Summary on Lecture 13, November 24, 2014

- Cartesian products and relations. We recall that a Cartesian product of two sets A and B is defined as

$$
A \times B=\{(a, b) \mid a \in A, \quad b \in B\} .
$$

Examples: The Euclidian plane $\mathbf{R}^{2}=\mathbf{R} \times \mathbf{R}$, the Euclidian space $\mathbf{R}^{3}=\mathbf{R} \times \mathbf{R} \times \mathbf{R}$; the upper-right corner $\mathbf{R}_{+} \times \mathbf{R}_{+}$; the integral latices:

$$
\mathbf{Z} \times \mathbf{Z} \subset \mathbf{R} \times \mathbf{R}, \quad \mathbf{Z}_{+} \times \mathbf{Z}_{+} \subset \mathbf{R}_{+} \times \mathbf{R}_{+}
$$

There are the following properties of the Cartesian products:
Theorem. Let $A, B, C \subset \mathcal{U}$, where \mathcal{U} be a "universe". Then
(a) $A \times \emptyset=\emptyset$;
(b) $A \times(B \cap C)=(A \times B) \cap(A \times C)$;
(c) $A \times(B \cup C)=(A \times B) \cup(A \times C)$;
(d) $(B \cap C) \times A=(B \times A) \cap(C \times A)$;
(e) $(B \cup C) \times A=(B \times A) \cup(C \times A)$.

Exercise. Prove (a), (b) and (c).
Definition. A subset $\mathcal{R} \subset A \times B$ is called a binary relation from A to B. In the case when $A=B$, a subset $\mathcal{R} \subset A \times A$ is called a binary relation on A.

Let $A=\left\{a_{1}, \ldots, a_{m}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$ be finite sets. Then we can count how many binary relations $\mathcal{R} \subset A \times B$ do we have. Indeed, the set $A \times B$ has $m \cdot n$ elements, thus there are $2^{m n}$ subsets of $A \times B$ (or binary relations from A to B).
There are several very important relations in mathematics.
The equivalence relation. A binary relation \mathcal{R} on A is an equivalence relation if it satisfies the following conditions:
(R) $(a, a) \in \mathcal{R}$ for all $a \in A$;
(S) If $(a, b) \in \mathcal{R}$ then $(b, a) \in \mathcal{R}$;
(T) If $(a, b) \in \mathcal{R}$ and $(b, c) \in \mathcal{R}$, then $(a, c) \in \mathcal{R}$.

The abbreviations (R), (S) and (T) stand for "reflexivity", "symmetry" and "transitivity", respectively. To simplify the notations, we denote by $a \sim b$ iff $(a, b) \in \mathcal{R}$, and \mathcal{R} is an equivalence relation.

Important example.

- Let $n>1$ be a positive integer. We define the equivalence relation $a \sim_{n} b$ iff $a-b$ is divisible by n. Clearly, $a \sim_{n} b$ when a and b have the same remainders: $(a$ DIV $n)=(a$ DIV $n)$. Then we can put together all integers in n different classes:

$$
\begin{aligned}
\mathbf{0} & :=\{0, \pm n, \pm 2 \cdot n, \ldots\}, \quad \mathbf{1}:=\{1,1 \pm n, 1 \pm 2 \cdot n, \ldots\}, \quad \mathbf{2}:=\{2,2 \pm n, 2 \pm 2 \cdot n, \ldots\}, \\
\mathbf{3} & :=\{3,3 \pm n, 3 \pm 2 \cdot n, \ldots\}, \cdots,(\mathbf{n}-\mathbf{1})
\end{aligned}:=\{(n-1),(n-1) \pm n,(n-1) \pm 2 \cdot n, \ldots\} .
$$

We see that $\mathbf{Z}=\mathbf{0} \cup \mathbf{1} \cup \mathbf{2} \cup \cdots \cup(\mathbf{n}-\mathbf{1})$. The set of classes $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots,(\mathbf{n}-\mathbf{1})\}$ is denoted by \mathbf{Z} / n. See Lecture 11 for the addition and multiplication tables when $n=5,6$.

We say that subsets $\left\{A_{i}\right\}_{i \in I}, A_{i} \subset A$ form a partition of A iff
(1) $A=\bigcup_{i} A_{i}$,
(2) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$.

Let \sim be an equivalence relation on A. Then we denote by $[a]$ the set

$$
[a]:=\left\{a^{\prime} \in A \mid a \sim a^{\prime}\right\} .
$$

We denote the set $\{[a] \mid a \in A\}$ by $[A]$. Lemma 1 . Let \sim be an equivalence relation on A. The following assertions are equivalent:
(1) $a \sim a^{\prime}$,
(2) $[a]=\left[a^{\prime}\right]$,
(3) $[a] \cap\left[a^{\prime}\right] \neq \emptyset$.

Proof. (1) \rightarrow (2). We assume that $a \sim a^{\prime}$. If $a_{1} \in[a]$, then $a_{1} \sim a$. Since $a_{1} \sim a$ and $a \sim a^{\prime}$, then $a_{1} \sim a^{\prime}$ by transitivity. If $a_{1}^{\prime} \in\left[a^{\prime}\right]$, then $a_{1}^{\prime} \sim a^{\prime}$. By the symmetry, $a \sim a^{\prime}$ implies $a^{\prime} \sim a$. Then $a_{1}^{\prime} \sim a^{\prime}$ and $a^{\prime} \sim a$ imply that $a_{1}^{\prime} \sim a$ by transitivity.
$(2) \rightarrow(3)$ We assume that $[a]=\left[a^{\prime}\right]$. In particular, $a \in[a]$ by reflexivity. Then $a \in\left[a^{\prime}\right]$. Thus $a \in[a] \cap\left[a^{\prime}\right]$, i.e., $[a] \cap\left[a^{\prime}\right] \neq \emptyset$.
(3) \rightarrow (1) We assume that $[a] \cap\left[a^{\prime}\right] \neq \emptyset$, then we find $a_{1} \in[a]$ and $a_{1} \in\left[a^{\prime}\right]$. This means that $a_{1} \sim a$ and $a_{1} \sim a^{\prime}$. By symmetry, $a_{1} \sim a$ implies that $a \sim a_{1}$. Then, since $a \sim a_{1}$ and $a_{1} \sim a^{\prime}$, transitivity implies that $a \sim a^{\prime}$.

Theorem 1. (1) Let \sim be an equivalence relation on A, where $A \neq \emptyset$. Then the set $[A]$ is a partition of A.
(2) Let $\left\{A_{i}\right\}_{i \in I}$ be a partition of A. Then A_{i} are equivalence classes of the following equivalence relation:

$$
a \sim a^{\prime} \text { if and only if there exists } i \in I \text { such that } a, a^{\prime} \in A_{i}
$$

Exercise. Prove Theorem 1.
Partial order relation. Let $A=\mathbf{Z}_{+}, \mathbf{Z}$ or $A=\mathbf{R}$. We define a partial order relation

$$
\mathcal{R}:=\{(a, b) \mid a \leq b\} \subset A \times A
$$

Consider the case $A=\mathbf{Z}_{+}$. We define the same partial order recursively as follows:
(B) $1 \leq 1$
(R) If $a \leq b$, then $a \leq b+1$, and $a+1 \leq b+1$.

- Back to functions $f: A \rightarrow B$. Recall that a function (or a map) $f: A \rightarrow B$ means that each $a \in A$ it is assigned a value $f(a) \in B$. The set A is called the domain of f, and B is the target (or codomain). The element $b=f(a)$ is the image of a; then for an element b the set $f^{-1}(b)=\{a \in A \mid f(a)=b\}$ is called the inverse image of b. The set

$$
\Gamma(f)=\{(a, b) \mid f(a)=b\} \subset A \times B
$$

is called the graph of $f: A \rightarrow B$. The set $f(A) \subset B$ is called a range of f.
Two functions $f, g: A \rightarrow B$ are equal iff $f(a)=g(a)$ for every element $a \in A$.

Exercises.

(1) $f: \mathbf{R} \rightarrow \mathbf{Z}$ is given as $f(x)=\lfloor x\rfloor$. Give a graph of f.
(2) $f: \mathbf{R} \rightarrow \mathbf{R}$ is given as $f(x)=x^{2015}+1$. Find the range of f.

We already have seen many example of functions. Let $\mathcal{F}(A, B)$ be the set of functions $f \rightarrow B$. For two finite sets $A=\left\{a_{1}, \ldots, a_{m}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$ we have seen that $|\mathcal{F}(A, B)|=n^{m}$.
We say that a function $f: A \rightarrow B$ is one-to-one iff $f(a)=f\left(a^{\prime}\right)$ implies that $a=a^{\prime}$, i.e., no two elements in A have the same image in B. Let $\mathcal{F}^{\text {one-to-one }}(A, B)$ be the set of one-to-one functions $f: A \rightarrow B$. Now we assume that A and B are finite sets with $|A|=m$ and $|B|=n$.
Question: What is the size of the set $\mathcal{F}^{\text {one-to-one }}(A, B)$?
Clearly, if $|A|>|B|$, we do not have any one-to-one function $f: A \rightarrow B$. Indeed, then we do not have enough different values to assign for all elements of A.
To answer the question, we assume that $m \leq n$.

Exercise.

(3) Prove that $\left|\mathcal{F}^{\text {one-to-one }}(A, B)\right|=n(n-1) \cdots(n-m+1)$.

Recall that a function $f: A \rightarrow B$ is onto iff $f(A)=B$. Let $\mathcal{F}^{\text {onto }}(A, B) \subset \mathcal{F}(A, B)$ be the set of all functions $f: A \rightarrow B$ which are onto.
Question: What is the size of the set $\mathcal{F}^{\text {onto }}(A, B)$?
We already know that (see Lecture 8):

$$
\left|\mathcal{F}^{\mathrm{onto}}(A, B)\right|=\sum_{k=0}^{n}(-1)^{k}\binom{n}{n-k}(n-k)^{m}
$$

Now we can think about this fact as follows. We have m (indistinguishable) objects and n numbered containers. Then we have $\sum_{k=0}^{n}(-1)^{k}\binom{n}{n-k}(n-k)^{m}$ ways to put m (indistinguishable) objects into n numbered containers, so that no container would be empty.
Then we can remove the numbers from our "containers", and we conclude that there are

$$
\begin{equation*}
S(m, n)=\frac{1}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{n-k}(n-k)^{m} \tag{1}
\end{equation*}
$$

ways to put m (indistinguishable) objects into n (indistinguishable) containers, so that no container would be empty. The number $S(m, n)$ is called a Stirling number of the second kind.

