Summary on Lecture 11, November 10, 2014

• The Euclidian Algorithm: warm-up. Recall: let $m, n \in \mathbb{Z}$, and $n \neq 0$. Then there exist unique integers $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., n-1\}$ such that $m = n \cdot q + r$.

We look at the division:

 $m = q \cdot n + r, \quad 0 \le r < b.$

The following fact is very important for us: it gives a key to compute gcd(m, n) for arbitrary integers m and n. Euclid has discovered this property around 2,300 years ago.

Lemma 1. gcd(m, n) = gcd(n, r).

Proof. We will show that every common divisor of m and n is also a common divisor of n and r, and that every common divisor of n and r is also a common divisor of m and n.

Indeed, let d|m and d|n. Then, since $r = m - q \cdot n$, d|r. Thus d is a common divisor of n and r. Let d|n and d|r. Then, since $m = q \cdot n + r$, d|m. Thus d is a common divisor of m and n.

Now, since the common divisors of the pairs (m, n) and (n, r) coincide, the greatest common divisor is the same, i.e., gcd(m, n) = gcd(n, r).

Examples. We compute few examples:

gcd(27,5) = gcd(5,2) = gcd(2,1) = 1 gcd(183,15) = gcd(15,3) = gcd(3,0) = 3gcd(2014,323) = gcd(323,76) = gcd(76,19) = gcd(19,0) = 19.

We introduce the notations: (m DIV n) := q, and (m MOD n) := r. Thus we can write:

$$m = (m \text{ DIV } n) \cdot n + (m \text{ MOD } n).$$

We fix n > 0 and then we say that m and m' are equal **mod** n iff (m - m' MOD n) = 0, i.e. that m - m' is divisible by n.

Example. Let n = 5. Then there are only possible remainders are 0, 1, 2, 3, 4. Thus we can put together all integers in 5 different classes:

$$\mathbf{0} := \{0, \pm 5, \pm 2 \cdot 5, \ldots\}, \quad \mathbf{1} := \{1, 1 \pm 5, 1 \pm 2 \cdot 5, \ldots\}, \quad \mathbf{2} := \{2, 2 \pm 5, 2 \pm 2 \cdot 5, \ldots\}, \\ \mathbf{3} := \{3, 3 \pm 5, 3 \pm 2 \cdot 5, \ldots\}, \quad \mathbf{4} := \{4, 4 \pm 5, 4 \pm 2 \cdot 5, \ldots\}.$$

Now we can add the classes: say, let $4 + 5j \in 4$, and $1 + 5i \in 1$. Then

$$4 + 5j + 1 + 5i = 5(1 + i + j) \in \mathbf{0}$$

and we choose different numbers in **4** and **1**, the result will be the same. Thus we have that $\mathbf{4} + \mathbf{1} = \mathbf{0}$. Similarly, we can multiply. Say, let $2 + 5j \in \mathbf{2}$, and $3 + 5i \in \mathbf{3}$. Then

$$(2+5j)(3+5i) = 6+5 \cdot 3i+5 \cdot 2j+5 \cdot 5ji = 1+5(3i+2j+5ji) \in \mathbf{1}.$$

Thus $2 \cdot 3 = 1$. Here are the addition and multiplication tables mod 5:

+	0	1	2	3	4
0	0	1	2	3	3
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

\times	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Example. Let n = 6. Then there are only possible remainders are 0, 1, 2, 3, 4, 5. Thus we can put together all integers in 6 different classes:

$$\mathbf{0} := \{0, \pm 6, \pm 2 \cdot 6, \ldots\}, \quad \mathbf{1} := \{1, 1 \pm 6, 1 \pm 2 \cdot 6, \ldots\}, \quad \mathbf{2} := \{2, 2 \pm 6, 2 \pm 2 \cdot 6, \ldots\}, \\ \mathbf{3} := \{3, 3 \pm 6, 3 \pm 2 \cdot 6, \ldots\}, \quad \mathbf{4} := \{4, 4 \pm 6, 4 \pm 2 \cdot 6, \ldots\}, \quad \mathbf{5} := \{5, 5 \pm 6, 5 \pm 2 \cdot 6, \ldots\}.$$

Similarly, we can add and multiply. Here are the addition and multiplication tables **mod** 6:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

We notice that $2 \cdot 3 = 0$, $4 \cdot 3 = 0$, and $3 \cdot 3 = 3$.

Exercise. Write the addition and multiplication tables for n = 10 and n = 11.

Example. Compute last three digits of the following integer: 2014^{79} .

In other words, we have to compute $2014^{79} \mod 1000$. To warm-up, we compute $2014^{2^k} \mod 1000$ for several values of k:

2014^{1}	=	14	=	14	$\mathbf{mod} \ 1000$,
2014^{2}	=	14^{2}	=	196	$\mathbf{mod} \ 1000$,
2014^{2^2}	=	196^{2}	=	416	$\mathbf{mod} \ 1000$,
2014^{2^3}					$\mathbf{mod} \ 1000$,
	=	56^{2}	=	136	$\mathbf{mod} \ 1000$,
2014^{2^5}	=	136^{2}	=	496	$\mathbf{mod} \ 1000$,
2014^{2^6}	=	496^{2}	=	16	${\bf mod} \ 1000$.

Now we find a binary decomposition of 79: We have: $79 = 1 + 2 + 4 + 8 + 64 = 1 + 2 + 2^2 + 2^3 + 2^6$. Then we have:

2014^{79}	=	$2014^1 \cdot 2014^2 \cdot 2014^{2^2} \cdot 2014^{2^3} \cdot 2014^{2^6}$	
	=	$14\cdot 196\cdot 416\cdot 56\cdot 16$	mod 1000
	=	$(14\cdot 196)\cdot (416\cdot 56)\cdot 16$	mod 1000
	=	$744\cdot 296\cdot 16$	mod 1000
	=	$(744 \cdot 296) \cdot 16$	mod 1000
	=	$224 \cdot 16$	mod 1000
	=	584	mod 1000

The answer: $2014^{79} = 584 \mod 1000$.

Exercise. Compute last two digits of the integer 2014^{2014} .

• The algorithms. Below are three algorithms. We will use them for particular examples.

The algorithms $\mathbf{GCD}(k,n)$ and $\mathbf{GCD}^+(k,n)$ compute the greatest common divisor gcd(k,n). The last one, **EuclidianAlgorithm**⁺(k,n), computes also integers s, t satisfying the identity sk + tn = d.

```
\mathbf{GCD}(k,n)
Input: integers k, n \ge 0, both not equal to zero
Output: gcd(k, n)
      a := k, b := n
while b \neq 0 do
      (a,b) := (b, a \text{ MOD } b)
return a
\mathbf{GCD}^+(k,n)
Input: integers k, n \geq 0, both not equal to zero
Output: gcd(k, n)
      a := k,
      b := n
while b \neq 0 do
                     (a,b) := (b,a-qb)
      q := a \text{ DIV } b
      d := a
return d
EuclidianAlgorithm^+(k, n)
Input: integers k, n \ge 0, both not equal to zero
\texttt{Output:} \quad d = \gcd(k,n) \text{, } s,t \in \mathbf{Z} \text{ such that } sk+tn = d
      a := k, a' := n,
      s := 1, s' := 0,
      t := 0, t' := 1,
while a' \neq 0 do
      q := a \text{ DIV } a'
                      (a,a') := (a',a-qa')
      (s,s') := (s', s - qs')
      (t, t') := (t', t - qt')
      d := a
return d, s, t
```

Examples.

(1) We compute gcd(73, 17). We have that gcd(73, 17) = gcd(17, 5) = gcd(5, 2) = gcd(2, 1) = 1:

Now we have:

$$1 = 5 - 2 \cdot 2 = 5 - (17 - 5 \cdot 3) \cdot 2 = 5 \cdot 7 - 17 \cdot 2$$

= (73 - 17 \cdot 4) \cdot 7 - 17 \cdot 2 = 73 \cdot 7 - 17 \cdot 28 - 17 \cdot 2
= 73 \cdot 7 - 17 \cdot 30.

We obtain: $73 \cdot 7 - 17 \cdot 30 = 1$.