Summary on Lecture 10, November 5, 2014¹

• Division algorithm and prime numbers. Recall that if $m, n \in \mathbb{Z}$, and $m \neq 0$, we say that n divides m or m is divisible by n iff $m = n \cdot j$, where $j \in \mathbb{Z}$. We can say also that m is a multiple of n. The notation: n|m.

Properties:

- (1) 1|m for any m|0 for any interger m;
- (2) $(n|m) \wedge (m|k) \Longrightarrow n|k;$
- (3) $(n|m) \wedge (m|n) \Longrightarrow m = \pm n;$
- (4) if $m = c_1 m_1 + \cdots + c_s m_s$, and $n | m_i$ for all $i = 1, \dots, s$, then n | m.

Exercise. Prove (3), (4).

Recall that p is a prime number if p has no divisors but 1 and itself. We also recall the following fact (see Lecture 5 for the proof):

Lemma 1. Let $n \in \mathbb{Z}_+$ be not a prime number. Then there exits a prime p such that p|n.

We use Lemma 1 to prove the following remarkable fact:

Theorem 2. There is infinite number of primes.

Proof. Assume there exist only finite number of primes. Let $P = \{p_1, p_2, \ldots, p_k\}$ is the set of all prime numbers, |P| = k. Consider the integer: $p_{k+1} = p_1 \cdot p_2 \cdots p_k + 1$. The integer p_{k+1} is either pime or not. If p_{k+1} is not a prime, then by Lemma 1 it has to be divisible by some prime p_j , $j = 1, \ldots, k$, but it is not since the remainder will be 1. Thus p_{k+1} is a prime, and $p_{k+1} \in P$. Then |P| = k + 1, not |P| = k. This two properties cannot hold together. Contradiction.

Division Algorithm. First we prove the existence result.

Theorem 2. Let $m, n \in \mathbb{Z}$, and $n \neq 0$. Then there exist unique integers $q \in \mathbb{Z}$ and $r \in \{0, 1, \dots, n-1\}$ such that $m = n \cdot q + r$.

Proof. We consider only the case when m > 0 and n > 0, leaving the remaining cases to you. If n|m, then $m = n \cdot q$ for some $q \in \mathbb{Z}$. If $m = n \cdot q'$, then $n \cdot q - n \cdot q' = 0$, or n(q - q') = 0, which implies q = q'.

Let $n \not\mid m$ and n < m. Then we consider the set

$$S = \{ m - t \cdot n \mid m - t \cdot n > 0 \}.$$

We notice that $S \neq \emptyset$ since m > n, i.e., $m - 1 \cdot n > 0$. Also, by definition, all elements of S are positive. By the Well-Ordering Principle, there exists a minimal element of S. We denote it by r. We have $m = q \cdot n + r$. We notice that $n > r \ge 0$: indeed, if $r \ge n$, then there is an element $(r - n) = m - (q + 1) \cdot n$ in S.

Exercise. Prove uniqueess of q and r in the case when m > n > 0.

¹First we discussed the remaining topics from Lecture 9. This is the second part of the lecture