Summary on Lecture 1, September 29, 2014

1. Warm-up examples.

Notations: $\mathbf{Z}:=\{0, \pm 1, \pm 2, \ldots\}$ integers, $\mathbf{Z}_{+}:=\{1,2,3, \ldots\}$ natural numbers.
The problems discussed:
(1) Let $n \in \mathbf{Z}_{+}$. There are n integers i such that $1 \leq i \leq n$.
(2) Let $m, n \in \mathbf{Z}_{+}, m \leq n$. Then there are $n-m+1$ integers i such that $m \leq i \leq n$.
(3) Let $\ell, n \in \mathbf{Z}_{+}$. How many integers i such that $i=\ell \cdot j$, and $1 \leq i \leq n$? The answer: $\left\lfloor\frac{n}{\ell}\right\rfloor$.
(4) Let $\ell, m, n \in \mathbf{Z}_{+}$. How many integers i such that $i=\ell \cdot j$, and $m \leq i \leq n$? The answer: $\left\lfloor\frac{n}{\ell}\right\rfloor-\left\lfloor\frac{m-1}{\ell}\right\rfloor$.
(5) Let $S=\{1,2, \ldots, 100,000\}$, and $p \leq n$. Let

$$
A_{p}=\{i \in S \mid i=p \cdot j\} .
$$

How many intergers i in S are such that $i \in A_{7}$ or $i \in A_{11}$? The answer:

$$
\left\lfloor\frac{100,000}{7}\right\rfloor+\left\lfloor\frac{100,000}{11}\right\rfloor-\left\lfloor\frac{100,000}{77}\right\rfloor=22,077
$$

(5') Let $S=\{1,2, \ldots, 100,000\}$, and $p \leq n$. How many intergers i in S which are divisible by 7 or by 11 , but not by both? The answer:

$$
\left\lfloor\frac{100,000}{7}\right\rfloor+\left\lfloor\frac{100,000}{11}\right\rfloor-2 \cdot\left\lfloor\frac{100,000}{77}\right\rfloor
$$

2. Union (sum) Rule. Let A, B be finite sets. Then $|A \cup B|=|A|+|B|$ if $A \cap B=\emptyset$. In general,

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

3. Product Rule. Suppose that a set of ordered k-tuples $\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ has the following structure. There are n_{1} possible choices of s_{1}. Given an s_{1}, there are n_{2} possible choices of s_{2}; given any s_{1} and s_{2}, there are n_{3} possible choices of s_{3}; and in general, given any $s_{1}, s_{2}, \ldots, s_{j-1}$, there are n_{j} choices of s_{j}. Then the set has $n_{1} n_{2} \ldots n_{k}$ elements. In particular, for finite sets $S_{1}, S_{2}, \ldots S_{k}$ we have $\left|S_{1} \times S_{2} \times \cdots \times S_{k}\right|=\left|S_{1}\right| \cdot\left|S_{2}\right| \cdots\left|S_{k}\right|$.
(6) How many 2-digit integers are there? The answer: $9 \cdot 10$.
(7) How many odd 2-digit integers are there? The answer: $9 \cdot 5$.
(8) A license plate has first 3 letters and then 3 digits.
(a) How many license plates are there? The answer: $26^{3} \cdot 10^{3}$.
(b) Assume that no letters are repeated. How many license plates are there? The answer: $26 \cdot 25 \cdot 24 \cdot 10^{3}$.
(c) Assume that no letters and no digits are repeated. How many license plates are there? The answer: $26 \cdot 25 \cdot 24 \cdot 10 \cdot 9 \cdot 8$.
(9) Let $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ be an alphabet.
(a) How many words of length k are there? The answer: n^{k}.
(b) How many words without repetition of length k are there? The answer:
$P(n, k):=n(n-1) \cdots(n-k+1)$.
4. Permutations. Let $\ell!:=\ell \cdot(\ell-1) \cdots 3 \cdot 2 \cdot 1$. Convention: $0!=1$. Then $P(n, k)=\frac{n!}{(n-k)!}$. More general problem: There are n objects with n_{i} indistinguishable objects of i-th type, with $i=1, \ldots, s$, and $n=n_{1}+\cdots+n_{s}$. Then there are

$$
\binom{n}{n_{1} \cdots n_{s}}=\frac{n!}{n_{1}!\cdots n_{s}!}
$$

linear arrangements of such n objects.
(10) How many words are there which are given by permutation of letters in the word BALL? Hint: $B A L_{1} L_{2}$. The answer: $\frac{4!}{2!}$.
(11) How many words are there which are given by permutation of letters in the word $D A T A B A S E S$? Hint: $D A_{1} T A_{2} B A_{3} S_{1} E S_{2}$. The answer: $\frac{9!}{3!\cdot 2!}$.
(12) How many words are there which are given by permutation of letters in the word SOCIOLOGICAL? Hint: $S O_{1} C_{1} I O_{2} L_{1} O_{3} G I C_{2} A L_{2}$. The answer: $\frac{12!}{3!\cdot 2!\cdot 2!}$.
(13) How many words are there which are given by permutation of letters in the word MASSASAUGA? Hint: $M A_{1} S_{1} S_{2} A_{2} S A_{3} U G A_{4}$?. The answer: $\frac{10!}{4!\cdot 3!}$.
(14) How many words are there which are given by permutation of letters in the word MASSASAUGA, so that all letters A are placed together? Hint: consider the symbols $A A A A, M, S_{1}, S_{2}, S_{3}, U$, G. The answer: $\frac{7!}{3!}$.
(15) Show that $\frac{(2 k)!}{2!}$ is an integer. Hint: consider the symbols $a_{1}, a_{1}, a_{2}, a_{2}, \ldots, a_{k}, a_{k}$.
(16) How many monotonic paths are there from $(0,0)$ to (n, k) ? Here a path is monotonic, if only moves allowed are steps right and steps up. Hint: let R stand for a single move to the right, and U stand for a single move up. Then any monotonic path is given as a word with n letters R and k letters U. The answer: $\frac{(n+k)!}{n!\cdot k!}$.
(17) There are 8 people A, B, C, D, E, F, G, H to be seated about round table. (Two seatings arrangements are the same up to a rotation.) How many seatings arrangements are possible? The answer: $\frac{8!}{8}$.
(18) There are 8 people A, B, C, D, E, F, G, H to be seated about round table. Assume, in addition, that A, B, C, D are Females and E, F, G, H are Males. We consider only such seatings arrangements that no two male or females are seating next to each other. How many seatings such arrangements are there? The answer: $\frac{1}{2} \cdot \frac{4!}{4} \cdot \frac{4!}{4}$.

