- Division algorithm and prime numbers. Recall that if $m, n \in \mathbf{Z}$, and $m \neq 0$, we say that n divides m or m is divisible by n iff $m=n \cdot j$, where $j \in \mathbf{Z}$. We can say also that m is a multiple of n. The notation: $n \mid m$.

Properties:

(1) $1 \mid m$ for any $m \mid 0$ for any interger m;
(2) $(n \mid m) \wedge(m \mid k) \Longrightarrow n \mid k$;
(3) $(n \mid m) \wedge(m \mid n) \Longrightarrow m= \pm n$;
(4) if $m=c_{1} m_{1}+\cdots c_{s} m_{s}$, and $n \mid m_{i}$ for all $i=1, \ldots, s$, then $n \mid m$.

Exercise. Prove (3), (4).
Recall that p is a prime number if p has no divisors but 1 and itself. We also recall the following fact (see Lecture 5 for the proof):
Lemma 1. Let $n \in \mathbf{Z}_{+}$be not a prime number. Then there exits a prime p such that $p \mid n$.
We use Lemma 1 to prove the following remarkable fact:
Theorem 2. There is infinite number of primes.
Proof. Assume there exist only finite number of primes. Let $P=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ is the set of all prime numbers, $|P|=k$. Consider the integer: $p_{k+1}=p_{1} \cdot p_{2} \cdots p_{k}+1$. The integer p_{k+1} is either pime or not. If p_{k+1} is not a prime, then by Lemma 1 it has to be divisible by some prime $p_{j}, j=1, \ldots, k$, but it is not since the remainder will be 1 . Thus p_{k+1} is a prime, and $p_{k+1} \in P$. Then $|P|=k+1$, not $|P|=k$. This two properties cannot hold together. Contradiction.
Division Algorithm. First we prove the existence result.
Theorem 2. Let $m, n \in \mathbf{Z}$, and $n \neq 0$. Then there exist unique integers $q \in \mathbf{Z}$ and $r \in$ $\{0,1, \ldots, n-1\}$ such that $m=n \cdot q+r$.
Proof. We consider only the case when $m>0$ and $n>0$, leaving the remaining cases to you. If $n \mid m$, then $m=n \cdot q$ for some $q \in \mathbf{Z}$. If $m=n \cdot q^{\prime}$, then $n \cdot q-n \cdot q^{\prime}=0$, or $n\left(q-q^{\prime}\right)=0$, which implies $q=q^{\prime}$.
Let $n \nmid m$ and $n<m$. Then we consider the set

$$
S=\{m-t \cdot n \mid m-t \cdot n>0\} .
$$

We notice that $S \neq \emptyset$ since $m>n$, i.e., $m-1 \cdot n>0$. Also, by definition, all elements of S are positive. By the Well-Ordering Priinciple, there exists a minimal element of S. We denote it by r. We have $m=q \cdot n+r$. We notice that $n>r \geq 0$: indeed, if $r \geq n$, then there is an element $(r-n)=m-(q+1) \cdot n$ in S.
Exercise. Prove uniquness of q and r in the case when $m>n>0$.

[^0]
[^0]: ${ }^{1}$ First we discussed the remaining topics from Lecture 9. This is the second part of the lecture

