
Math 231, Fall 2014 Boris Botvinnik

Summary on Lecture 13, November 24, 2014

• Cartesian products and relations. We recall that a Cartesian product of two sets A and B
is defined as

A×B = { (a, b) | a ∈ A, b ∈ B }.

Examples: The Euclidian plane R2 = R × R , the Euclidian space R3 = R × R × R ; the
upper-right corner R+ ×R+ ; the integral latices:

Z× Z ⊂ R×R, Z+ × Z+ ⊂ R+ ×R+.

There are the following properties of the Cartesian products:

Theorem. Let A,B,C ⊂ U , where U be a “universe”. Then

(a) A× ∅ = ∅ ;
(b) A× (B ∩ C) = (A×B) ∩ (A× C);

(c) A× (B ∪ C) = (A×B) ∪ (A× C);

(d) (B ∩ C)×A = (B ×A) ∩ (C ×A);

(e) (B ∪ C)×A = (B ×A) ∪ (C ×A).

Exercise. Prove (a), (b) and (c).

Definition. A subset R ⊂ A × B is called a binary relation from A to B . In the case when
A = B , a subset R ⊂ A×A is called a binary relation on A .

Let A = {a1, . . . , am} , B = {b1, . . . , bn} be finite sets. Then we can count how many binary
relations R ⊂ A×B do we have. Indeed, the set A×B has m · n elements, thus there are 2mn

subsets of A×B (or binary relations from A to B ).

There are several very important relations in mathematics.

The equivalence relation. A binary relation R on A is an equivalence relation if it satisfies
the following conditions:

(R) (a, a) ∈ R for all a ∈ A ;

(S) If (a, b) ∈ R then (b, a) ∈ R ;

(T) If (a, b) ∈ R and (b, c) ∈ R , then (a, c) ∈ R .

The abbreviations (R), (S) and (T) stand for “reflexivity”, “symmetry” and “transitivity”, re-
spectively. To simplify the notations, we denote by a ∼ b iff (a, b) ∈ R , and R is an equivalence
relation.

Important example.

• Let n > 1 be a positive integer. We define the equivalence relation a ∼n b iff a−b is divisible
by n . Clearly, a ∼n b when a and b have the same remainders: (a DIV n) = (a DIV n).
Then we can put together all integers in n different classes:

0 := {0,±n,±2 · n, . . .}, 1 := {1, 1± n, 1± 2 · n, . . .}, 2 := {2, 2± n, 2± 2 · n, . . .},
3 := {3, 3± n, 3± 2 · n, . . .}, · · · , (n− 1) := {(n− 1), (n− 1)± n, (n− 1)± 2 · n, . . .}.
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We see that Z = 0∪1∪2∪ · · · ∪ (n− 1). The set of classes {0,1,2, . . . , (n− 1)} is denoted
by Z/n . See Lecture 11 for the addition and multiplication tables when n = 5, 6.

We say that subsets {Ai}i∈I , Ai ⊂ A form a partition of A iff

(1) A =
⋃
i

Ai ,

(2) Ai ∩Aj = ∅ if i 6= j .

Let ∼ be an equivalence relation on A . Then we denote by [a] the set

[a] := { a′ ∈ A | a ∼ a′ }.

We denote the set { [a] | a ∈ A } by [A] . Lemma 1. Let ∼ be an equivalence relation on A .
The following assertions are equivalent:

(1) a ∼ a′ ,

(2) [a] = [a′] ,

(3) [a] ∩ [a′] 6= ∅ .

Proof. (1) → (2). We assume that a ∼ a′ . If a1 ∈ [a] , then a1 ∼ a . Since a1 ∼ a and a ∼ a′ ,
then a1 ∼ a′ by transitivity. If a′1 ∈ [a′] , then a′1 ∼ a′ . By the symmetry, a ∼ a′ implies a′ ∼ a .
Then a′1 ∼ a′ and a′ ∼ a imply that a′1 ∼ a by transitivity.

(2) → (3) We assume that [a] = [a′] . In particular, a ∈ [a] by reflexivity. Then a ∈ [a′] . Thus
a ∈ [a] ∩ [a′] , i.e., [a] ∩ [a′] 6= ∅ .
(3) → (1) We assume that [a] ∩ [a′] 6= ∅ , then we find a1 ∈ [a] and a1 ∈ [a′] . This means that
a1 ∼ a and a1 ∼ a′ . By symmetry, a1 ∼ a implies that a ∼ a1 . Then, since a ∼ a1 and a1 ∼ a′ ,
transitivity implies that a ∼ a′ . �

Theorem 1. (1) Let ∼ be an equivalence relation on A , where A 6= ∅ . Then the set [A] is a
partition of A .

(2) Let {Ai}i∈I be a partition of A . Then Ai are equivalence classes of the following equivalence
relation:

a ∼ a′ if and only if there exists i ∈ I such that a, a′ ∈ Ai

Exercise. Prove Theorem 1.

Partial order relation. Let A = Z+ , Z or A = R . We define a partial order relation

R := { (a, b) | a ≤ b } ⊂ A×A.

Consider the case A = Z+ . We define the same partial order recursively as follows:

(B) 1 ≤ 1

(R) If a ≤ b , then a ≤ b + 1, and a + 1 ≤ b + 1.
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• Back to functions f : A → B . Recall that a function (or a map) f : A → B means that
each a ∈ A it is assigned a value f(a) ∈ B . The set A is called the domain of f , and B is the
target (or codomain). The element b = f(a) is the image of a ; then for an element b the set
f−1(b) = { a ∈ A | f(a) = b } is called the inverse image of b . The set

Γ(f) = { (a, b) | f(a) = b } ⊂ A×B

is called the graph of f : A→ B . The set f(A) ⊂ B is called a range of f .

Two functions f, g : A→ B are equal iff f(a) = g(a) for every element a ∈ A .

Exercises.

(1) f : R→ Z is given as f(x) = bxc . Give a graph of f .

(2) f : R→ R is given as f(x) = x2015 + 1. Find the range of f .

We already have seen many example of functions. Let F(A,B) be the set of functions f → B .
For two finite sets A = {a1, . . . , am} , B = {b1, . . . , bn} we have seen that |F(A,B)| = nm .

We say that a function f : A → B is one-to-one iff f(a) = f(a′) implies that a = a′ , i.e., no
two elements in A have the same image in B . Let Fone−to−one(A,B) be the set of one-to-one
functions f : A→ B . Now we assume that A and B are finite sets with |A| = m and |B| = n .

Question: What is the size of the set Fone−to−one(A,B)?

Clearly, if |A| > |B| , we do not have any one-to-one function f : A→ B . Indeed, then we do not
have enough different values to assign for all elements of A .

To answer the question, we assume that m ≤ n .

Exercise.

(3) Prove that |Fone−to−one(A,B)| = n(n− 1) · · · (n−m + 1).

Recall that a function f : A→ B is onto iff f(A) = B . Let Fonto(A,B) ⊂ F(A,B) be the set of
all functions f : A→ B which are onto.

Question: What is the size of the set Fonto(A,B)?

We already know that (see Lecture 8):

|Fonto(A,B)| =
n∑

k=0

(−1)k
(

n
n− k

)
(n− k)m.

Now we can think about this fact as follows. We have m (indistinguishable) objects and n num-

bered containers. Then we have
∑n

k=0(−1)k
(

n
n− k

)
(n−k)m ways to put m (indistinguishable)

objects into n numbered containers, so that no container would be empty.

Then we can remove the numbers from our “containers”, and we conclude that there are

S(m,n) =
1

n!

n∑
k=0

(−1)k
(

n
n− k

)
(n− k)m (1)

ways to put m (indistinguishable) objects into n (indistinguishable) containers, so that no con-
tainer would be empty. The number S(m,n) is called a Stirling number of the second kind.
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