Summary on Lecture 11, November 10, 2014

- The Euclidian Algorithm: warm-up. Recall: let $m, n \in \mathbf{Z}$, and $n \neq 0$. Then there exist unique integers $q \in \mathbf{Z}$ and $r \in\{0,1, \ldots, n-1\}$ such that $m=n \cdot q+r$.

We look at the division:

$$
m=q \cdot n+r, \quad 0 \leq r<b .
$$

The following fact is very important for us: it gives a key to compute $\operatorname{gcd}(m, n)$ for arbitrary integers m and n. Euclid has discovered this property around 2,300 years ago.

Lemma 1. $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, r)$.
Proof. We will show that every common divisor of m and n is also a common divisor of n and r, and that every common divisor of n and r is also a common divisor of m and n.

Indeed, let $d \mid m$ and $d \mid n$. Then, since $r=m-q \cdot n, d \mid r$. Thus d is a common divisor of n and r. Let $d \mid n$ and $d \mid r$. Then, since $m=q \cdot n+r, d \mid m$. Thus d is a common divisor of m and n.
Now, since the common divisors of the pairs (m, n) and (n, r) coincide, the greatest common divisor is the same, i.e., $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, r)$.
Examples. We compute few examples:

$$
\begin{aligned}
& \operatorname{gcd}(27,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
& \operatorname{gcd}(183,15)=\operatorname{gcd}(15,3)=\operatorname{gcd}(3,0)=3 \\
& \operatorname{gcd}(2014,323)=\operatorname{gcd}(323,76)=\operatorname{gcd}(76,19)=\operatorname{gcd}(19,0)=19 .
\end{aligned}
$$

We introduce the notations: $(m$ DIV $n):=q$, and $(m$ MOD $n):=r$. Thus we can write:

$$
m=(m \text { DIV } n) \cdot n+(m \text { MOD } n)
$$

We fix $n>0$ and then we say that m and m^{\prime} are equal $\bmod n$ iff $\left(m-m^{\prime}\right.$ MOD $\left.n\right)=0$, i.e. that $m-m^{\prime}$ is divisible by n.

Example. Let $n=5$. Then there are only possible remainders are $0,1,2,3,4$. Thus we can put together all integers in 5 different classes:

$$
\begin{gathered}
\mathbf{0}:=\{0, \pm 5, \pm 2 \cdot 5, \ldots\}, \quad \mathbf{1}:=\{1,1 \pm 5,1 \pm 2 \cdot 5, \ldots\}, \quad \mathbf{2}:=\{2,2 \pm 5,2 \pm 2 \cdot 5, \ldots\}, \\
\mathbf{3}:=\{3,3 \pm 5,3 \pm 2 \cdot 5, \ldots\}, \quad \mathbf{4}:=\{4,4 \pm 5,4 \pm 2 \cdot 5, \ldots\} .
\end{gathered}
$$

Now we can add the classes: say, let $4+5 j \in \mathbf{4}$, and $1+5 i \in \mathbf{1}$. Then

$$
4+5 j+1+5 i=5(1+i+j) \in \mathbf{0}
$$

and we choose different numbers in $\mathbf{4}$ and $\mathbf{1}$, the result will be the same. Thus we have that $\mathbf{4}+\mathbf{1}=\mathbf{0}$. Similarly, we can multiply. Say, let $2+5 j \in \mathbf{2}$, and $3+5 i \in \mathbf{3}$. Then

$$
(2+5 j)(3+5 i)=6+5 \cdot 3 i+5 \cdot 2 j+5 \cdot 5 j i=1+5(3 i+2 j+5 j i) \in \mathbf{1} .
$$

Thus $2 \cdot \mathbf{3}=\mathbf{1}$. Here are the addition and multiplication tables mod 5:

+	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{0}$
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{3}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{4}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$

\times	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Example. Let $n=6$. Then there are only possible remainders are $0,1,2,3,4,5$. Thus we can put together all integers in 6 different classes:

$$
\begin{gathered}
\mathbf{0}:=\{0, \pm 6, \pm 2 \cdot 6, \ldots\}, \quad \mathbf{1}:=\{1,1 \pm 6,1 \pm 2 \cdot 6, \ldots\}, \quad \mathbf{2}:=\{2,2 \pm 6,2 \pm 2 \cdot 6, \ldots\}, \\
\mathbf{3}:=\{3,3 \pm 6,3 \pm 2 \cdot 6, \ldots\}, \quad \mathbf{4}:=\{4,4 \pm 6,4 \pm 2 \cdot 6, \ldots\}, \quad \mathbf{5}:=\{5,5 \pm 6,5 \pm 2 \cdot 6, \ldots\} .
\end{gathered}
$$

Similarly, we can add and multiply. Here are the addition and multiplication tables mod 6:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\times	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

We notice that $\mathbf{2} \cdot \mathbf{3}=\mathbf{0}, \mathbf{4} \cdot \mathbf{3}=\mathbf{0}$, and $\mathbf{3} \cdot \mathbf{3}=\mathbf{3}$.
Exercise. Write the addition and multiplication tables for $n=10$ and $n=11$.
Example. Compute last three digits of the following integer: 2014^{79}.
In other words, we have to compute $2014^{79} \bmod 1000$. To warm-up, we compute $2014^{2^{k}} \bmod 1000$ for several values of k :

$$
\begin{aligned}
& 2014^{1}=14=14 \quad \bmod 1000, \\
& 2014^{2}=14^{2}=196 \bmod 1000, \\
& 2014^{2^{2}}=196^{2}=416 \bmod 1000, \\
& 2014^{2^{3}}=416^{2}=56 \bmod 1000, \\
& 2014^{2^{4}}=56^{2}=136 \bmod 1000, \\
& 2014^{2^{5}}=136^{2}=496 \bmod 1000, \\
& 2014^{2^{6}}=496^{2}=16 \bmod 1000 .
\end{aligned}
$$

Now we find a binary decomposition of 79 : We have: $79=1+2+4+8+64=1+2+2^{2}+2^{3}+2^{6}$. Then we have:

$$
\begin{aligned}
2014^{79} & =2014^{1} \cdot 2014^{2} \cdot 2014^{2^{2}} \cdot 2014^{2^{3}} \cdot 2014^{2^{6}} & & \\
& =14 \cdot 196 \cdot 416 \cdot 56 \cdot 16 & & \bmod 1000 \\
& =(14 \cdot 196) \cdot(416 \cdot 56) \cdot 16 & & \bmod 1000 \\
& =744 \cdot 296 \cdot 16 & & \bmod 1000 \\
& =(744 \cdot 296) \cdot 16 & & \bmod 1000 \\
& =224 \cdot 16 & & \bmod 1000
\end{aligned}
$$

The answer: $2014^{79}=584 \bmod 1000$.
Exercise. Compute last two digits of the integer 2014^{2014}.

- The algorithms. Below are three algorithms. We will use them for particular examples.

The algorithms $\mathbf{G C D}(k, n)$ and $\mathbf{G C D}^{+}(k, n)$ compute the greatest common divisor $\operatorname{gcd}(k, n)$. The last one, EuclidianAlgorithm ${ }^{+}(k, n)$, computes also integers s, t satisfying the identity $s k+t n=d$.

```
\(\operatorname{GCD}(k, n)\)
Input: integers \(k, n \geq 0\), both not equal to zero
Output: \(\operatorname{gcd}(k, n)\)
    \(a:=k, b:=n\)
while \(b \neq 0\) do
        \((a, b):=(b, a \operatorname{MOD} b)\)
return \(a\)
\(\mathbf{G C D}^{+}(k, n)\)
Input: integers \(k, n \geq 0\), both not equal to zero
Output: \(\operatorname{gcd}(k, n)\)
    \(a:=k\),
    \(b:=n\)
while \(b \neq 0\) do
    \(q:=a \operatorname{DIV} b \quad(a, b):=(b, a-q b)\)
    \(d:=a\)
return \(d\)
```


EuclidianAlgorithm ${ }^{+}(k, n)$

Input: integers $k, n \geq 0$, both not equal to zero
Output: $d=\operatorname{gcd}(k, n), \quad s, t \in \mathbf{Z}$ such that $s k+t n=d$
$a:=k, a^{\prime}:=n$,
$s:=1, s^{\prime}:=0$,
$t:=0, t^{\prime}:=1$,
while $a^{\prime} \neq 0$ do
$q:=a$ DIV $a^{\prime} \quad\left(a, a^{\prime}\right):=\left(a^{\prime}, a-q a^{\prime}\right)$
$\left(s, s^{\prime}\right):=\left(s^{\prime}, s-q s^{\prime}\right)$
$\left(t, t^{\prime}\right):=\left(t^{\prime}, t-q t^{\prime}\right)$
$d:=a$
return d, s, t

Examples.

(1) We compute $\operatorname{gcd}(73,17)$. We have that $\operatorname{gcd}(73,17)=\operatorname{gcd}(17,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1$:

$$
\begin{aligned}
& 73=17 \cdot 4+5 \quad 5=73-17 \cdot 4 \\
& 17=5 \cdot 3+2 \quad 3=17-5 \cdot 3 \\
& 5=2 \cdot 2+1 \quad 1=5-2 \cdot 2
\end{aligned}
$$

Now we have:

$$
\begin{aligned}
1 & =5-2 \cdot 2=5-(17-5 \cdot 3) \cdot 2=5 \cdot 7-17 \cdot 2 \\
& =(73-17 \cdot 4) \cdot 7-17 \cdot 2=73 \cdot 7-17 \cdot 28-17 \cdot 2 \\
& =73 \cdot 7-17 \cdot 30 .
\end{aligned}
$$

We obtain: $73 \cdot 7-17 \cdot 30=1$.

