
Math 231, Fall 2014 Boris Botvinnik

Summary on Lecture 11, November 10, 2014

• The Euclidian Algorithm: warm-up. Recall: let m,n ∈ Z , and n 6= 0. Then there exist unique
integers q ∈ Z and r ∈ {0, 1, . . . , n− 1} such that m = n · q + r .

We look at the division:
m = q · n + r, 0 ≤ r < b.

The following fact is very important for us: it gives a key to compute gcd(m,n) for arbitrary integers
m and n . Euclid has discovered this property around 2,300 years ago.

Lemma 1. gcd(m,n) = gcd(n, r).

Proof. We will show that every common divisor of m and n is also a common divisor of n and r , and
that every common divisor of n and r is also a common divisor of m and n .

Indeed, let d|m and d|n . Then, since r = m− q · n , d|r . Thus d is a common divisor of n and r .
Let d|n and d|r . Then, since m = q · n + r , d|m . Thus d is a common divisor of m and n .
Now, since the common divisors of the pairs (m,n) and (n, r) coincide, the greatest common divisor

is the same, i.e., gcd(m,n) = gcd(n, r). �

Examples. We compute few examples:

gcd(27, 5) = gcd(5, 2) = gcd(2, 1) = 1
gcd(183, 15) = gcd(15, 3) = gcd(3, 0) = 3
gcd(2014, 323) = gcd(323, 76) = gcd(76, 19) = gcd(19, 0) = 19.

We introduce the notations: (m DIV n) := q , and (m MOD n) := r . Thus we can write:

m = (m DIV n) · n + (m MOD n).

We fix n > 0 and then we say that m and m′ are equal mod n iff (m −m′ MOD n) = 0, i.e. that
m−m′ is divisible by n .

Example. Let n = 5. Then there are only possible remainders are 0, 1, 2, 3, 4. Thus we can put
together all integers in 5 different classes:

0 := {0,±5,±2 · 5, . . .}, 1 := {1, 1± 5, 1± 2 · 5, . . .}, 2 := {2, 2± 5, 2± 2 · 5, . . .},
3 := {3, 3± 5, 3± 2 · 5, . . .}, 4 := {4, 4± 5, 4± 2 · 5, . . .}.

Now we can add the classes: say, let 4 + 5j ∈ 4 , and 1 + 5i ∈ 1 . Then

4 + 5j + 1 + 5i = 5(1 + i + j) ∈ 0,

and we choose different numbers in 4 and 1 , the result will be the same. Thus we have that 4+1 = 0 .
Similarly, we can multiply. Say, let 2 + 5j ∈ 2 , and 3 + 5i ∈ 3 . Then

(2 + 5j)(3 + 5i) = 6 + 5 · 3i + 5 · 2j + 5 · 5ji = 1 + 5(3i + 2j + 5ji) ∈ 1.

Thus 2 · 3 = 1 . Here are the addition and multiplication tables mod 5:

+ 0 1 2 3 4

0 0 1 2 3 3

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1
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Example. Let n = 6. Then there are only possible remainders are 0, 1, 2, 3, 4, 5. Thus we can put
together all integers in 6 different classes:

0 := {0,±6,±2 · 6, . . .}, 1 := {1, 1± 6, 1± 2 · 6, . . .}, 2 := {2, 2± 6, 2± 2 · 6, . . .},
3 := {3, 3± 6, 3± 2 · 6, . . .}, 4 := {4, 4± 6, 4± 2 · 6, . . .}, 5 := {5, 5± 6, 5± 2 · 6, . . .}.

Similarly, we can add and multiply. Here are the addition and multiplication tables mod 6:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

× 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

We notice that 2 · 3 = 0 , 4 · 3 = 0 , and 3 · 3 = 3 .

Exercise. Write the addition and multiplication tables for n = 10 and n = 11.

Example. Compute last three digits of the following integer: 201479 .

In other words, we have to compute 201479 mod 1000. To warm-up, we compute 20142
k
mod 1000

for several values of k :
20141 = 14 = 14 mod 1000 ,
20142 = 142 = 196 mod 1000 ,

20142
2

= 1962 = 416 mod 1000 ,

20142
3

= 4162 = 56 mod 1000 ,

20142
4

= 562 = 136 mod 1000 ,

20142
5

= 1362 = 496 mod 1000 ,

20142
6

= 4962 = 16 mod 1000 .

Now we find a binary decomposition of 79: We have: 79 = 1 + 2 + 4 + 8 + 64 = 1 + 2 + 22 + 23 + 26 .
Then we have:

201479 = 20141 · 20142 · 20142
2 · 20142

3 · 20142
6

= 14 · 196 · 416 · 56 · 16 mod 1000
= (14 · 196) · (416 · 56) · 16 mod 1000
= 744 · 296 · 16 mod 1000
= (744 · 296) · 16 mod 1000
= 224 · 16 mod 1000
= 584 mod 1000

The answer: 201479 = 584 mod 1000.

Exercise. Compute last two digits of the integer 20142014 .
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• The algorithms. Below are three algorithms. We will use them for particular examples.

The algorithms GCD(k, n) and GCD+(k, n) compute the greatest common divisor gcd(k, n). The
last one, EuclidianAlgorithm+(k, n), computes also integers s, t satisfying the identity sk + tn = d .

GCD(k, n)
Input: integers k, n ≥ 0, both not equal to zero

Output: gcd(k, n)
a := k , b := n

while b 6= 0 do

(a, b) := (b, a MOD b)
return a

GCD+(k, n)
Input: integers k, n ≥ 0, both not equal to zero

Output: gcd(k, n)
a := k ,
b := n

while b 6= 0 do

q := a DIV b (a, b) := (b, a− qb)
d := a

return d

EuclidianAlgorithm+(k, n)
Input: integers k, n ≥ 0, both not equal to zero

Output: d = gcd(k, n), s, t ∈ Z such that sk + tn = d
a := k , a′ := n ,
s := 1, s′ := 0,
t := 0, t′ := 1,

while a′ 6= 0 do

q := a DIV a′ (a, a′) := (a′, a− qa′)
(s, s′) := (s′, s− qs′)
(t, t′) := (t′, t− qt′)
d := a

return d, s, t

Examples.

(1) We compute gcd(73, 17). We have that gcd(73, 17) = gcd(17, 5) = gcd(5, 2) = gcd(2, 1) = 1:

73 = 17 · 4 + 5 5 = 73− 17 · 4
17 = 5 · 3 + 2 3 = 17− 5 · 3
5 = 2 · 2 + 1 1 = 5− 2 · 2

Now we have:
1 = 5− 2 · 2 = 5− (17− 5 · 3) · 2 = 5 · 7− 17 · 2

= (73− 17 · 4) · 7− 17 · 2 = 73 · 7− 17 · 28− 17 · 2
= 73 · 7− 17 · 30.

We obtain: 73 · 7− 17 · 30 = 1.

3


