Summary on Lecture 13, November 24, 2014

• Cartesian products and relations. We recall that a Cartesian product of two sets A and B is defined as

$$A \times B = \{ (a, b) \mid a \in A, b \in B \}.$$

Examples: The Euclidian plane $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R}$, the Euclidian space $\mathbf{R}^3 = \mathbf{R} \times \mathbf{R} \times \mathbf{R}$; the upper-right corner $\mathbf{R}_+ \times \mathbf{R}_+$; the integral latices:

 $\mathbf{Z} \times \mathbf{Z} \subset \mathbf{R} \times \mathbf{R}, \quad \mathbf{Z}_+ \times \mathbf{Z}_+ \subset \mathbf{R}_+ \times \mathbf{R}_+.$

There are the following properties of the Cartesian products:

Theorem. Let $A, B, C \subset \mathcal{U}$, where \mathcal{U} be a "universe". Then

(a) $A \times \emptyset = \emptyset$; (b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$; (c) $A \times (B \cup C) = (A \times B) \cup (A \times C)$; (d) $(B \cap C) \times A = (B \times A) \cap (C \times A)$; (e) $(B \cup C) \times A = (B \times A) \cup (C \times A)$.

Exercise. Prove (a), (b) and (c).

Definition. A subset $\mathcal{R} \subset A \times B$ is called a *binary relation from* A to B. In the case when A = B, a subset $\mathcal{R} \subset A \times A$ is called a *binary relation on* A.

Let $A = \{a_1, \ldots, a_m\}$, $B = \{b_1, \ldots, b_n\}$ be finite sets. Then we can count how many binary relations $\mathcal{R} \subset A \times B$ do we have. Indeed, the set $A \times B$ has $m \cdot n$ elements, thus there are 2^{mn} subsets of $A \times B$ (or binary relations from A to B).

There are several very important relations in mathematics.

The equivalence relation. A binary relation \mathcal{R} on A is an equivalence relation if it satisfies the following conditions:

- (R) $(a,a) \in \mathcal{R}$ for all $a \in A$;
- (S) If $(a,b) \in \mathcal{R}$ then $(b,a) \in \mathcal{R}$;
- (T) If $(a,b) \in \mathcal{R}$ and $(b,c) \in \mathcal{R}$, then $(a,c) \in \mathcal{R}$.

The abbreviations (R), (S) and (T) stand for "reflexivity", "symmetry" and "transitivity", respectively. To simplify the notations, we denote by $a \sim b$ iff $(a, b) \in \mathcal{R}$, and \mathcal{R} is an equivalence relation.

Important example.

• Let n > 1 be a positive integer. We define the equivalence relation $a \sim_n b$ iff a-b is divisible by n. Clearly, $a \sim_n b$ when a and b have the same remainders: (a DIV n) = (a DIV n). Then we can put together all integers in n different classes:

$$\mathbf{0} := \{0, \pm n, \pm 2 \cdot n, \ldots\}, \quad \mathbf{1} := \{1, 1 \pm n, 1 \pm 2 \cdot n, \ldots\}, \quad \mathbf{2} := \{2, 2 \pm n, 2 \pm 2 \cdot n, \ldots\}, \\ \mathbf{3} := \{3, 3 \pm n, 3 \pm 2 \cdot n, \ldots\}, \quad \cdots, (\mathbf{n-1}) := \{(n-1), (n-1) \pm n, (n-1) \pm 2 \cdot n, \ldots\}.$$

We see that $\mathbf{Z} = \mathbf{0} \cup \mathbf{1} \cup \mathbf{2} \cup \cdots \cup (\mathbf{n} - \mathbf{1})$. The set of classes $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \dots, (\mathbf{n} - \mathbf{1})\}$ is denoted by \mathbf{Z}/n . See Lecture 11 for the addition and multiplication tables when n = 5, 6.

We say that subsets $\{A_i\}_{i \in I}$, $A_i \subset A$ form a partition of A iff

(1)
$$A = \bigcup_{i} A_{i},$$

(2) $A_{i} \cap A_{j} = \emptyset$ if $i \neq j.$

Let \sim be an equivalence relation on A. Then we denote by [a] the set

$$[a] := \{ a' \in A \mid a \sim a' \}.$$

We denote the set $\{ [a] \mid a \in A \}$ by [A]. Lemma 1. Let \sim be an equivalence relation on A. The following assertions are equivalent:

(1) $a \sim a'$, (2) [a] = [a'], (3) $[a] \cap [a'] \neq \emptyset$.

Proof. (1) \rightarrow (2). We assume that $a \sim a'$. If $a_1 \in [a]$, then $a_1 \sim a$. Since $a_1 \sim a$ and $a \sim a'$, then $a_1 \sim a'$ by transitivity. If $a'_1 \in [a']$, then $a'_1 \sim a'$. By the symmetry, $a \sim a'$ implies $a' \sim a$. Then $a'_1 \sim a'$ and $a' \sim a$ imply that $a'_1 \sim a$ by transitivity.

 $(2) \to (3)$ We assume that [a] = [a']. In particular, $a \in [a]$ by reflexivity. Then $a \in [a']$. Thus $a \in [a] \cap [a']$, i.e., $[a] \cap [a'] \neq \emptyset$.

 $(3) \to (1)$ We assume that $[a] \cap [a'] \neq \emptyset$, then we find $a_1 \in [a]$ and $a_1 \in [a']$. This means that $a_1 \sim a$ and $a_1 \sim a'$. By symmetry, $a_1 \sim a$ implies that $a \sim a_1$. Then, since $a \sim a_1$ and $a_1 \sim a'$, transitivity implies that $a \sim a'$.

Theorem 1. (1) Let ~ be an equivalence relation on A, where $A \neq \emptyset$. Then the set [A] is a partition of A.

(2) Let $\{A_i\}_{i \in I}$ be a partition of A. Then A_i are equivalence classes of the following equivalence relation:

 $a \sim a'$ if and only if there exists $i \in I$ such that $a, a' \in A_i$

Exercise. Prove Theorem 1.

Partial order relation. Let $A = \mathbf{Z}_+$, \mathbf{Z} or $A = \mathbf{R}$. We define a partial order relation

$$\mathcal{R} := \{ (a, b) \mid a \le b \} \subset A \times A.$$

Consider the case $A = \mathbf{Z}_+$. We define the same partial order recursively as follows:

- (B) $1 \le 1$
- (R) If $a \leq b$, then $a \leq b+1$, and $a+1 \leq b+1$.

Back to functions f: A → B. Recall that a function (or a map) f: A → B means that each a ∈ A it is assigned a value f(a) ∈ B. The set A is called the *domain* of f, and B is the *target* (or *codomain*). The element b = f(a) is the *image* of a; then for an element b the set f⁻¹(b) = { a ∈ A | f(a) = b } is called the *inverse image of b*. The set

$$\Gamma(f) = \{ (a,b) \mid f(a) = b \} \subset A \times B$$

is called the graph of $f: A \to B$. The set $f(A) \subset B$ is called a range of f.

Two functions $f, g: A \to B$ are equal iff f(a) = g(a) for every element $a \in A$.

Exercises.

- (1) $f : \mathbf{R} \to \mathbf{Z}$ is given as f(x) = |x|. Give a graph of f.
- (2) $f : \mathbf{R} \to \mathbf{R}$ is given as $f(x) = x^{2015} + 1$. Find the range of f.

We already have seen many example of functions. Let $\mathcal{F}(A, B)$ be the set of functions $f \to B$. For two finite sets $A = \{a_1, \ldots, a_m\}, B = \{b_1, \ldots, b_n\}$ we have seen that $|\mathcal{F}(A, B)| = n^m$.

We say that a function $f : A \to B$ is one-to-one iff f(a) = f(a') implies that a = a', i.e., no two elements in A have the same image in B. Let $\mathcal{F}^{\text{one-to-one}}(A, B)$ be the set of one-to-one functions $f : A \to B$. Now we assume that A and B are finite sets with |A| = m and |B| = n.

Question: What is the size of the set $\mathcal{F}^{\text{one-to-one}}(A, B)$?

Clearly, if |A| > |B|, we do not have any one-to-one function $f : A \to B$. Indeed, then we do not have enough different values to assign for all elements of A.

To answer the question, we assume that $m \leq n$.

Exercise.

(3) Prove that $|\mathcal{F}^{\text{one-to-one}}(A,B)| = n(n-1)\cdots(n-m+1).$

Recall that a function $f : A \to B$ is *onto* iff f(A) = B. Let $\mathcal{F}^{\text{onto}}(A, B) \subset \mathcal{F}(A, B)$ be the set of all functions $f : A \to B$ which are onto.

Question: What is the size of the set $\mathcal{F}^{onto}(A, B)$?

We already know that (see Lecture 8):

$$|\mathcal{F}^{\text{onto}}(A,B)| = \sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m.$$

Now we can think about this fact as follows. We have m (indistinguishable) objects and n numbered containers. Then we have $\sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m$ ways to put m (indistinguishable) objects into n numbered containers, so that no container would be empty.

Then we can remove the numbers from our "containers", and we conclude that there are

$$S(m,n) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m$$
(1)

ways to put m (indistinguishable) objects into n (indistinguishable) containers, so that no container would be empty. The number S(m, n) is called a *Stirling number of the second kind*.