

dsds+1 · · · ds+t−1, ds+tds+t+1 · · · ds+2t−1, · · · ds+`tds+`t+1 · · · ds+(`+1)t−1, · · · (2)

in the expansion (1) are identical for all ` = 1, 2, · · ·.

Proof. We consider the process of obtaining a decimal decomposition (1):

10k = d1n + r1 0 ≤ r1 ≤ n− 1

10r1 = d2n + r2 0 ≤ r2 ≤ n− 1

10r2 = d3n + r3 0 ≤ r3 ≤ n− 1

10r3 = d4n + r4 0 ≤ r4 ≤ n− 1

10r4 = d5n + r5 0 ≤ r5 ≤ n− 1
· · · · · · · · ·
10rn = dn+1n + rn+1 0 ≤ rn+1 ≤ n− 1
· · · · · · · · ·

We consider the remainders r1, r2, . . . , rn+1 . Since

r1, r2, . . . , rn+1 ∈ {0, . . . , n− 1},

there are two indices i, j , 1 ≤ i < j ≤ n + 1, such that ri = rj . Then we have:

10ri = di+1n + ri+1

10rj = dj+1n + rj+1

Since a division by n gives a unique result, ri+1 = rj+1 and di+1 = dj+1 . Then we have

10ri+1 = di+2n + ri+2

10rj+1 = dj+2n + rj+2

which gives ri+2 = rj+2 and di+2 = dj+2 . We can choose s = i + 1 and t = j − i to see that the first
two blocks in (2) are indeed identical. Then the same argument shows that all other blocks in (2) are
identical as well. �

We obtain that the desimal expansion of a rational number k
n is a periodic fraction:

k

n
= 0.d1d2d3 · · · ds−1dsds+1 · · · ds+t−1 dsds+1 · · · ds+t−1 · · · dsds+1 · · · ds+t−1 · · ·

for some s and t .
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