Math 231, Fall 2014 Boris Botvinnik

Summary on Lecture 14, November 26, 2014

e The Pigeon Hole Principle. The usual Pigeon-Hole Principle asserts that, if m objects are placed
in n boxes or pigeon-holes and if m > n, then some box will receive more than one object.
Examples.

(1)

Let A= {ai,...,a1008} C S =1{1,2,...,2014}. Then there exist a;,a; € A such that a; divides
a;. Indeed, any number b € S could be written as b = 2k¢, where ¢ is an odd number. Thus we
have that ¢ € T = {1,3,...,2013}, where |T| = 1007. Since there are 1008 integers in A, there
must be two integers a; = 2kic, and a; = 2k c¢j, where ¢; = ¢;j. Then if k; > kj;, then a; divides
a;. If kj > k;, then a; divides a;.

Let k be a positive odd integer. Then there exists n such that k£ divides 2" — 1. Indeed, we
consider k + 1 numbers
ol —1, 221, ..., 2k —1, 2F1 1.

Then for each i = 1,...,k+ 1, we divide 2/ — 1 by k and find a remainder r;:
2 1=k-g+mr, 0<r<k-—1.

Sinnce we have k41 remainders 7;, and there are only k possible values, we conclude that r; = r;
for some ¢ > j. Then the difference

(20 —1)— (2 —1)=20 -2 =27(2177 — 1)
has to be divisible by k. Since k is odd, we conclude that (277 — 1) is divisible by k.

Let A be a 10-element subset of {1,2,3,---,50}. Then A has two different 4-element subsets,
the sums of whose elements are equal.

Indeed, let B = {by,bs,b3,b4} C A. Then we notice that the minimal possible value of the sum
b1 +bs+b3+bsis 1+24+3+4 =10, and the maximal possible value is 47 + 48 +49 4+ 50 = 194.
Then we count the size of the set

B:{B:{b1,bz,b3,b4} | BCA}

Clearly, for given B, we just have to choose 4 elements out of 10. We obtain that

10 10-9-8-7
= —— 2 ' —10-3-7=210.
1Bl <4) 1321 108 7=210

For each B = {b1, by, b3,bs} € B, we compute the value X(B) = by + ba + b3+ bs. We have noticed
that the values of ¥ are in the range {10,11,...,194}. Since |B| = 210 > 194, there must be at
least two different B, B’ € B with X(B) = X(B’).

Consider nine nonnegative real numbers a;, as,as,...,ag with sum 90. First we show that there
must be three of the numbers having sum at least 30. This is easy because

90 = (a1 + a2 + a3) + (as + a5 + as) + (a7 + ag + ay),

so at least one of the sums in parentheses must be at least 30.



Next, we show that there must be four of the numbers having sum at least 40. Consider the table:

ap | a2 | a3 |-~ | ag | ag || 90
as as aq e ag al 90
as a4 as s ai a 90
as | as | ag | - | as | as 90
[0 [ B [ B |- [ s [ % [ 360

Here we shifted the sequence of a;’s, and X;’s are the sums of the elements in j-th column, and
the last column gives the sum of all a;’s, which is 90. Then we must have that

21+22+"'+29:390.
This cannot happen if 3; < 40 for each ¢ = 1,...,9. Thus there exists ¢ so that X; > 40.

(5) Exercise. Let a; + as + a3+ -+ ag = 90 as above, and k = 5,6,7,8. Prove that there exist k

numbers a;,, ..., a; such that a;, +---+a;, > 10k.

e Pigeon-Hole Principle and rational numbers. Let k£ < n be two positive integers. We have a
decimal expansion:

k
= = 0.dydadz---dj---
n

Sometimes this decimal expansion is finite, however, there are many examples when the expansion is

infinite:
= 0.333333333--- ,

Wl

s
1

0.63636363 - - - ,

—

2 = 0.5370370370- - - .

We notice that in the above examples the groups of underlined digits are repeated, and, possibly, going
like that forever. We describe the above decimal decomposition of 1—71 and compare with the decimal
decomposition of the fraction % We have:

10-7 = 6-1144 or 10k = din+nr
10-4 = 3-114+7 or 10r; = don+ro
10-7 = 6-114+4 or 10ry = dsn—+rs
104 = 3-11+7 or 10r3 = din+ry
10-7 = 6-11+4 or 10ry = dsn+7s

For the fraction 1—71, we have that the remainders 71 and r3 are the same. Since a division by 11 gives

a unique answer, we have that
do =dy and 1o =r4.



Similarly, d3 = ds and r3 = r5 and so on. We obtain:

d=ri=rg=r5=-=To1=-", T=To=r4=T¢="""="Ty=""",
3=dy=dy=ds=---=dy=-+, 6=dzg=ds=dr=-=dgit1=""".
Theorem. Let 0 < k <n be two integers and
k
= =0.dydody -~ dj - - (1)
n

be a corresponding decimal expansion. Then there exist integers s,t > 0 such that the blocks of t digits

dsdsi1 - dspi—1, doptdsyiqr - dsyou—1, -+ dstadsrotr - doyorrye—1, (2)

in the expansion (1) are identical for all £ =1,2,---.

Proof. We consider the process of obtaining a decimal decomposition (1):

10k = din+mnrn 0<r1<n-1
10r1 = don+17o 0<ry<n-1
10ry = dsn+r; 0<rg<n-—1
10r3 = dayn—+ry 0<r,<n-1
10ry = dsn+r1s 0<rs<n-1
107“n = dn+1n +rnp1 0<rppp<n—1
We consider the remainders rq,79,...,7,41. Since
71,72,y Tnt1 € {0,...,n — 1},

there are two indices 4,7, 1 <4 < j <n+1, such that r; = r;. Then we have:

10r; = dipan+rip
107‘]' = derlTL +rjt1
Since a division by n gives a unique result, r;;1 = rj41 and d;y1 = dj41. Then we have
10r;41 = digan+1ipe
10Tj+1 = dj+2n + 742

which gives ;12 = 142 and dij;2 = dj42. We can choose s =i+ 1 and ¢t = j — i to see that the first
two blocks in (2) are indeed identical. Then the same argument shows that all other blocks in (2) are
identical as well. O

We obtain that the desimal expansion of a rational number % is a periodic fraction:

k
o= 0.dydads - -~ ds_1dsdsy1 - dspy—1 dsdsi1---dsyy 1 dsdsyr - dgyp1---

for some s and t.



