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1. Introduction

The goal of the paper is to introduce and study noncommutative algebras attached
to surfaces (with marked boundary points and punctures) and their triangulations. This
provides an instance of the noncommutative cluster theory (which is the main theme of
the forthcoming paper [3]).

Since each surface can be obtained by gluing edges of a polygon (actually, in many
ways), the most important object of study are noncommutative polygons and their non-
commutative triangulations.

In the commutative case, cluster structure (of type A,_3) on an n-gon is based on
the Ptolemy relations:

TikTjp = TijThe + TieTjk (1.1)

for all quadrilaterals (i, j, k, £) inscribed in a circle, 1 < i, 5, k, £ < n, so that the chords
(1,k) and (4, ¢) are diagonals of the quadrilateral, and x;; = x;;, ¢ # j is the Euclidean
length of the chord (ij). The Ptolemy relations (1.1) can also be interpreted as Pliicker
identities for 2 x n matrices.
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In the noncommutative version we do not assume that x;; = x;; and we think of x;;
as a measurement of a directed chord from i to j. We suggest the following noncom-
mutative generalization of the Ptolemy identity based on the theory of noncommutative
quasi-Pliicker coordinates developed in [17]:

-1 -1
TikT ), Tje = Tie + TijTy; Te, (1.2)

for every quadrilateral (i, j, k, £), in which (¢, k) and (4, ¢) are the diagonals.

Note that since elements x;; correspond to directed arrows, the products of the form
xijx,&l, x&lxﬁ make sense only when ¢ = j.

It turns out that in order to establish the noncommutative Laurent Phenomenon and
thus to obtain a noncommutative cluster structure on the n-gon, it is crucial to impose
additional triangle relations (also suggested by properties of quasi-Pliicker coordinates):

-1 _ -1
xijxkj Li = xikxjk Tji (13)

for all distinct 4, j, k (of course, (1.3) is redundant in the commutative case).

The triangle relations (1.3) are of fundamental importance because they allow to
-1
, , ji
Tij’k = Tf’J due to (1.3). That is, the noncommutative angle at a vertex of a triangle

introduce noncommutative angles Tij’k = a3 zjpwy,! in each triangle (4,7,k) so that
does not depend on the order of the remaining two vertices. The “commutative” angles
were introduced by Penner in [24, Section 3] (where they were called “h-lengths”) and
each z;; = x;; was viewed as the A-length of the side (¢,7) of an ideal triangle (4, j, k)
(see also [13, Lemma 7.9], [11, Section 12], and [14, Section 1.2], in the latter paper
the term “angle” was used, apparently, for the first time) and thus noncommutative
angles together with the “noncommutative A-lengths” z;; can be thought of as a totally
noncommutative metric on the Lobachevsky plane. The term “angle” is justified by the
following observation. The noncommutative Ptolemy relations (1.2) together with the
triangle relations (1.3) are equivalent to:

Tik =TI 4 T

for every quadrilateral (i, 7, k,£), in which (i,k) and (j,¢) are the diagonals. In other
words, the (both commutative and noncommutative) angles are additive, which justifies
the name. Using additivity of noncommutative angles, we establish the first instance of

the noncommutative Laurent Phenomenon for the n-gon with vertices 1,...,n:
j—1
k,k+1
zij =y wia Ty
k=i

forall 2 < i < j <n-—1,eg., each z;; is a noncommutative Laurent polynomial in
Tk, T, B = 2,...,n—1 and all ;;4+;. In fact, the latter elements correspond to
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a triangulation of the n-gon where each triangle has a vertex at 1. We generalize this
to any triangulation of the n-gon in Theorem 2.10, and, as expected, the commutative
“limit” of this result (with all x;; = x;) specializes to the Schiffler formula ([25, Theorem
1.2]).

These arguments extend verbatim if we replace a polygon with a surface ¥ with
marked points. That is, for each such ¥ one defines a Z-algebra Ay, generated by a:fyd,
where v runs over homotopy classes of curves on X between marked points subject
to the triangle and noncommutative Ptolemy relations. The Noncommutative Laurent
Phenomenon (Theorem 3.30) asserts that for a given triangulation A of ¥ each z,
belongs to the subalgebra generated by all a:f,l, ~" € A. In any case, the assignments
Y+ Ay and ¥ — Ty define functors from the category of surfaces with marked points
to respectively the category of algebras and the category of groups (Theorem 3.16).

A surprising byproduct of our approach is that the corresponding triangle group Ta
(generated by all ¢, v € A subject to the triangle relations) does not depend on the tri-
angulation of ¥ and, therefore, is a topological invariant of ¥ (Theorem 3.24). Moreover,
each Ta is either free or a one-relator group which looks like the fundamental group
of 3, however it is different from m7;1(3). For instance, if 3,, is the sphere with n punc-
tures, then Ta is a free group in 5 generators if n = 3 and it is a 1-relator torsion-free
group in 4n — 7 generators if n > 4.! It turns out that each group Ta has a “universal
cover” Ty, which is a group generated by ¢, as v runs over all isotopy classes of directed
curves on ¥ between marked point, subject to the triangle relations (see Sections 2.5
and 3.5 for details). This group, which we refer to as big triangle group is of interest

as well: if ¥ is the n-gon, we prove (Proposition 2.28) that Ty has a presentation with

(n—1)(n+2)
2

Ay is isomorphic to Tsy.

generators and (n — 3)2 relations and expect that the multiplicative group of

For each marked point 4 on ¥ and each triangulation A we also introduce a total
(noncommutative) angle TP € As in Section 3.9 to be the sum of noncommutative angles
of all adjacent triangles. Similarly to the commutative case, we establish (Theorem 3.40)
that the total angles do not depend on the choice of a triangulation A. Thus the collection
of the total angles {T;} can be thought of as a noncommutative version of a (hyperbolic)
Riemann structure on . Using them we define in Section 3.9 the algebra Uy, to be the
subalgebra of Ay, generated by all noncommutative edges ., the inverses of the boundary
edges and all noncommutative angles T; and argue that Us is a totally noncommutative
analogue of the upper cluster algebra corresponding to X (see e.g., [1]).

As an application of our noncommutative Laurent phenomenon, taking ¥ to be a
cylinder with no punctures, one marked point on the inner boundary and k marked
points on the outer boundary, we prove Laurentness of the following noncommutative
recursion for each k € 1 + 2Z~:

1 Misha Kapovich explained to us that Ta is related to the fundamental group of a ramified two-fold cover
of 3.
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Up_1 DU, = Cp +Up_1DU, 41—} if n is even (1.4)
U,DU, 1, = Cp+Upi1-1DU,_1 if nis odd

for all n > k4 1, where D, D, and Cj, i € Z~q belong to a noncommutative ground ring
so that Cj4p—1 = Ci—1 for n € Z~y.

We prove (Theorem 4.5) that for odd & > 0 this recursion has a unique solution in the
group algebra QFyy,; of the free group Fayy freely generated by D, D, Cy,...,Cl_1,
Ui, ...,U, more precisely, each U, is a sum of elements of Fy,11. We also prove (The-
orem 4.5) that the element H,, in the skew field of fractions of QFs,41, n > k, given
by

H, = {EUnHkU;l + D?n+k,1U,i Tf n %s even (15)
U U1 kD + U Uy 1D if nis odd

belongs to ZFs;41 and does not depend on n hence is a “noncommutative conserved
quantity.”

Setting D = D = C; = 1 for all i > 0, we recover the Laurentness of the non-
commutative discrete dynamical system established by Di Francesco and Kedem in [19,
Theorem 6.2] (conjectured by M. Kontsevich in [20, Section 3]).

We finish the introduction with establishing Laurentness of the following noncommu-
tative recursion (which specializes to the discrete integrable system recently studied by
P. Di Francesco in [9], see Section 4 for details) in the skew field F freely generated by
A, Ay, Bi,Bi, Uiy, Vi, Ui i1, i € Z

Uit1,;A;Vis1: = B + Uir1,j+14;Vie, Vier;BiUj1 = AL 4+ Vi1 j41B;Uj , (1.6)
UijAjVitri = Ui j114;Vij, VijBiUji1i = Vi j1B;Uij - (1.7)

We prove (Theorem 4.11) that this recursion has a (unique) solution in the group al-
gebra QT of the free group To freely generated by A;, A;, B;, B, Uii, Vii, Uiita,
i € Z, more precisely, each U;; and V;; is a sum of elements of the group. We also prove
(Theorem 4.11) that the elements Hfj[ € Frac(ZTy), i € Z, given by

HY = U UpiaAi + Ujini &), By o= Vi (ViaaBioa+ Vi By ) (18)
belong to ZT ., and do not depend on j.

These examples and their treatment in Section 4 suggest the following general ap-
proach to constructing noncommutative discrete integrable systems. That is, such a
system consists of a marked surface X, its automorphism 7 : ¥ :— ¥ permuting marked
points, and a triangulation A so that the collection T = {z, € Ag,v € Urez7"(A)}
evolves in “discrete time” k € Z and for each marked point p of X, the total non-
commutative angle T, is a (noncommutative) conserved quantity. The noncommutative
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Laurent Phenomenon (Theorems 3.30 and 3.36) then guarantees that each T belongs to
the algebra isomorphic to the group algebra of Ta.
In Appendix we collect relevant results on noncommutative localizations.

Acknowledgments. This work was partly done during our visits to Mathematis-
ches Forschungsinstitut Oberwolfach, Max-Planck-Institut fiir Mathematik, Institut des
Hautes Etudes Scientifiques, and Centre de Recerca Matematica, Barcelona. We grate-
fully acknowledge the support of these institutions. We are very grateful to Alexander
Goncharov and especially to Maxim Kontsevich for their encouragement and support.
Thanks are due to George Bergman, Dolors Herbera, and Alexander Lichtman for stim-
ulating discussions of noncommutative localizations and unique factorizations, and to
Misha Kapovich, Feng Luo, and Misha Shapiro for explaining important aspects of low
dimensional topology and hyperbolic geometry.

2. Noncommutative polygons
2.1. Definition and main results

For each n > 3 consider a cyclic order i + i* on [n] = {1,2,...,n} via

i+1 ifi<n
it =
1 ifi=n

(and 7 — i~ to be the inverse of i — it). We will view [n] with this cyclic order as n
points on a circle (or vertices of a convex n-gon) and each pair (i,7) as a chord from ¢
to j (or as an edge or diagonal of the n-gon).

We also say that a sequence i = (i1,...,14,) of distinct elements in [n] is cyclic if a
cyclic permutation i — (ig,...,%,%1,...,ik—1) iS strictly increasing. In particular, the
sequence (k,k+1,...,n,1,...,k — 1) is cyclic for each k.

Definition 2.1. Denote by A,, the Q-algebra generated by z;; and xi_jl, ,jEn],i#j
subject to the relations:

(i) (Triangle relations) For any distinct indices 4, j, k € [n]:

.’lﬁijl‘]:jll‘ki = J:ik:r:;klxji . (2.1)
(ii) (Exchange relations) For any cyclic (4,4, k,£) in [n]:

_ -1 -1
Tjp = TjpTyy, Tig + Tj5%p; To - (2.2)
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Triangle and exchange relations

Remark 2.2. One can show that the exchange relations (2.2) are equivalent to non-
commutative Ptolemy relations (1.2) provided the triangle relations (2.1) hold. Namely,
multiplying (2.2) by xikxj_kl on the left and using the triangle relation (2.1), we ob-
tain (1.2):

-1 -1 ~1 ~1 ~1 ~1
TikT g Tjo = Tie + TikTjp Tjilyy The = Tig + Tijlps Thilyy The = Tig + TijTp; The -
Conversely, multiplying (1.2) on the left by 2,z and using (2.1), we recover (2.2).

At the first glance the number of relations of 4, greatly exceeds the number of
generators, moreover, we expect that the subalgebra of A,, generated by all z;; is a free

algebra in n?

— n generators.

However, we will demonstrate below that the algebra A,, is “rationally” generated
only by 3n — 4 free generators.

Denote by F;, the free group on m generators, so that its group algebra QF;, is the
free Laurent polynomial algebra Q(cfl, ..., Following Amitsur and Cohn (see e.g.,
[5] or Appendix A below) denote by F, the free skew field on m generators, which is the
“largest” skew field of fractions of QF},. The following is our first main result, in which

we freely use notation of Appendix A.

Theorem 2.3. For each n > 2 the algebra A, contains a subalgebra Al isomorphic to
the free group algebra QFs,_4 so that A, is a universal localization of Al by a certain
multiplicative submonoid of Al \ {0}.

We prove the theorem in Section 2.14. In fact, it will follow from a more precise
assertion (Theorem 2.8).

In view of universality of the localization (Lemma A.1), Theorem 2.3 implies the
following immediate corollary.

Corollary 2.4. The canonical monomorphism of algebras ¢' : Al, < Fsn_4 uniquely
extends to a homomorphism of algebras

© : An — .7:3”74 (23)
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In fact, we expect that (2.3) is injective, so far we can deduce this from another,
“innocent looking” conjectural property of the group algebras QF,, (Conjecture A.18,
see also Section 2.15).

Remark 2.5. Injectivity of (2.3) would imply, in particular, that .4,, has no zero divisors,
which is a rather non-trivial assertion because of the following “counter-example” which
was communicated to us by George Bergman. The universal localization Q{z, y)[(xy)~!]
of the free algebra Q(z,y) has a zero-divisor y(zy) 'z — 1.

Remark 2.6. Given n’ > n and an injective map j : [n] — [n’] for some n’ > n, clearly,

the assignments x;; — z;j(; ;) define a homomorphism of algebras j. : A, — Ay

JG
One can conjecture that each j, is injective. In fact, this would directly follow from the

injectivity of each (2.3).

Now we explore the “cluster” structure of A4,,. We say that a pair (i, k) crosses (j,£)
if (4,4, k, ) is cyclic.

A triangulation A of [n] is a maximal crossing-free subset of [n] x [n]\ {(3,7)]i € [n]}.
Clearly, each triangulation of [n] has cardinality 4n — 6.

For each triangulation A of [n] define:

e The subalgebra Aa of A, generated by z;;, 7,5 € [n], i # j and xi_jl, (i,7) € A.

e The triangle group Ta generated by all ¢;5, (i,j) € A subject to the relations:

tijt];jltki = tikt;kltji

for all 4, j, k € [n] such that (i,7), (4, k), (k,7) € A.

The term “triangle group” is normally used for a group generated by reflections about
sides of a triangle. In this paper we are using it in a somewhat similar way: a group
generated by “side lengths” of noncommutative triangles.

Theorem 2.7. Each T is a free group in 3n — 4 generators.

We prove Theorem 2.7 in Section 2.11. We generalize it in Theorem 3.24 to all surfaces.
Clearly, the assignments ¢;; — ;;, ({,7) € A define a homomorphism of algebras:

iA : QTA — .AA s (2.4)

where QT s is the group algebra of Ta.
Recall (see, e.g., (A.1)) that for a given algebra A with no zero divisors and a sub-
monoid S C A\ {0} one has a universal localization A[S~!] of A by S.

Theorem 2.8. For each triangulation A of [n] one has:
(a) The homomorphism ian given by (2.4) is an isomorphism of algebras.
(b) A, = AA[STY], where S is the multiplicative submonoid of Ax generated by all z;;.
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We will prove Theorem 2.8 in Section 2.14. In fact, Theorem 2.8(a) establishes a non-
commutative cluster structure on A, and Theorem 2.8(b) — a noncommutative Laurent
Phenomenon (see also Section 2.2).

2.2. Noncommutative Laurent Phenomenon

For each even sequence i = (iy, ..., i2m) € [n]?™ such that adjacent indices are distinct
define the monomial z; € A,, by:

) - -1
Ti 2= Tiyin Ly 5 Ligyia " " Lin 1 iom_oLizm—1,i2m *

Definition 2.9. For a directed chord (4,j), 4,j € [n], i # j and a triangulation A of [n],

we say that a sequence i = (iy,...,i2m) € [n]*™ is (4, j, A)-admissible if:
(i) 41 =1, Q9;m = 7 and (is,i541) € Afor s =1,...,2m — 1;
(ii) each chord (igs,i2s+1), s =1,...,m — 1 intersects (i, 7);

(i) if p := (ig,ik+1) N (4,5) # 0 and q := (ig,%041) N (7, 7) # O for some k < ¢, then the
point p of (i, 4) is closer in the path to ¢ than the point q.
We denote by Adma(i,7) the set of all (7, j, A)-admissible sequences i.

Theorem 2.10 (Noncommutative Laurent Phenomenon). Let A be a triangulation of [n].
Then

Tij = Z Ti , (25)

i€ Adma (i,5)
for alli,j € [n], i # 7.
We prove Theorem 2.10 in Section 2.13.
Remark 2.11. This is a noncommutative generalization of Schiffler’s formula ([25]).
Now we illustrate Theorem 2.10 for each starlike triangulation
Ai ={(1,5), (G, )l € I\ U{(k, k"), k € [n]}, i€n]. (2.6)

Example 2.12. Fix i € [n]. Then for each k,¢ € [n] \ {i} such that (i, k,¥) is cyclic, the
following relation holds in A,:

-1 1
Tre = E Tkilgy Ts,stT; o+ Lik
S

where summation is over all s = k,kt,...,¢~ in cyclic order. Hence zp, =
. -1 —1
1A; (Z tkitsi ts,s+ti75+ti2)~

S
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Example 2.13. (a) If n = 5 and A = {(1,3),(3,1), (1,4), (4,1); (4,i%)|i € [5]}, then
Tos = $21$2113345 + 3323I1_31$15 + $21$§11$U34501_413315~
(b) If n =6 and A = {(1,3),(3,1),(3,6), (6,3), (4,6), (6,4); (i,i%)|i € [6]}, then

-1 -1 -1 1 -1 -1 -1
To5 = T23Lg3 Te5 T T21T37 L36Lyg Ta5 + L2131 £34L g4 Tes + T23L13 T16T 46 T45

—1 —1 —1
+ X23%13 T16T36 T34Tg4 T65-

3 4 3

1 6 1, 6

A triangulation of a hexagon and all (2, 5)-admissible sequences

1019

In fact, we will streamline the formula for z;; by introducing new coordinates yfj e A,

for distinct 4, j, k € [n] by:

[
Yij *= Ty Thj -

We refer to yf] as noncommutative sectors and denote by Q, the subalgebra of A,

generated by all yj; (with the convention yj; = 1).

Theorem 2.14. The algebra Q,, is generated by all yfj subject to the relations:
(i) (triangle relations):

k. k ki j
YijYji = 1, yijy;‘kyii =1
for distinct i, j, k € [n] and
0.0 0
YiiYiuYei = 1

for distinct i, j, k, £ € [n].
(ii) (exchange relations) For all cyclic (i,7,k,£) in [n]:

j k1 k
Yl = Vii¥ie + Yir -

We prove Theorem 2.14 in Section 2.10.

(2.7)
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2m

For any sequence j = (jo, j1,---,j2m) € [n]*"™ such that adjacent indices are distinct

define a monomial y; € Q,, by:

s o J1 o d8 L, J2m—1
Y5 = Yoo Yiaga Yjom—zdom *

The following is a “polynomial equivalent” in Q,, of Theorem 2.10.

Theorem 2.15 (Noncommutative polynomial phenomenon). Let A be a triangulation
of [n]. Then for any triple (i, j, k) of distinct indices such that (i,k) € A one has:

y;@j = Z Y(k,i) (2.10)
icAdma (4,7)

where (k,1) stands for the sequence i preceded by k.
We prove Theorem 2.15 in Section 2.13.

Example 2.16. Following Example 2.13,
(a) If n =5 and A = {(1,3),(3,1),(1,4), (4,1); (i,5%)|i € [5]}, then

Yis = Uis + UT3Yss + YiaYis -
() I n =6 and A = {(1,3), (3,1), (3,6), (6,3), (4,6), (6,4); (5,%)]i € [5]}, then
Yis = YisYes + YisySs + Yiais + VisUleVes + YisUleYealss -

Similarly to Section 2.1, for each triangulation A of [n] define:
e The subalgebra Oa of Q,, generated by all yfj, i,7,k € [n] such that (i, k), (k,j) € A.
e The subgroup U of Ta generated by

uf; o=t ey (2.11)

for i, j, k € [n] such that (i, k), (kj) € A.
Clearly, the restriction of the homomorphism ia given by (2.4) to QUa C QT4 is a
surjective homomorphism of algebras:

i’y :QUA — Qa - (2.12)

Since Qa is a subalgebra of Aa, the following is an immediate corollary of Theo-
rem 2.8.

Corollary 2.17. For each triangulation A one has:
(a) The homomorphism iy given by (2.12) is an isomorphism.
(b) Qn = QA[S' "] for some multiplicative submonoid S' C Qa \ {0}.
(c) i\ extends to a monomorphism of algebras QQ,, — Frac(Qa) = Fon—4.
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2.3. Regular elements in noncommutative polygons

We start with a more economical presentation of A,,. Denote by U,, the subalgebra of
A, generated by all x;;, i # j and ari_ili. The following result is obvious.

Lemma 2.18. The algebra U,, satisfies the following relations
(a) (reduced triangle relations) for alli,j € [n], i ¢ {j—,j}:

4_»_£Eji = l‘ijJC»__l Lji= i s (213)

T; i—T
L J7J

(b) (reduced exchange relations) for all cyclic (i,7,k) in [n] such that i~ ¢ {j,k}:

S TGk = Tik T T Tk g - T T = Thi + Tk T (2.14)

Ti;T
Remark 2.19. We expect that these relations are defining for the algebra U,,.

Noncommutative Laurent phenomenon (2.10) guarantees that U, belongs to each
subalgebra Aa. The following conjecture implies, in particular, that i, is a totally
noncommutative analogue of the upper cluster algebra of type A,,_3.

Conjecture 2.20. For each n > 2 one has:

U, =) Aa , (2.15)
A

where the intersection is over all triangulations A of [n].

We say that an element x € A, is regular if it belongs to each subalgebra Aa as
A runs over all triangulations A of [n]. Thus, Conjecture 2.20 asserts that each regular
element of A, belongs to Uy, i.e., is a noncommutative polynomial in z;; and zi_ili.

2.4. Noncommutative angles

Now we take advantage of the “invariant” algebra Q, and will view the ambient
algebra A,, as some “Galois extension” of Q,, (in fact, Proposition 2.34 below guarantees
that A, is freely generated by z; ;-, i € [n] and Q,).

However, we want a more symmetric and “geometric” presentation of A, over Q.
The following result provides such a presentation of A,, n > 3.

Proposition 2.21. The algebra A,, is generated by Q, and (Tijk)jEl for all distinct
i,7,k € [n] subject to:
(i) (triangle relations) T?* = T for all distinct (i, j, k) in [n).
(ii) (modified exchange relations) TP = T?* + T for any cyclic (i, j, k, £) in [n).
(iii) (consistency relations) nyTij = yfiTiJZ for all distinct i, 7, k, 0 € [n].
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Proof. Denote by A/, the algebra whose presentation is given in the proposition. It is
easy to see that the assignments yfj — a:,:,ilxkj, Ti]k — x;ilxjkx;kl for distinct 4, j, k € [n]
define a homomorphism of algebras A/, — A,.

On the other hand, the consistency relations imply that the element (TZJ k) lyfj does
not depend on k.

The following is immediate.

Lemma 2.22. The assignments x;; (Tijk)*lyfj for distinct i,j € [n] define a homo-
morphism of algebras f : A, — Al,.

In particular, f(x;ilxjkxfkl) = yij;k(@kZ)*ly;kyiszk = yij;kyilek = Tijlc
by (2.7).

These homomorphisms are, clearly, inverse to each other and hence are isomorphisms.

The proposition is proved. O

We refer to Tijk = xj_ila:jkxi_kl for all distinct i, j, k € [n] as noncommutative angles
by a number of reasons. First, because of the triangle relations in Proposition 2.21 (so
that we can attach Tij * to the angle in the triangle (4, j, k) at the vertex i) and, second,
because of the modified exchange relations (ii) of Proposition 2.21 can be viewed as an
“addition law” of angles in a quadrilateral. In fact, such an addition law holds in more
general situation.

Corollary 2.23. For any cyclic (ig,i1,142,...,%¢) one has: Tiiol’i’“ = Tl.iol’i2 + Tii(f’iB + -+
Ty~ In particular, T{™ = TP + TP + - + 177 0™

Moreover, this view is supported by the following observation. For each triangulation
A of n and each i € [n] define the total angle T/ around the vertex i to be the sum of
all noncommutative angles in A at the vertex i. For instance, we have in Example 2.16:

TA = TB 4 TH 4 T8, TS = TP, TP =TI + TM, TP = T3 + 75, TA =T} .

Corollary 2.24. TA = Tii_’rr for any triangulation A of [n] and any i € [n]. In particular,
T2 does not depend on a choice of A.

Remark 2.25. Based on Corollary 2.24, we can view T; := T, ** as the total angle of the
noncommutative n-gon at the vertex ¢. The sum of all total angles T := T1 + T2 +- - -+ 7T,
also does not depend on a choice of triangulations and, in particular, can be specialized

to any constant value (e.g., to m- (n — 2)).

Remark 2.26. The independence of T; of a choice of A means that T; is invariant un-
der noncommutative mutations. We will encounter the noncommutative angles again in
Section 3.



A. Berenstein, V. Retakh / Advances in Mathematics 328 (2018) 1010-1087 1023

2.5. Big triangle group of noncommutative polygons

For each n > 2 let T, be a group generated by t;;, i,j € [n], i # j subject to the
triangle relations

tijte thi = tiktop tyi

for all distinct 4, j, k € [n]; and refer to this group as the big triangle group of the n-gon.
The following is obvious.

Lemma 2.27. For any n > 3 one has:
tlj ’Lf’L =N
(a) the assignments t;; — Sty if j=n fori,j € [n], i # j (with the convention
t;; otherwise
t11 = 1) define an epimorphism of groups m} : T, — Tp_1.
(b) The assignmentst;; — t;; fori,j € [n—1], i # j define an injective homomorphism
of groups Tp,_1 < T, which splits m .

The following result gives a presentation of T,,.

Proposition 2.28. For each n > 3 the group T, is generated by t;;, 1 <1i < j < n and
ti1, 1 =2,...,n, subject to:
tinty ikt bty b = tanty, tat

-1 -1
ij tiltjl ik

forall2<i<j<k<n.

Proof. By a slight abuse of notation, set Tijk = tj_l-ltjkti_kl. Clearly, if n = 3, then T3
is free in ty9,t13,t23, t21,t31. Furthermore, let n > 4. Then we can group the defining
relations for T,, into the following quadruples for 2 <i < j < k < n:
W =T1), Ti* =1, T{* =T, T* =T . (2.16)
It is easy to see that each such quadruple (2.16) is equivalent to the following
quadruple of relations (here (¢/,7") € {(4,7), (¢, k), (4,k)}): tjri = tj/11t;’11t¢/7j/t£}/t1,i/,
tit 5y tkty, tity; tik = tiktyy, tyt; tiat;y ¢k Thus, eliminating the redundant genera-
tors ;s ;, we finish the proof of the proposition. O

The following is obvious.

Lemma 2.29. For each n one has:
(a) The assignments t;; — x;; define a ring epimorphism w, : ZT, — A,.
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(b) For Aeach triangulation A of [n] the assignments t;; — t;; define a group homo-
morphism ja : Ta — T,,.

(¢) The symmetric group S, acts on Ty by automorphisms: o(ti;) = to@y,e() for
o€ Sp,i,jEn],i#7.

Conjecture 2.30. The restriction of m, to T, is an isomorphism of monoids T,,—~AJ.

Theorem 2.31. For any triangulation A of [n] there exists an epimorphism ma : T, = Ta
such that

jaoma = Idr, .
In particular, jA is an injective homomorphism Ta — Ty,.

We prove Theorem 2.31 in Section 2.12.
The following is obvious.

Corollary 2.32. For any triangulations A, A" of n the composition Ta o/ = Tas oja is
an isomorphism Ta — Tar such that Ta o = Idy, and TA Av = Tar,av © Ta,Ar for any
triangulation A" of [n].

2.6. Representation of A, and Q, in noncommutative 2 X n matrices

In what follows, we identify the free skew field generated by all ay;, ag;, @ € [n] with
Fon and view it as totally noncommutative rational functions on the space Matoy, of
2 X n matrices.

Following [17] and [2] (see also [15], [16][18]) define 2 x 2-positive quasiminors by

ay; Ay
az2; |A25

a1y |Q1j

— son(i — D) ans — avialar
as = sgn(j —1)(az; — aziay; ay)

+

= sgn(i — j)(a1; — ariaz; as;),
+

for 4,j € [n] and positive quasi-Pliicker coordinates Qi?j for distinct 7, j, k € [n] by:

-1 -1
Al a1y

gk |a2j

a1 Q14
a2k | @24

a1k |G14
a2k a2

k

a1k |Q1y
ij '

A2k A2j

+

(2.17)

+ + +

(the latter identity is proved in [17, Section 4.3] and in [18, Proposition 4.2.1]).

Theorem 2.33. For each n > 2 one has:

. ai; |A1j a1y Ay .. ..
(a) The assignments T;; — | " ) @y — a ! a L1 for all distincti, j € [n]
azi Az | z +

define respectively the homomorphisms of algebras

<p: s An = Fon, 0, tAp — Fon (2.18)
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(b) The restrictions of ¢} and ¢, to Q, are equal to an algebra homomorphism
On + Qn — Fan such that gpn(yfj) = fj for distinct i, j, k € [n].

Proof. Our proof is based on Proposition 2.34 below. It follows from [17, Section 4.4]
that positive quasi-Pliicker coordinates satisfy (2.7), (2.8), and (2.9) This implies that
the assignments

yr = QY (2.19)

for distinct ¢, j € [n] define a homomorphism of algebras ¢, : @, — Fap.

Furthermore, for any Q-algebras A and B denote by A * B their free product, i.e., the
universal algebra generated by A and B as subalgebras (with no relations between them).
The most fundamental property of the free product is that any algebra homomorphisms
fi: A—=C, f2: B— C canonically lift to an algebra homomorphism fi  fo : A% B — C.

Denote by F), the free group generated by ciﬂ, i=1,...,m.

By definition, the group algebra QF,,, is free Laurent polynomial algebra Q <
et >
Proposition 2.34. For each n > 2 the assignments x;; — ¢; *yf, b€ [n], i # j define
an isomorphism of algebras

[ A= (QF,) * Qp . (2.20)

Proof. Let us prove that the homomorphism (2.20) is well-defined. We need the following
obvious fact.

Lemma 2.35. Let B be a Q-algebra and let cq,...,c, be invertible elements of B. Then
the assignments

Tij > Ci ¥ Tjj (2.21)
fori,j € [n], i # j define a homomorphism of algebras A, — B * A,.

By the above Lemma B := QF, generated by ¢!, i € [n], the assignments (2.21)
define a homomorphism of algebras

A, — (QF,) x A, . (2.22)

Furthermore, the assignments c; — ¢; * a:i_l.l,, i € [n] define an algebra homomorphism
f1: QF, — (QF,) = A, and the identity map A4, — A, defines a homomorphism
of algebras fo : A, — (QF,) = A,,. This gives an algebra homomorphism f; % fa :
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(QF,)* A, — (QF,) A, determined by ¢; — ¢; st x;j — x;;. Then the composition

9,577

of the homomorphism (2.22) with f; * fo is a homomorphism of algebras
A, = (QF,) x A,

given by x;; > ¢; x4 — ci*x;il,xij = Ci*yf—,j for all 4, j € [n], i # j. Since the image of
the latter homomorphism belongs to (QF},) * Q,,, we see that the algebra homomorphism
f: A, = (QF,) * Q, given by (2.20) is well-defined.

It remains to show that f is invertible. Indeed, denote by fi : QF,, — A, the homo-
morphism of algebras given by ¢; +— ; ;—, i € [n] and denote by f; the natural inclusion
Q,, — A,. This defines a homomorphism of algebras g = f1 * fi : (QF,) * Q, — A,
which is determined by ¢; — x; ;- , yi; — yi;. This immediately implies that (go f)(x;;) =
glci * yf, ,j) = xi,ifyf, = i for all i # j. Therefore, g o f = Id. Similarly,

(fog)ei) = f(wii-) = cix yf,’i, =cixl=c¢, (fo 9)(927,3‘) = f(y:,])
= fagwig) = flwii-) " (@ig) = (cixag-) ey = o aig = yij -

Therefore, f o g = Id as well.
Proposition 2.34 is proved. O

Now we can finish the proof of Theorem 2.33. Define algebra homomorphisms ;" 4. :
QFn — JT'.Zn by

N LG U s W —y |G A1
vnle) =4, o +,wn(cz)— az [ ]|,

for 7 € [n]. Universality of free products gives natural homomorphisms of algebras

U % ony by, x o 0 (QF,) * @y — Fay

where ¢, is given by (2.19). Composing these homomorphisms with the isomor-
phism (2.20), we obtain respectively algebra homomorphisms ¢}, o> : A, — Fa,, whose
restriction to Q,, equals ¢,,.

Finally, note that

o) = 0 v pnes gt ) = | g |mi [
“n (xl]) wn *(pn(cl*yz*,]) a2; a’2,i* N Q'L*,j ag; a2j N
N e L _ @1 Q14— e N L U Y
Qon (xlj) - ¢n *Qpn(cl *yi*,j) - ao; a27i_ N Qi*,j - a9; N

for all distinct 4, j € [n].
Theorem 2.33 is proved. O
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Remark 2.36. Proposition 2.34 is a noncommutative algebraic analogue of the following
assertion: if a group G acts freely on a set X, then there a bijection X=G x (X/QG).

Remark 2.37. Unlike ¢,, (see Theorem 2.45), the homomorphisms ;" and ¢,, are not
injective. In particular, one can show that xijx;jl +1- xikxj_kl € Ker ¢, for all distinct
i,5,k € [n].

For any groups G and H denote by G * H their free product. It is well-known (see,
e.g., [5]) that Q(G x H) = (QG) * (QH).

Proposition 2.38. For each triangulation A of [n] the assignments t;; — ¢; * uz:_ ; for all
(i,7) € A (in the notation of (2.11)) define an isomorphism of (free) groups

TA:FH * UA . (223)

Proof. We essentially copy the proof of Proposition 2.34. Indeed, the following fact is
obvious.

Lemma 2.39. Let G be any group and let ¢1,...,c, € G. Then for any triangulation A
of [n] the assignments

tij — C; % tij (224)
for (i,7) € A, define a homomorphism of groups Ta — G x Ta.

Clearly, the assignments ¢; — ¢; *t;il_ for i € [n] define a group homomorphism F,, —
F,, « Ta. Composing this with (2.24) taken with G = F,, =< ¢y, ...,¢, > and applying
the multiplication homomorphism Ta * Tao — Ta, we obtain a group homomorphism:
Ta = FuxTa*xTa — F,xTa given by t;; — ¢; *uE_J for all 4, j € A. Clearly, the image
of this homomorphism contains all ¢; and wf;, (i, §), (jk) € A and is contained in F,, U,
hence this gives a group homomorphism (2.23). It is also clear that the homomorphism
F, *Ua — Ta given by ¢; — t; -, ufj — ufj is inverse of (2.23).

The proposition is proved. O

Taking into account that F, x F,,, = F,,.,, we obtain an obvious corollary from
Theorem 2.7.

Corollary 2.40. For each triangulation A of [n] the group Ua is isomorphic to Fy,_4,
the free group in 2n — 4 generators.

Furthermore, denote by F5,,_, the skew sub-field of Fs,, generated by ¢,(Q,), i.e.,
by all ij.

Proposition 2.41. F},,_, is isomorphic to Fap_4.
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Proof. Denote:

A= aip -+ Aip B = aiz -+ Qip C = ai;p a2 (225)
ag1 -+ G2n )’ agz -+ G2n )’ a1 @22 ’
so that A = [C| B].
The following lemma easily follows from Theorem 4.4.4 and Proposition 4.5.2 in [18].

2 .. 2

Lemma 2.42. C~ !B = (3%3 Z%”), where qu = qu(A) = sgn(k — j)sgn(k — i)Q;
23 0 Gan

for distinct i, j, k € [n] are quasi-Pliicker coordinates (in the notation (2.17)).

It was proved in [17, Section 4] that ¢f;(A) = ¢};(DA) for all distinct i, j, k € [n] and
any invertible 2 x 2 matrix D over JF,. In particular, taking D = C~!, we see that
a5 = ¢5([C B]) = ¢}5([I2| C~'B]), therefore, each ¢f; belongs to the skew subfield of
Fon generated by the matrix coefficients of C' (here I, is the 2 x 2 identity matrix). This
proves that F5, _, is a sub-field of Fs, generated by the entries of C~1B, i.e., by all
41035, 5 =351

It remains to show that matrix coefficients of C~1B (freely) generate a free subfield
of F5,. We need the following obvious fact.

Lemma 2.43. Let F be a skew field, C € GL,,(F) and B € Maty, n—m(F) such that
matriz coefficients of the partitioned matric A = [C'| B] generate F. Then the matriz
coefficients of [C'|C~1B] also generate F.

Now we take m = 2 and B, C asin (2.25), F = Fay,, the free skew field freely generated
by matrix coefficients of A = [C'| B]. Then C € GLo(F2,) and B € Mats ,—o(Fan).
Then, by Lemma 2.43, the matrix coefficients A’ = [C'| C~!B] also generate Fz,,. Since
A’ is 2 x n, then Proposition A.8 implies that the matrix coefficients of A’ are free
generators of Fa,. In particular, the matrix coefficients of the 2 x (n — 2) matrix C~1B
are free generators of the free skew sub-field of Fu,. That is, F5, , is freely generated
by the matrix coefficients ¢7;,3;, 7 =3,...,n of C™'B.

The proposition is proved. O

Remark 2.44. Proposition 2.41 and its proof generalize verbatim to m x n matrices.
Theorem 2.45. For each triangulation A of [n] the homomorphism

noin : QUa — Fy,_4 (2.26)
s injective.

Proof. Taking any free generating set uy,...,us,—4 of the free group Up = Fb, 4, we
see that t; := ¢, (i’y (1)), i = 1,...,2n — 4 generate F3,,_, due to the following fact.
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Lemma 2.46. For each triangulation A of [n] the image ©,(Qa) generates the skew
field F5,_,.

Proof. Denote by F4, _, the skew subfield of Fy,, generated by image ¢,(Qa). Since
image Oa C Q,, we have an obvious inclusion 75, _, C F4, ,. O

Therefore using Proposition A.8 with £ = 2n — 4, we see that tq,...,t2,_4 are free
generators of 75, _, and hence the homomorphism (2.26) is injective.
Theorem 2.45 is proved. O

2.7. Some symmetries of noncommutative polygons

+1
Tij
Tfk = xji Zix®y,! = sgn(i — j)sgn(k — j)sgn(k — z)a:ji Tipwy,) for distinct 7,7,k € [n]

First, we establish a new presentation of A,, in generators xi =sgn(j —i)z;; and

(see also Section 2.4). Also define gjfj = i @y = sgn(i — k)sgn(j — k)y” for distinct
i,5,k € [n].
We need the following useful fact.

Lemma 2.47. For each n > 2 one has:
(a) The algebra A, is generated by Z;; for distinct i,j € [n] subject to the relations:

Tk = T+ (2.27)
for any distinct i, j, k € [n]:
T4 TF 4T =0 (2.28)

for any distinct 1, j, k, € € [n].
(b) The algebra Q,, is generated by all gf subject to the relations:

gEal =1, g, = -1 (2.29)
for distinct i, j, k € [n],
JoTTh = L G0k + 908 =1 (2.30)

for distinct i, j, k, £ € [n].

Proof. Prove (a). Denote by A” the algebra freely generated by all 5
2

i 1 i # 4. That is,
A is the group algebra of a free group in n* — n generators. Define 7;;;, = Tikj (17 ky-1,

for all distinct 4, j, k € [n]. Clearly,

e ala ala ala -1 —1 v N S
Tijk = Tpy ThjLy; Tikd g Tji = l'kz Lrjlis TikT ik Lji = YijYjeYpi = ~YijY5kYri
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for all distinct 4, j, k € [n]. Denote by Z' the ideal in A}, generated by all 7 + 1. Then
the quotient A/, := A!'/Z’ is an algebra generated by z;;, i, j € [n], i # j subject to the
triangle relations (2.1).

Furthermore, for any distinct 4,7, k, £ € [n] define 7j e € Al by Fijre = T9% +
TH + T

Clearly, 74,5 k,e = —Tisk,je = —Tig ek for all 4,7, k, ¢, ie., 7 k¢ is skew-symmetric in
j, k, £ because of (2.27). Note also that
Fisgiet = &5 (Einyy Tae + Tl Bre — Bi0)E5" = (Fhbhe + Ty — T T

o ka1
= (=TT + 1= T00:) %5,

for all distinct 4, j, k, ¢ € [n]. Moreover, if (i, j, k, £) is cyclic, i.e., (i,k) crosses (7, ¢), this
gives:
Tisj kit = :l:x;il(xjkxﬁclxie + :L'jil';ilxkg — xjg)x;e

Therefore, if we denote by Z the ideal in A/, generated by all 7;.; 5 ¢, then, obviously,
AL JT= A,

This proves (a).

Part (b) also follows because the relations (2.29) and (2.30) are equivalent to (2.7),
(2.8), and (2.9). The lemma is proved. O

In the notation of Lemma 2.47 define the action of the symmetric group S, on the
set X = {&;]i,j € [n],i # j} by the formula

W(Zi5) = Fu(i),uw()
forall w e S, i,7 € [n], i # j.

Proposition 2.48. For each n > 2 one has:

(a) The above action uniquely extends to an action of S, on A, by algebra automor-
phisms.

(b) The action commutes with homomorphisms @}, o, « A, — Fapn given by (2.18),
where the action of S,, on Fap is given by w(as;) = as @) for s =1,2, 4 € [n], w € S,.

(c) The subalgebra Q,, is invariant under the S,-action, i.e., w(g]f]) = gq‘jﬁ){w(j) for
alli,j, k € [n], w € S,.

Proof. Prove (a). The following fact is obvious.

Lemma 2.49. The S, action on X uniquely extends to that on A” = Q(X) by algebra
automorphisms.
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Thus, it suffices to prove that the S,-action on A/ preserves the ideal of triangle
relations (2.27) and exchange relations (2.28).

Let us prove that the ideal 7' of A” generated by all 7;j;; is invariant under the
Sp-action. Indeed, for distinct i, j, k € [n] and w € S,, one has

w(Figr) = w(Eig)w(Zr) " w(@r)w(E5) " w(E ) w(Eir) ™" = Fugi)w)wk) -

This proves that S, (Z') = Z’ hence S,, acts on A/, by algebra automorphisms.

It remains to prove that the ideal of exchange relations (2.28) in A, is invariant under
the Sp-action. Now we show that the ideal Z of A), = A" /T! generated by all 7;.; ¢ is
invariant under the S,-action. Indeed,

~ ik =k =05 ~w(7),w(k Fw (k) ,w (£ ~w (), w(j
W) = w(T) (T (T = TG + T+ T

= Tw(i)w(j),w(k),w(e)

for all distinct 4, j, k, ¢ € [n]. This proves that S, (Z) = T.

Part (a) is proved.

Part (b) follows from the fact that the homomorphisms o}, o @ A, — Fa, from
Theorem 2.33 commute with the S, -action.

Part (c) is obvious.

The proposition is proved. O

The Lie algebra gl,(Q) (viewed as Mat, «,) naturally acts on the space Mataxy,
by right multiplications, i.e., Ejj(as:) = 0t jas; for s € {1,2}, 4,j,t € [n]), where
E;j € g1, (Q) are the matrix units.

This action uniquely extends to Fa, by the Leibniz rule: E(fg) = E(f)g +
fE(g9), E(h=Y) = —h7tE(h)h~! for any E € gl,,(Q), f,g € Fan, h € Fa,, \ {0}

Proposition 2.50. For each m > 2 there exists a unique action of gl,(Q) on Q, by
derivations such that the homomorphism p, : Q, — Fan from Theorem 2.33(b) is
9l (Q)-equivariant. The action is given by:

0 if 5" ¢ {i, 5, k}

e Ui ifj' =
By (i) = ljk e e (2.31)
—Yi.i'Yij if ' =i

_gfz/glz] Zf]/ =k

for any distinct indices i, j,k € [n].
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Proof. Indeed, in view of Theorem 2.45, it suffices to prove (2.31) for qu = @n(gfj)

. . aii |0A1j
Indeed, if we abbreviate z,, = |

j for distinct 4,5 € [n], then

a2;  A2j
e e
0 if j* ¢ {i, 5}
o — E s alaos) = —1 PSR
EZ’J’(L‘;‘) = By jr(a1j — ariag; agj) = a1y — aray; asy  if j/ = j
—1 ap .
—Ey i(aa5; )ag; ifj' =i
e e
0 if 5" ¢ {i, 5}
_ e
=4qz;, ifj' =
—1 oo
T gy g =1
1y _ -1 R B -1 -1 _ -1
because —Ejr ;(a1iay; ) = —01,i10y; +A1i0y; 2,170 = —T; 40y and ay; Q25 = —T;; T;;

for ¢ # j. Therefore,

k —_ —_ —
Eirji(qi;) = Eirje @kilzkj) = Ei'j/@kil)ﬁkj +§ki1Ei/j/(£kj)

1 e
i Birj(zy5) ifj/=j
-1 e
_ ) Evi(zy )z if j' =1
B -1 —1 o
By (@ oy + 2y By (wrg) 5 =k
0 otherwise
Note that
-1 -1 _ -1 -1 -1 -1 1
Ei/,k@ki )Ekj + 2, Ei/k(ﬁkj) = —Zy, (&k,i@ik Qm)&kl Ly + .z, @k,z‘@jk ij)
_ .1 -1 -1
=Ty T (2 +25)Ty
— -1 —1 -1
= —Zp LT (Tig — L)L Ty
_ -1 -1
=Ly T Ly, Lij
because

(s — Ejk)zj_klﬂj = ((a1x — aliag_ilCLQk) — (a1x — aljag_jlazk))(*ag_klazj)

= —(—aniag; ag; + ay;) = —x;
Therefore,
0 if j' & {i, 5. k} 0 if j' & {i, 7.k}
E N F i if j' =3 )k if j' =j
'L/J’(q’L]) - —1 —1 ) . - k k o e .
Ty Lt Ly Loy if j' =1 —4; 1455 if j' =1
—r xy ey i) =k 47y 5 =k

The proposition is proved. O
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For i,j € [n] define the elements g;; € F,, by:

T
Yij = Yi— 5 = T, i~ Lij

(with the convention that y; = 0). Clearly, §; ;- =1 and §; ;+ = i:i_il_ Tyt
Denote by .71; the subalgebra of Q,, generated by all §;; and gjl_zl+ The following is

an immediate corollary of Proposition 2.50.

Corollary 2.51. For each i,j,i',j' € [n] one has:

0 if 3" ¢ {i~ i, k}
N Ui it ifj' =17
Epy(@ig) =9~ L
—Yi,i'Yij if g’ =1

i i a) G-y ifi =1
In particular, .71; is invariant under the gl,(Q)-action.

Remark 2.52. Note, however, that the subalgebra U,, of A,, defined in Section 2.3 is not
9ln(Q)-invariant.

2.8. Eztended noncommutative n-gons

In this section we define a larger algebra .Zn which is an extension of Q,, and can be
viewed as a carrier of double noncommutative triangulations of the n-gon.

Definition 2.53. Let AT be the algebra generated by zj; and (xfj)_l, i,j € [n], i # 7,
e € {—,+} subject to the relations:

(i) (triangle relations) For any triple (4, j, k) of distinct indices in [n]:

b)) T = e (ag) T (2.32)

x
(ii) (exchange relations) For all cyclic (4, j, k,¢) in [n]:
- + (a:;jc)fla:i_é + m;i(x};)*lx&, xje = acjk(xl_k)flx:e + J;]_Z(a:,;)fla:,je . (2.33)

The following result is obvious.

Lemma 2.54. The assignments J:ij[ — x;; define an epimorphism of algebras A — A,
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In what follows, we adopt a convention for all distinct , j, k € [n]:

1’:; if the triangle (7, j, k) is to the right of the chord (¢, 7) when one goes
- from i to j
1y T _ . . .. . ..
z;; if the triangle (4, j, k) is to the left of the chord (i,j) when one goes
from 7 to j
Equivalently, x ” = xfj whenever (i, k) crosses (j,£).

The following result is a generalization of Proposition 2.21.

Proposition 2.55. The algebra A, is generated by Q, and (Tijk)il for all distinct triples
(i,7,k) subject to:
(i) (triangle relations) T?* = T¥ for all distinct i, j, k € [n).
(ii) (modified exchange relations) T?* = T/* + T for all cyclic (i, j, k, K) in [n].
i) (consistency relations yk Tjk Y Tﬂ for all cyclic (i,7,k,£) in
ji

Proof. We proceed similarly to the proof of Proposition 2.21. Denote by A;L the algebra
whose presentation is given in the proposition. It is easy to see that the assignments yfj —
(xi,i)’lx;,i, TI* = (mfi)*lxék(xgk)*l for distinct 4, j, k € [n] define a homomorphism of
algebras Al, — A,,.

On the other hand, the consistency relations imply that the (TZJ k)—lyfj = (Tiﬂ)_lyfj
if (ik) crosses (j¢).

The following is immediate.

Lemma 2.56. The assignments xfj — (Tgk)’lyfj for distinct 1,4,k € [n] define a homo-
morphism of algebras f : A, — fl;l

. ~ 1 (i ik ik
In particular, ((a%) 1wty (%)) = y5 T (08 Yyiyl 0% = byl 0% = T
by (2.7).
These homomorphisms are, clearly, inverse to each other and hence are isomorphisms.
The proposition is proved. O

Similarly to Section 2.1, for each trlangulatlon A of [n] define:

e The subalgebra A of A, generated by :cké for all distinct k, ¢ € [n] and by (9ciij)_1
for all (7,7) € A.

e The group Ta generated by all tfj subject to the triangle relations (2.32).

Clearly, T is a free group on 5(n—2) generators. It is also clear that the assignments
t:l: +

=T, (i,7) € A define a homomorphism of algebras in 1 ZTA — An.

The following is immediate.

Proposition 2.57 (Laurent Phenomenon for extended moncommutative polygons). For
each triangulation A of [n] the homomorphism ia is an epimorphism.
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Note, however, that ia is not an isomorphism, unlike its counterpart ia given by (2.4).
Proposition 2.58. For each triangulation A of [n] the kernel of ia contains the elements

(Oiasi = Oiai ) T3 + T (07, — O y) + () ™G 4, (8 0) ™

11,14 1,13 13,84 \ 11,84
_ (t+

—1,+ - \=1
Zg,il) t (til,i4) (2.34)

13,14

for each 5-tuple (i1,1i2,13,14,15) in the cyclic order such that (ig,i¢) € A for all distinct
(k,0) € [5] x [5] except for (k,£) = (2,4),(4,2),(2,5),(5,2), where we abbreviated 0;; =
(t5) M5

Proof. Without loss of generality, we assume that i, = k for k = 1,2,3,4,5. Then
To5 = $2_1($Z1)_1x25 + x;4(xf4)_1551_5

hence zo; = gy (af)) ol + ady(ary) ey () Tty + oy (25) " tag, (2f,) e, On
the other hand,

w5 = wy (x)) " Tadgs + agy(afy) ey

and

wgs = way (xgy) Mgy + ad, (2,) e,

hence ay; = @y (23y) " gy (wgy) Traly + ags(aly) e + xgl(xg_l)ilx:—s‘l(mll)ilml—&
Comparing the expressions for x5, we obtain a relation in A5 which gives the appro-
priate element in the kernel of in. The proposition is proved. O

Remark 2.59. It is natural to conjecture that the kernel of in is generated (as a two-sided
ideal in ZTa) by the elements (2.34).

2.9. Further generalizations and specializations

Definition 2.60. Let .Zn be the algebra generated by all mfj, (xfj)_l, where 1, 5, k are
distinet indices in [1,n] subject to the relations:
(i) (triangle relations) 77" = T for all distinct 7, j, k, where Tk = ()~ ()t
(ii) (exchange relations) T7 = T7% 4 T* whenever (i, k) crosses (j, /).

The following result is obvious.

Lemma 2.61. (a) The assignments xF. +— x;; define an epimorphism of algebras

ij
An — A,

(b) The assignments x
Section 2.8).

k

i aci-fj define an epimorphism of algebras ./Zn - A, (as in
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We refer to each Tij ¥ as the generalized noncommutative angle and view it as a certain
measure of the angle at the vertex ¢ in the triangle (ijk). For any triangulation A of the
n-gon and i € [n], define the total angle T2 to be the sum of all noncommutative angles
of all triangles of A at the vertex 7.

Theorem 2.62. For any triangulations A and A’ of the n-gon, we have Ta = Ta:.

Furthermore, let A/, be the algebra generated by z;;, ¢/ k= cfj , dgk = dfj and their

1
inverses subject to the relations:

(i) (triangle relations) T9% = T* for all distinct i, j, k € [n], where

Jjk _ =1, =1,
T7" = xj Tty s

(ii) (exchange relations) (&) "'T/(c}*)~" = (@) ~'T/*(c/*) ! + (db) TR (k) !

K2

for any cyclic (4, j, k,¢) in [n].
Proposition 2.63. The assignments x > c]-kxu dlk define a homomorphism of algebras:
@A, — A (2.35)

Proof. Denote by A’ the algebra freely generated by all x . Then, clearly, the assign-
ments zf; — c* i;di¥ define an algebra homomorphism

1 /
A — A .

Denote Ti/jk = (x?i)*lxék(:rgk)*l. We need the following fact.

Lemma 2.64. $ (T'jk) (dfk) 1szk(cjk)
Proof. Indeed,

PTY) = @ (o) (@) ) = (Fagudl™)  Fappd) (] wad)!) !

% Ji

= (dgk) wﬂ%kwm(dk) (dgk)ilTijk(CZ )71 .
The lemma is proved. O

We can finish now the proof of the proposition. The lemma implies that ¢'(7} J k) =
¢'(T) kj) and:

(T =T =T = (@) T () T = (@) TN T - (@) T () T = 0.

3

This proves the proposition. O
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Proposition 2.65. For each collection of integers a = {af’C = afj|i,j, k € [n] are distinct},

the assignments :Efj — (T;k)agkasij(ﬂk)faz define an algebra homomorphism

~

Yo+ An — Ap.

Proof. Clearly, ¢, = 9 o @, where @ is given by (2.35) and ¢ : A, — A, is an epimor-
phism given by

Tij > Tij, Cjk — (ﬂjk)a, dzk — (Tijk)ia . O

3

Remark 2.66. Note that if agk =1, then @a(xfj) = x,:ilzijjkxi_klzij.
2.10. Free factorizations of A, and proof of Theorem 2.1/

First, we verify that the relations (2.7), (2.8), and (2.9) hold. The left hand side of
the first relation (2.7) is:

yf]y;cl = (x,:ilxkj)(x,:jlmki) = 1 .

Furthermore, the left hand side of the second relation (2.7) is:

Y = (s mag) (g wa) (3 20) = (2 gy (@l eg) = 1

for all distinct 4, j,k € [n] by the triangle relations (2.1). Similarly, the left hand side
of (2.8) is:

000 - - -
YijYikYki = (xulej)(mejlxék)(%klei) =1

for all distinct quadruples (4, j, k, £).
Finally, the difference between the right and left hand sides of (2.9) is:

ki k =1 (=1, -1 -1,
YiiYie T Yie — Yig = (s mk])(%‘j Tie) + Ty The — Ly Lje
-1 -1 -1 -1
= (xji LjkTy; )Tie + Tpy The — Ty Tje

-1

= x‘]i

(@ wie + @iy The — wj¢) = 0
for all cyclic (4, j, k, £) by the exchange relations (2.2).

Now let us show that the relations (2.7), (2.8), (2.9) are defining. Indeed, Proposi-
tion 2.34 implies an epimorphism of algebras A, — Q,, given by z;; — yf,’j. In other
words, Q,, is isomorphic to the quotient of .A,, by the ideal generated by elements x; ;- —1,
i€ [n].

Therefore, we obtain the following obvious result.
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Lemma 2.67. The algebra Q,, is generated by all y;; := yf_ j and y;jl, i,j €[n], i #j,
subject to y; ;- =1, i € [i] and the relations (2.1), (2.2), i.e.,

yijy;:jlyki = yikyj_klyji (2.36)
for any distinct indices i, j, k € [n];
Yie = YikYik Yit + Yiiii Yne (2.37)
for all cyclic (I, k, j,i) in [n].
Since yfj = yu;'Yrj, the relations (2.7) directly follow from (2.36) and the relations
(2.9) directly follow from (2.37) (this is obvious if we “reverse engineer” the fist part of

the proof and replace all z;; by y;; there).
Therefore, Theorem 2.14 is proved. O

The following obvious corollary from the proof of Theorem 2.14 will be instrumental
in Section 3.

Corollary 2.68. For each triangulation A of [n] the Ua is generated by ufj, (i, k), (jk) € A

subject to the relations (2.7) and (2.8), i.e., for all distinct i,j,k,£ € [n] such that
(2,7), (jk) € A one has:

k

[

k. ok _ k
1, U Uj; = U

¢ 0
]Z 2] 1.

i .7 0 _
u Ujp Uk UijUjpUp; =

2.11. Freeness of Ta and proof of Theorem 2.7

Let A be a triangulation of [n]. Fix a directed triangulation A C A so for each
(i,7) € A with j ¢ {iT,i"} exactly one out of (i,5) and (4,7) belongs to A and A
contains all (4,i%), i € [n]. By definition, any such A has cardinality 3n — 3.

Proposition 2.69. Given iy € [n]. Then for any triangulation A and any A as above, the
group T is freely generated by t;;, (i,7) € A\ {(io,ig)}

Proof. We proceed by induction on n. The assertion is obvious for n < 3. Suppose
that n > 4. Then it is easy to see that there exist distinct jo,j) € [n] such that
(o 33 ), (G'9+'5) € A

Without loss of generality we may assume that jj = n and jo # i (hence jo ¢
{i,n —1,n,1}). Then A = A\ {(1,n), (n,1),(n —1,n), (n,n — 1)} is a triangulation of
n—1] and A = A\ {(1,n),(n,1),(n — 1,n), (n,n — 1)} is the corresponding directed
triangulation.

The following result is obvious.
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Lemma 2.70. (a) The assignments t;; — t;;, (1,7) € A, tnein =L tnno1—1,t1,— 1,
th1— t;i1’1t17n_1 define an epimorphism of groups ¢ : Ta — T4.

(b) Loy = Idr,, where v : Ty — Ta is a homomorphism given by u(ti;) = ti; for
(i,4) € A.

(¢) The homomorphism v : Tz — Ta is injective.

Denote by Ag the triangulation of the triangle with the vertices 1,n — 1, n. Clearly,
Ta is generated by T4 (via the embedding ¢) and Ta,, more precisely,

Ta =Tz *Tag/((tn-1,1 % 1) (Lxty_11)" " (brnm1 x 1) (L ty ) ") .

This and the inductive hypothesis (asserting that T4 is freely generated by t;;, (i,j) €
A\ {(jo,ja')}) imply (by eliminating ¢,_11 and t; ,_1 and setting ¢y := 1 * ¢, for
(k. £) = (1,n),(n,1),(1,n —1),(n —1,1)) that T is freely generated by all ¢;;, (i,) €
AN {(o,dg)} O

The theorem is proved. O
2.12. Retraction of T,, onto Ta and proof of Theorem 2.31

It suffices to construct an element 7;; € Ta for each pair (i, j) € [n] x [n], i # j such
that 7;; = t;; whenever (¢,7) € A and for any distinct 4, j,k € n one has the triangle
relation:

Tk = ki (2.38)
where lek = szlTjkTil.

We construct such 7;; by induction on n. Retain notation from the proof of Theo-
rem 2.7 and assume, without loss of generality, that (n — 1,n+ 1) € A. If n ¢ {4,5},
then, by deleting the vertex m and using the natural inclusion Ty C Ta given by
Lemma 2.70(c), we set Ti; to be that one which belongs to T 4 . Finally, we set 71 p, := t1 p,

Tn,1 i= tp,1 and:

- -1 - -1
Tin = Ti,n—17-17n_17-1,n; Tn,i = Tn,lTn_LlTn—l,i

for 1 <i < n.

Now verify that so constructed elements satisfy (2.38). Indeed, if i, 5,k € [n — 1], we
have nothing to prove because (2.38) holds by the inductive hypothesis. Otherwise, it
suffices to consider the case when k = n and verify:

™ =T1/" (2.39)



1040 A. Berenstein, V. Retakh / Advances in Mathematics 328 (2018) 1010-1087

for all 4,5 € [n — 1], ¢ # j. Indeed,

~m,j _ __—1 -1 _ -1 =1 _ pn-13 fymn _ _—-1_ -1
;7 =1, TngTij = Tp—1,iTn—1,jT;j =T , T = Tji TinTin

= le Tj,nflﬁ'}}q = ﬁj,n_l
which, together with the inductive hypothesis, proves (2.39).

Therefore, the assignments ¢;; — 7;; for all i # j define a group epimorphisms
T,, — Ta.

Theorem 2.31 is proved. O

2.13. Noncommutative Laurent Phenomenon and proof of Theorems 2.10 and 2.15

Clearly, Theorem 2.10 is a direct corollary of Theorem 2.15, so we will only prove the
latter one. We proceed by induction on n. In fact, due to the relations (2.8) in the form
Yij = y,i’ﬁy;ﬂj (hence y(r i) = y;ﬁy(ﬁ’i)), it suffices to prove (2.10) only with k =it
(however, we will use the inductive hypothesis without this restriction).

Indeed, if n < 3, the assertion is immediate. Now suppose that n > 4. In what follows
we retain some notation of Section 2.11, that is, we fix a triangulation A and suppose
that (n —1,1) € A and (jo, jg ) € A for some jo & {i,1,n — 1,n}. If 1 ¢ {4,}, then the
assertion (2.10) for A coincides with that for A = A\ {(1,n), (n,1), (n—1,n), (n,n—1)}
and we have nothing to prove. Now suppose that n € {7, j}. Without loss of generality
we may assume that ¢ = n (the case j = n is obtained by reversing all chords in [n]).
Then, we will use the inductive hypothesis (2.10) for A in the form:

y?u_'l - Zy(lail)7 yrll—l,j = Zy(n—l,i”) 5
i/

i//
where the first (resp. the second) summation is over all (n — 1,4, A) (resp. (1,4, A))-ad-
missible sequences.
Using these and the relation (2.9) in the form y7' ; = y{bj_l + 47— 1Yn_1 j> We obtain:

U=y + D U Un—14) = DY) T D Y(Lna—1) -
i/ i// i/ i//

Clearly, this gives (2.10) because each (n, j, A)-admissible sequence is either of the form

(n,1,1'), where i’ is (n,j,A)—admiSSible or is of the form (n,n — 1,i"”), where i” is

(1,4, A)-admissible (and vice versa).
Theorem 2.15 is proved. 0O

Therefore, Theorem 2.10 is proved. O
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2.14. Noncommutative cluster variables and proof of Theorems 2.3 and 2.8

For each triangulation A of [n] and (p, q) € [n]x[n], p # ¢ define an element t5, € QTa
(in the notation of Theorem 2.10) by

A
=Y. t, (2.40)

i€cAdma(p,q)

where t; € Ta is given by: t; := til,iztfl- tigig " tt t for any i € [n]*™

13,12 “Vigm—1,i2m—2
(with the convention t;; = 1 for i € [n]).

We need the following result.

12m—1,12m

Theorem 2.71. For any triangulations A and A’ of [n] the assignments tiAj/ — tiAj for
(i,7) € [n] x [n], i # j define an isomorphism of algebras
Ya.at QTA[SATSQTASK'] (2.41)

where Sa (resp. S\ ) is a submonoid in QT generated by all tiAj. These isomorphisms
satisfy:

¢A,A' = 1/)A,A” o ¢A”,A’ (242)
for any triangulations A, A, A" of [n].
Proof. First, prove the assertion for adjacent triangulations A, A’ of ¥, i.e., such that

ANA ={(i, k), (k,9)}, A\NA={(4,0), (£ 7))}, where (i,],k, ) is a cyclic quadruple.
By definition,

t50 = tinto tie + ity tee, 75 = toity; thy + tontiy i - (2.43)
We need the following result.
Lemma 2.72. For any adjacent triangulations A, A’ of [n] with A\ A" = {(i, k), (k, 1)},

AN\ A" = {(4,0),(£,4)} there is a unique homomorphism of algebras oaran : QTar —
Q’IFA[(tf‘Z)’l] such that

ti’,j/ Zf {ilv.j/} 7£ {]7£}
panlty)=t5  if (@5 = (1)
tyy i (@5 = (44)

for all (7/,7") € A.
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Proof. Indeed, it suffices only to prove that ¢ as respects the triangle relations
7_;37;1,]6/ _ Ti]f/vj,

for all triangles (¢/,5’, k") in A’. Clearly, if (¢',j’, k') belongs to A N A’, then we have
nothing to prove. It suffices only to consider the case when (j, k) = (j,¢), i.e., we have
to prove that

oan(T) = pan(Ty)

for i’ € {i, k}. Taking into account that both (ij) and (i’¢) belong to A N A’, we have
only to prove that in QT one has:

—13A,—1 _ 4, —1,A,—1
L tietig = o Loty -

In view of (2.43), this is equivalent to:

o (tinti tie + tist i tre)t ) =ty (bt ey + tont i)ty (2.44)

If i = 4, then both sides of (2.44) are, clearly, equal to Tijk + TF and if i’ = k, then
both sides of (2.44) are equal to T, + T},
This proves that ¢a as is well-defined homomorphism of algebras. O

Furthermore, we prove that in the assumptions of Lemma 2.72 one has
A’ A
oa,a(tpg) =ty (2.45)

for all (p, ) € [n] X [n], p # q.
Define a partial order < on [n]® by the covering insertion relations i < i’ if

i= ( . 7ik7ik+17ik+27 . ')’i/ = ( . aik7ik+1aa7ik}+laik+27 o ) (246)

for any a € [n].
We need the following obvious fact.

Lemma 2.73. For each i € [n]® there is a unique element [i] such that:
o [i] <1
e [i] is minimal in the partial order <.

Clearly, if i,i’ € [n]?® and i < i/, then t; = t;.
Furthermore, fix a distinct quadruple P := (i,4,k,¢) in [n] and denote by P the
underlying set {1, j, k, (}.
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For any i = (i1,...,4,) € [n]", r > 2 define the index set Ind;(P) C [r — 1] by:

Indi(P) = {s € [r—1] : {is,iss1} € {{i, k}. {5, 0}}

(with the convention that i; = 0 if £ < 0 and i, = oo if k > r) and the indezr ind;(P) €
Z>q by

ind;(P) = min Ind;(P)

with the convention that min () := 0.
Denote by Ip the set of all sequences i such that |Ind;(P)| = 1.
Clearly, Ip, = Ip for any permutation P’ = (¢, j', k', ¢') of P = (4,4, k,{) such that

{i", K} e {{i, k), {0, 41}

Proposition 2.74. For each i € Ip one has [i] € Ip and ind}(P) = ind;(P) mod 2.
Proof. We need the following fact.

Lemma 2.75. Let i,i’ € [n]® be such thati <1 andi € Ip. Then i€ Ip.

Proof. It suffices to prove the assertion only for i and i’ = j’, (i) as in (2.46). Let
s =indy (P). Since |Indy (P)| = 1, and i, _; # iy, iy # G542, but ij,y = i}, 3, then
s ¢ {t+1,t+ 2}. In particular, {i;,a} ¢ {{i,k},{J,¢}}. This immediately implies that
[Ind;(P)| =1 and

{s'} if ' <t

. 2.47)
{s'—2} ifs >t+3 (

The lemma is proved. O

Thus, for any i € Ip we see that {i"” € [n]* : i’ < i} C Ip, in particular, [i] € Ip.
The proposition is proved. O

For a,b € [n] and 1 < s < r define the map j5, : [n]” = [n]" "2 by (..., is,0541,...) —
(..., is,a,b,9541,...). Define a map Jp : Ip x {—1,1} — [n]* x {—1,1} by

Ip(i,e) = (Ju (1), (-1 DX ) (2.48)
where s := ind;(P) and x{3,}(a) is the characteristic function, i.e., it is 1 if a € {b,c}
and 0 otherwise, and the pair (¢, k') is determined by {i’,k'} = P\ {is, 541} and:

{i,j} ife=-1

o If sis odd then {i'} = P_\{is,%s+1}, where we abbreviated P_:=
{k, ¢} ife=1
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{is—1} ifig_1 € P\ {is,is41}
o If s is even then {i'} = ¢ P\ {is,i541,09540} if is12 € P\ {is_1,%5,0551}-
{#,j} \ {#s,9s41}  otherwise
Let Ip be the set of all (i,e) € Ip x {—1,1} such that
e if s = ind;(P) is even, then € = 1;
e if s = ind;(P) is odd then:
() If {is—1} = P\ {isdsqr }s {iswa} = P\ {is,is41}, ts—2 # ds, ls43 # 541, then
is € {i,7}.
(i) TF {ia1} = P\ {iarinsr}s {apa} £ Poo\ {iasinss}, then ias # iun.

Proposition 2.76. Jp(fp) C fp, that is, Jp is a map Jp : Ip = Ip.
Proof. We need the following fact.
Lemma 2.77. Let i € Ip and let s = indi(P). Then

Ind;s 1) (P) = {ind;(P) + 1} (2.49)

Jit gt

for any ', k' € [n] such that {i',k'} = P\ {is,is+1}-

Proof. Let s = indi(P) and i’ := j§. (i). Note that s + 1 € Indy(P) because
{ihi1ih 0} € {{i,k},{j,£}}. This and the fact that {i, i, .7}, 5,7,,3} = P imply
that s ¢ Indy(P) and s + 2 ¢ Indy(P). Finally, if s < s —1 (res. s > s+ 3), then
s" ¢ Indy (P) because s” ¢ Ind;(P) (resp. because s” — 2 ¢ Ind;(P)).

This proves (2.49). O

Furthermore, let (i,e) € Ip, (i',¢') := Jp(i,e), s := Ind;(P), s = Indy(P). By
Lemma 2.77, s’ = s + 1. This, in particular, implies that &/ = (—1)~Dxii () ¢
{1,(—=1)*"}. If 5 is odd, this proves the desired inclusion Jp(i,) € Ip.

It remains to consider the case when s is even. Indeed, i’ = ji (i), where ¢ = i/,
k" =14}, | are given by the even case of (2.48). Note that

(2.50)

_el =

P, = {7’7]} ifise{iaj} P _ {27.7} ifierlE{ivj}
T ik 0y i e {k, 0} {k, 0} ifigs € {k 0}

hence {is} = {iy 1} = P \{is, 15 1 }s {isin} = {160} = Poor \{iG 851}

Finally, i}, _, # i%, and i, # il 4 if and only if {is_1,is42} NP = () hence {i'} =
{11\ {ississ ). A

This proves that Jp(i,e) € Ip for even s as well.

The proposition is proved. O

Denote by [Ip] C Ip the set of all i € Ip such that i = [i] is minimal in the partial
order < and abbreviate [Ip] := Ip N ([Ip] x {~1,1}).
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Proposition 2.74 guarantees that the assignments i — [i] define a projection Ip — [Ip]
(I‘GSp. Ip — [IP])

Proposition 2.78. The assignments (i,¢) — [Jp(i,€)] define an involution [Jp] : Ip — Ip.

Proof. Let (i,e) € [Ip], let s := ind;(P), (i',¢') := [Jp(i,¢)], s’ := indy (P). By defini-
tion,

(cooyigsd K iy, i3 £ i1, K # ispo
sy ls—1,0 ifi =i5_1, k' =1
= (i K, ] = 4 ) T
(coeyis—1,8s,7  Bsq2y..) if i/ #£ig_1, k' =isio
(... s 1,k iy, 0502, . O if i =is_1, K # 1542
(2.51)

in the notation (2.48). In particular, i}, =4’, i, ; = k.

Note that, by Lemma 2.77 and Proposition 2.74, s’ = s+ 1 mod 2.

First, show that (i,¢’) € [Ip] (i.e., [Jp] is well-defined). If s is odd, this is obvious.
Suppose that s is even. Then we have in each of the cases of (2.51):

i Fis 1, k' #ispo. Since s’ =s+1and {il, 1,71, 1,1, o} = Pand i’ € {i,j},
clearly, (i',¢') € [Ip].

oi' =iy 1, k' =iy Since s’ = s—1and {i},_,il, ,} NP =0, clearly, (i',¢') € [Ip].

o i # is 1, K = igpo. Since s’ = s+ 1 and {is} = {i,_,} = P\ {i,i% 1},
{i;’+2} = {is+s} Z’é {ist1} = B—s’\{i/s’7ils’+1} by (2.50) and ilsurl = is2 # is—1 =iy _y,
clearly, (I',¢’) € [Ip].

o i =i, 1, k' # is1o. Since s’ = s — 1 and {1}, ,} = P__ \ {il,i,,} by (2.50),
clearly, (i',¢') € [Ip].

Furthermore, let (i”,¢”) = Jp(i’,&’). That is,

i =3 ()
where " = (_1)(s’—1)xw,j}(z‘;/), {i",k"} = {is, 4541} and one has (note that {7}/, i}, ,} =
{i/,K'}):
{is—1} if i1 € P\ {is,i511}
o If s is even, then {i'} = ¢ P\ {is,isq1,9542} if iy € P\ {is_1,is,i541}, € =
{6, 53 \ {is,is41} otherwise
(—1)xi5(5) | and:

{i, 53\ {i'}  ifds € {i,j}

(b, OO\ K} ifis € {k, 0} = i) (252)

{i"} = P \{iy i} = o\ {i" K} = {
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. L .
o If s is odd, then: {i'} = P_\ {is,%s41},

{i 1} ifi’, , € P\ {i',K'}
{i"} = S P\ i K il o) if iy € P\{il_,i' K} (2.53)
{i, 53 \ {i', K’} otherwise

First, show that ¢’ = e. Indeed, by the above, ¢/ = (—1)*xt.}() Since ¢ €
{1,(=1)*}, then the above implies that for even s one has ¢’ = ¢ = 1. I s is odd,
then, by definition, i’ € {7, j} iff ¢ = —1. This proves that €’/ = ¢ in this case as well.

Thus, it remains to prove that

i<i’. (2.54)

To do so, show that i = is in each case of (2.51):

o i Fis 1,k Fisyo, s =s+1,1" = (... i1, K’ K is11,...), where for even s
we have i = i by (2.52) and for odd s we also have i = i; by (2.53) because i, _, = i,
and 4, 5 = isq1.

o i £ig 1,k =ids0, 8 =s+1,1" = (..., is43,i" k" isya,...), where for even s,
i = is by (2.52) and for odd s we have {i"} = P\ {i/,k¥'} = {is} by (2.53) because
is=1,_, € P\ {i,K'}.

o i = iy1, K = igso, eg, lis_1,isi2} = P\ {igisi1}, 8 = s — 1, i =
(cooyis—1,8", K" isq2,...), where for even s, i = is; by (2.52) and for odd s we have:
is—1 € P, isy2 € P_, i5_9 # is, isy3 # isy1 hence iy € {i,j} and: {i"} =
{4, 5} \{is—1, 4542} = is by (2.53).

oi =is 1, kK Fisgio, 8 =s—1,1" = (... i5-1,7", K" K isy1,4542,...), where for
even s, i = i, by (2.52) and for odd s we have {i"} = P\ {i',k',i}, o} = {is, 541} \
{is+1} = {is} by (2.53) because:

o is_1 € P\ {ig,isi1} ispo & Poc\ {is,iss1} hence is_o # igy1.

o1 = i yg € PA Ay 0K = iy iss1) \ fisoa}.

Thus, i = is, k" = is41 in all cases, which immediately implies (2.54) in all these
cases.

This proves that [Jp] is an involution on [Ip].

The proposition is proved. O

Now suppose that P = (i, j, k, £) where A\ A" = {(i, k), (k,3)}, A'\NA = {(5,£), (¢, 5)},
as in Lemma 2.72. In what follows, we assume that (p,i)N(j,¢) = 0 and (p,q)N(i,5) # 0
(i.e., informally speaking, (4, 7) is closer to p than (k,¢)).

By Definition 2.9 of admissible sequences, if i € Adma(p,q) C [Ip] U Adma:(p,q)
then [i] = i is minimal, its index s := ind;(P) is positive and unique, and {is,954+1} =
{{i,k} if i € Adma(p,q)

{5,6y ifie Adma (p,q)
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Proposition 2.79. Let A, A’ be triangulations of [n] and P = (i,j,k,£) as above. Then
the restriction of [Jp] to (Admas(p,q) x {—1,1}) N [Ip] is a bijection:

Iaar: (Admar(p,q) x {=1,13) N [[p)=(Adma(p,q) x {~1,1}) N [Ip] (2.55)
Proof. We need the following obvious fact.

Lemma 2.80. Let i € Adma(p,q) U Admas(p,q) such that s := ind;(P) > 0. Then
(i) If s is even, then (i,1) belongs to [Ip].
(i) If s is odd, then both (i,1) and (i,—1) belong to [Ip].

Furthermore, for any triangulation A of [n] and any p,q € [n] denote by
PreAdma(p,q) the set of all i € [n]® such that [i] € Adma(p,q). We need the fol-
lowing fact.

Lemma 2.81. In the assumptions of Proposition 2.79, let i € Adma.(p,q) and suppose
that s = ind;(P) > 0. Then:
(a) if s is odd, then j3, ;. (i) € PreAdma(p, q) whenever {is,isy1,i',k'} = {i, 5, k, £}.
(b) if s is even then [Jp(i,1)] € Adma(p,q) x {—1,1}.

Proof. In what follows, we will write p < p’ for any points p, p’ in the chord (p, q) such
that either p = p’ or p is closer to p than p’.
Prove (a). Indeed, it suffices to show that for i = (i1,...,i2,) € Adma(p, q), one has

ii= (..., 054, K isi1,...) € PreAdma(p,q) , (2.56)

where s = ind;(P) is odd (note that {is,is1} = {Jj, ¢} and {i', &'} = {i, k}).

Let p_ and py be the intersection points of (p,q) respectively with (is_1,4s) and
(is41,%s12) (with the convention that p_ = pif s =1 and p’ = q if s = 2m —1). Clearly,
pP- <P+

We now consider a number of cases.

Case 1. Suppose that (p, ¢)N(is, is41) # 0,3 < s <2m—3 (e, {p,q}N{i, j, k, £} = 0).
Since (ir,ir41) € A for r = s — 1,8,8 + 1, the above and convexity of the n-gon [n]
imply that there exist ¢, k" € [n] such that {i",k"} = {i/,k'} and (p,q) N (is,i") # 0,
(9,9) N (is, K") £ 0, (p,q) N (i', ') £ 0 and

p- < (p,q) N (is,7") < (@) N (& E) < (p,q) N (is, k") <Py .

In turn, this immediately implies (2.56) in this case.

Case 2. Suppose that (p,q) N (is,is41) = 0, 3 < s < 2m — 3. By definition,
p— < po < p+- Then the convexity of the n-gon [n] implies that there exist i, k" € [n]
such that {i’,k"} = {i',k'} and (p,q) N (is, k") = 0, (p,q) N (is+1, k") = 0. This and the
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facts that (¢, k") N (is,is+1) 7 0 and that ¢ does not belong to the convex hull of p_,
P+, is; isy1 imply that (p,q) N (is,i") # 0, (p,@) N (is41,4") # 0, (p,@) N (@, K) # 0 and

p- < (p,q) N (is, ") < (P, @) N (', k") < (p,q) N (is41, k") <Py .

In turn, this immediately implies (2.56) in this case.

Case 3. Suppose that s =1 or s =2m — 1. If s =1 = 2m — 1, we have nothing to
prove because i = (i1,i2) = (p,q), i’ = (p,7', k', q) € Adma(p,q). Therefore it remains to
consider the sub-case when s = 1, m > 2 (the sub-case s = 2m — 1 > 3 is identical to it).
Indeed, the facts that (i/, k") N (i1,i2) # 0 implies that there exist ¢, k" € [n] such that
{i", K"}y = {¢',k'} and (p,q) N (i1,7") = @. This and the facts that (¢", k") N (i1,72) # 0
and that k” does not belong to the convex hull of p_ = p = iy, is py imply that
(5 0) O (i, K) £ 0, (5, 0) O (i1, #”) £ 0, (,0) 0 (7', k) £ 0 and

(pa q) N (il’k/) < (p7 q) S | SEE

In turn, this immediately implies (2.56) in this case.
This finishes the proof of part (a).
Prove (b) now. That is, we have to show that

i=1[(.. s, 0, K is41,...)] € Adma(p,q) , (2.57)

where s = ind;(P) is even and i/, k" are as in (2.48) (note that {is,9s+1} = {4, ¢} and
{t', K} = {i, k}).

Denote pg := (p,q) N (is,%s+1) and consider a number of cases.

Case 1. Suppose that {is_1,is42} = {i,k}. Then i’ =i5_1, k' = 52 by (2.48) and

i/ = ("'7i8717i5+27"') )

i.e., i’ is obtained from i by simultaneously replacing i, with i,_1 and 511 with i51o.
This immediately implies (2.57) in this case.

Case 2. Suppose that isyo € {i,k}, is_1 ¢ {i,k} (the case is_1 € {i,k}, is42 ¢ {i,k}
is identical to it). Then k' = is4o by (2.48) and

i/: ("'7isvi/ais+23"') )

i.e., i’ is obtained from i by replacing isy; with ¢’. Thus, to prove (2.57), it suffices
to show that (p,q) N (is,i’) # (. Indeed, suppose that (p,q) N (is,i') # @. If s = 2,
is—1 = p ¢ {4, k}, then taking into account that (is,i") € A, we see that i’ belongs to the
interior of the convex hull of p, pg,is. If § >4, (is—2,i5-1) € A, (p,q) N (is—2,i5—1) 7 0,
then i’ belongs to the interior of the convex hull of p, pg,is_1,is. This contradicts to that
i’ is a vertex of the convex n-gon [n], which immediately implies (2.57) in this case.
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Case 3. Suppose that {is_1,%s12} N {i,k} =0 Then i =i, k¥’ = k by (2.48) and

V= (o isyiskyigyn,...) .

Thus, to prove (2.57), it suffices to show that (p,q) N (is,7) # 0, (p,q) N (k,is11) # 0.
Since (p,i) N (j,€) = 0, using the same argument as in Case 2, we see that if (p,q) N
(is,1) = 0, then 7' belongs to the interior of the convex hull of p, po,is—1,1is; and if
(p,q) N (k,is11) = 0, then k belongs to the interior of the convex hull of ¢, po,is,isi1-
This finishes the proof of (2.57) in this case.

This finishes the proof of (b).

Lemma 2.81 is proved. 0O

Using Lemma 2.81(b) with P = (4,4, k,£) such that (p,2) N (5,£) = 0 and (p,q) N
(i,7) # 0 and Lemma 2.81(a) with any ', k¥’ such that {i’, ¥’} = {i, k}, we see that

[Tp)((Admar(p,q) x {—1,1}) N [Ip]) C (Adma(p,q) x {~1,1}) N [Ip]

hence Ja A+ given by (2.55) is a well-defined map

(Admas(p, q) x {~1,1}) N [Ip] < (Adma(p,q) x {~1,1}) N [Ip] .

Interchanging A and A’, taking into account that (p,j) N (¢,k) = 0, and applying
Lemma 2.81 again, we see that

[Tp]((Adma(p,q) x {=1,1}) N [Ip]) C (Admas(p,q) x {=1,1}) N [Ip] .

This gives a well-defined map

Jara 1 (Adma(p,q) x {=1,1}) N [Ip] = (Admar(p,q) x {~1,1}) N [Ip] .

Since [Jp] is an involution by Proposition 2.78, the maps Ja a- and Jas a are inverse of
each other, hence each of them is a bijection.
Proposition 2.79 is proved. O

Furthermore, we need the following obvious fact.

Lemma 2.82. In the assumptions of Lemma 2.72 let s € [2m — 1] be odd and let i =
(i1y- - d2m) € [n]*™, m > 1 be such that {ig,igi1} # {j, £} forr € [2m — 1]\ {s}.

(a) If {is,isq41} = {J, £} then pa ar(t;) = s i) + bz, (i) -

(b) If {isyis+1} = {i, k}, then PA,A (tj;'z(i) + tjzj(i)) = ti.
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Now we are ready to prove (2.45). Indeed, tﬁq/ =ty +t_ + t4, where

to = > ti, t_ = > ty, th

"€ Adm s (p,q):indy (P)=0 i’€e Adm s (p,q):indy (P)€2Z+1

= Z tr .

i’e Admar(p,q):indy (P)€27>,

Clearly,

pa,ar(to) =to = Z ti .

i€ Adma (p,q):ind; (P)=0

Furthermore, combining Proposition 2.79 and Lemma 2.82, we obtain:

poa,ar(t-) = Z b ar(i1) Tlas ar,-1)
"€ Adma/ (p,q):ind; (P)€2Z+1

= Z ti7

i€ Adma (p,q):ind;(P)€2Z>,

pan(ty) = > ean(tsy a1+t A6-1)
i€ Adma (p,q):ind; (P)€2Z+1

= > ty .

i€ Adma (pq):ind; (P)€2Z+1

This finishes the proof of (2.45).

Furthermore, we define a homomorphism s A/ as follows. First, composing ¢a as
with the universal localization by Sa and taking into the account that tjAe € Sa, we
obtain a homomorphism of algebras:

@a i QTar = QTA[(EH) 7]

such that ¢/, A/(tiAjl) = tl-Aj for all 4, 7. Since tiAj € Sa is invertible in the image, ¢/\ A/
canonically extends to a homomorphisms of algebras

Ya,ar s QTal Sy ] — QTA[SK'] -

Switching A and A’ we obtain a homomorphism 1a’ a : QTA[SX'] = QTa[Sx/], which
is, clearly, inverse of 1A a-.

This proves Theorem 2.71 for neighboring triangulations A, A’.

Now we prove Theorem 2.71 for any (non-neighboring) triangulations A, A’ of [n] as
follows. We say that the distance dist(A,A’) is the minimal number d > 0 such that
there is a sequence of triangulations A = A AWM Al = A’ of [n] such that
A AGHD s € [r — 1] are neighboring.
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We construct appropriate oa as by induction in dist(A, A"). If dist(A, A’) = 1, then A
and A’ are neighboring and we have nothing to prove. Suppose that d = dist(A, A’) > 1.
Then there is a triangulation A" of [n] with dist(A, A”) < d and dist(A”,A’) < d.

By the inductive hypothesis, there are isomorphisms

Yaar: QTan[Sxih] = QTA[SKY], Yarar i QTa [Sx/] — QT an[SxH]

such that ¥a ar (tiAj”) = tf]f and Yar A (tfj/) = tiAj” for all 7, 5.

Define Ya ar := 1A av0tar as. By definition, 1A as is an isomorphism QT A [Sg,l] —
QTA[Sx'] such that s ar (tfj/) = tiAj for all 4, j. In particular, o A+ does not depend
on the choice of A”. This finishes the induction.

The transitivity (2.42) also follows.

Theorem 2.71 is proved. 0O

Furthermore, we need the following result.

Proposition 2.83. In the notation of Theorem 2.71, for each triangulation A of [n] the
homomorphism ian : QTa — Aa C A, given by (2.4) extends to an isomorphism of
algebras QTA[Sy '] A,.

Proof. We need the following result.

Lemma 2.84. Let A be any triangulation of [n]. Then

(i) For any distinct i,7,k € [n], the elements a!, = t5, {a,b} C {i,j,k} satisfy the
triangle relations (2.1).

(ii) For any cyclic quadruple (i,j,k, 0) the elements x’,, :=t5  {a,b} C {i, ], k, €} satisfy
the exchange relations (2.2).

Proof. Indeed, to prove (i) note that for any distinct 4,j,k € [n] there exists a tri-
angulation Ag such that (4,4, k) is a triangle in Ag therefore, the elements t,; € Tar,
{a,b} C {i, 7, k} satisfy (2.1). Applying the isomorphism ¥a a, given by (2.71), we finish
the proof of (i).

To prove (ii) note that for any cyclic (i, j, k, £) there exists a triangulation Ag such that
both triangles (i,j, k) and (j,k, £) belong to Ay (hence (j,¢) ¢ Ap). By (2.43) for Ay,
we see that tﬁf, {a,b} C {i, ], k, ¢} satisty (2.2).

Thus applying the isomorphism 9 a,, we finish the proof of (ii).

The lemma is proved. O

By Lemma 2.84, the assignments zp, — tﬁ] for all distinct p,q € [n] define an epi-
morphism of algebras

A, — QTA[SX'] .
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On the other hand, by (already proved) Theorem 2.10, for each triangulation A of [n]
and any distinct ¢, j € [n] the element x;; € ia(QTa). Therefore, by the universality of
localizations, in extends to an epimorphism of algebras ia QT[Sgl] —» A,. Clearly,
these two homomorphisms are mutually inverse.

This finishes the proof of Proposition 2.83. O

Furthermore, denote by S the submonoid of Aa \ {0} generated by all z;;. Clearly,
S = ia(Sa) and Ap = ia(QTa). Therefore, A, = AA[S7!].
This proves Theorem 2.8. O

Finally, Theorem 2.3 follows from Theorem 2.8 and that A/ := Ax = ia(QTA) is
the group algebra of T a, which is a free group in 3n — 4 generators by (already proved)
Theorem 2.7. O

2.15. Self-similarity implies injectivity
In this section we prove the following result.

Proposition 2.85. If Conjecture A.18 holds form =3n—4, n>4 andk=2,...,n—2,
then for each triangulation A of [n] the homomorphism of algebras

An Hf3n—4 )

which is the canonical (by Proposition 2.83 and Lemma A.1) extension to A, =
Q’H‘A[Sgl] of the natural inclusion QTa — Frac(QTa) = Fzn_4 s a also a monomor-
phism (hence A,, has no zero divisors).

Proof. it suffices to show that for at lest one triangulation A of [n] the submonoid
Sa € QTA\{0} generated by all tiAj and by (QTA)* = Q* T4 is factor-closed in the sense
of Definition A.4. Since Ty is a free group by Theorem 2.7, in view of Proposition A.15,
it suffices tP verify that each tiAj, (¢,7) ¢ A is prime in QT A and all primes similar to ¢;;
belong to Sa. Now let A = A; be the starlike triangulation as in (2.6) with ¢ = 1.

We need the following obvious fact.

Lemma 2.86. For all n > 2 the group Ta, is freely generated by 1; = le’jﬂ, j =
2,...,%—1, tl,k; tk,l; kZQ,...,n.

Proof. Clearly, Ta, has a presentation ¢; ;11 = ¢;17t1j+1, tj+1,; = tj41,175t1; for
j=2,...,n—1
This proves the lemma. O
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Fig. 1. Pairwise non-equivalent curves from puncture 1 to puncture 2.

Furthermore, Corollary 2.23 implies that the monoid SAl is generated by Ta, and
noncommutative angles

Tlij:Ti+...+Tj

for 2 < i < j < n. Clearly, each le‘j’ i < j—1is prime in QTx,. Let P;; := Q* - Ta, -
Tlij - Ta, for 2 < ¢ < j < n. By Conjecture A.18 with m = 3n — 4, k = j, that the
only primes similar to T’ 1” are elements of P;;. This together with Proposition A.15 and
Remark A.14 proves that the submonoid Q* - Sa, of QTa, \ {0} is factor-closed because

it is generated by Q* - Ta, and P = |J P;;. Therefore, Corollary A.13 guarantees
2<i<j<n

that QTa,[S™!] = QTa,[Q* - 5’;11] is a subalgebra of Fs,_4 = Frac(QTx,).
Using this and Proposition 2.83 with A = A;, we finish the proof of Proposi-
tion 2.85. O

3. Noncommutative surfaces

In this section we extend all the constructions and results of Section 2 to marked
surfaces i.e., (connected compact smooth) surfaces 3 possibly with boundary equipped
with a non-empty finite set I = I(X) = I U I, of marked points with a subset I, =
Iy(X) C I of marked boundary points, the set I, = I,,(X) = I \ I of ordinary punctures
and a set I, = I;(X) of special punctures (which were called orbifold point of order 2
n [10], however, we will not use this terminology). We also require that each boundary
component contains at least one point from ;. We denote by X the underlying topological
space.

3.1. Multi-groupoid of curves on 3

Given points p1,p2 € I(X), consider connected smooth directed curves C in X\ I, (%)
starting at p; and terminating at py. For a curve C denote by C the same curve traversed
from ps to p1. We say that curves C' and C’ in X from p; to ps are equivalent if C' and
C’ are homotopy equivalent as (connected smooth directed) curves in X\ I,(X) (Fig. 1).

Denote by I';; = I';;(3) the set of equivalence classes of curves C' in ¥ which originate

at ¢ and terminate at j then let I' = I'(X) := || T}y;. For v € I';; we denote by
i,jEI(X)
s(y) € I(X) (resp. by t() € I(X)) the source ¢ (resp. the target 7).
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Thus we have a natural involution *: T = T' (v + 7). By definition, I';; = T;; for all

1,7 € I(2).

Involution v — %

For j € I(X) denote by id; the trivial loop at j. Clearly, v =7 iff v is trivial.

It is easy to see that I'(X) is finite iff ¥ is homeomorphic to an n-gon, i.e., a disk with
n > 1 marked points and no punctures. In that case, the assignments v — (s(y),t(y))
define a bijection I'={(7, ) € [n],i # j}.

We say that v € I'(X) is simple if it has a non-self-intersecting representative. Denote
by I'’(X) the set of all simple v € I'(X).

Definition 3.1. We say that a pair (v,7') in T'(X) is composable if t(v) = s(v') and
define the composition v/ = ~ o+’ to be the pullback, under the natural projection
(X)) » T\ (I,(2) \ {t(7)})) of the concatenation of v and ~'.

Clearly, the multi-composition v o 7" is a l-element set iff t(y) = s(v) € L,(X).
Otherwise v o+’ is countable.

SN

e 4 k_/w
S~ —
—y

x
Multi-composition: {y_,~,v+} € (1,0) o (0,2).

The following is immediate.

Lemma 3.2. For each marked surface ¥ the set T'(X) is a multi-groupoid with the object

set I(X) and the inverse given by v~ ' :=7.

Remark 3.3. A multi-category (e.g., a multi-groupoid) is a natural generalization of a
category (e.g., of a groupoid) where we allow the composition of two morphisms to be a
set of arrow and require the associativity (yov’) oy” = vo (7' o), which is an equality
of sets, see e.g. [7] (where the term polygroupoid was introduced).

Remark 3.4. If I,(¥) = 0, then I'(X) is an ordinary groupoid (cf. [4, Section 2.2]).
3.2. Category of surfaces and reduced curves

Definition 3.5. Given a continuous map f : X — X’ with discrete fibers, we say that f is
a morphism of marked surfaces ¥ — Y/ if:
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v [V]i

Fig. 2. Crossing resolution.

o fTHI(E) = I(%), f(I,(X)) C I,(X") (we abbreviate I1 := f~1(I,(X)) \ I,(%)).

e For each point p € X\ I/ there is a neighborhood Oy, of pin ¥ such that the restriction
of f to O, is injective (if p € OX is a boundary point, then O, is a “half-neighborhood”).

e For each p € I’ there is a neighborhood O, of p in ¥ such that the restriction of f
to O, is a two-fold cover of f(O,) ramified at f(p).

Theorem 3.6. For any morphisms of marked surfaces f : X — X' and f' : X' — X" the
composition f' o f : 3% — X" is also a morphism of marked surfaces X' — X''.

We prove Theorem 3.6 in Section 3.11.

In what follows, denote by Surf the category whose objects are marked surfaces and
arrows are morphisms of marked surfaces.

Note that if f : ¥ — ¥ is a morphism in Surf with I/ = (), then f respects (homotopy)
equivalence of curves and, in particular, defines a map I'(X) — I'(¥’). In general, this
is no longer true. To fix it, we define below a stronger equivalence relation than the
equivalence for curves in X',

Indeed, given i € I4(X), we say that a curve C in X is i-reducible if there is a self-
intersection point p € C such that the loop Cy C C defined by p encloses exactly one
special puncture i; otherwise, C' is i-reduced. Respectively, v € I'(X) is i-reducible (resp.
i-reduced) if v has an i-reducible (resp. i-reduced) representative. Denote by [I'(X)]; the
set of all i-reduced v € T'(X), abbreviate [['(X)] := () [['(¥)]; and refer to elements

i€l (2
of [I'(X)] as reduced. Clearly, [I'(X)] = I'(2) iff I,(X) 2(@.) It is also clear that and each
v € TO(X) is reduced.

For each i-reducible v € T'(X) denote by [v]; the class in I'(X) obtained by resolving
the self-intersecting simple loop around 7 in (a generic representative C of) 7 so that the
resulting curve is connected (the “wrong” crossing resolution would result in creating
two connected components, one of which is a circle around 7) (Fig. 2).

The following is obvious.

Lemma 3.7.

i if v is i-reducibl
(a) The assignments v — {[’Y] iy is i-reducible define a map m; : ['(X) — T'(X2).

~y if v is i-reduced
(b) T; OTj = Tj O Ty fO?” all 1,] € IB(Z)
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(¢) The assignments v +~ wN(y) for sufficiently big N define a projection
7 T(E) = [T(D));.

(d) The composition 7*° := [[ 7 is a projection I'(X) — [['(X)].
i€l (%)

This, in particular, defines an equivalence relation on [['(X)], namely for v,y €
I'(X) we say that any representatives C' € v and C' € 4" are I;(X)-equivalent iff
7 () = 7°(v"). We naturally identify I, (3)-equivalence classes with elements of [I'(X)].

For each ¢ € I;(X) and j € I(X) let \;; denote a (unique up to ) simple loop at j
around ¢ in [['(X)]. We refer to such loops as special.

For n > 1, h > 0 denote by P,(h) the n-gon (i.e., a disk with n marked boundary
points) with h special punctures and abbreviate P,, := P,,(0). Clearly, each special loop
A determines a (homeomorphic) copy of Pi(1) with the marked point set {j} and the
special puncture set {i}.

Lemma 3.8. For any marked surface ¥ the set [T'(X)] has a natural multi-groupoid struc-
ture:

o] :=[yev]

for any composable (,7") in the multi-groupoid T'(X) with the object set I(X). Moreover,
(i) the assignments v — [y] define a surjective homomorphism of multi-groupoids
) — (). B
(i1) For each i € I,(X) and j € I(X) each special loop satisfies \ij = Ayj.

Special loops are involutions in [['(3)]

The following result asserts functoriality of the multi-groupoid under morphisms of
surfaces.

Theorem 3.9. Let [ be any morphism of marked surfaces ¥ — X' and let v € [['(X)].
Then

(a) for any generic representatives C,C' € =, their images f(C) and f(C') are
I;(X)-equivalent.

(b) For each vy € [I'(X)] there exists a unique I;(X')-equivalence class f(y) € [I'(¥)]
such that f(C) € f(v) for any generic curve C' € ~.

(c) f:T(X)] = [TE)] (v f(7)) is a homomorphism of multi-groupoids.
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(d) The assignments 3 — [['(X)] define a functor from Surf to the category of multi-
groupoids.

I,(¥)-equivalence of images of curves under the ramified double cover z +— 22 of C

We prove Theorem 3.9 in Section 3.11.

It is well-known that marked surfaces can be glued out of polygons, i.e., for any %
there exists a surjective gluing morphism f : P,(h) — ¥ in Surf with h = |I;(X)|,n > 1
such that all f(i,57) € I'%(X) and the restriction of f to the interior of P, (k) is injective.
For readers’ convenience we construct such a gluing morphism f in Lemma 3.47 for any
triangulation of X.

The following fact is obvious.

Lemma 3.10. Let 3 be a marked surface. Then [['(X)] is finite if an only if ¥ is homeo-
morphic either a once punctured sphere or to [n] = P, or to P,(1) for somen > 1. More
precisely, the assignments

s (s(7),t(y),+) ifthe special puncture is to the right of v
(s(y),t(7),—) ifthe special puncture is to the left of v

define a bijection [I'(P,(1))]={(i,7) € [n]} x {—,+}.
3.8. Polygons in surfaces, noncommutative surfaces and functoriality

We say that a sequence P = (1, ..,7,) of not necessarily distinct ; € [I'(X)], ¢ € [r],
is cyclic if each pair (v;,v;+), ¢ € [r] is composable.

Definition 3.11. We say that a sequence P = (y1,...,7,) is an n-gon in ¥ if there exists
a morphism f : P, — ¥ such that f(i,i*) =+, for i € [n]. We also denote ~;; := f(, )
for all distinct ¢, j € [n] (clearly, y;; is nontrivial for all distinct ¢, j € [n]). We will refer
to such an f as an accompanying to P morphism.

Clearly, each n-gon P = (v1,...,7,) in X is cyclic and for any v € [['(X2)] the pair (v,7)
is a 2-gon in ¥. It is convenient to define the interior P® of an n-gon P = (y1,...,7,) to
be the image of the interior of P, under an accompanying morphism (to do so we choose
generic representatives C; € ; so that f(i,i") = C; for i € [i]). It is also clear that P°
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does not depend on the choice of f, and different choices of C; € ~; result in homotopic
to each other morphisms f : P, — 3. We say that P is simple if P? is homeomorphic to
a disk.

We will sometimes refer to an 3-gon in ¥ respectively as a triangle and to a 4-gon —
as a quadrilateral.

2

Non-simple triangles in an annulus and in Ps(1)

Definition 3.12. For a marked surface ¥ let As be the Q-algebra generated by all .,
v € [['(2)] subject to

(i) &, = 1if v is trivial.

(ii) (triangle relations) For any triangle (y1,72,73) in ¥ one has

-1, _ —1
Loy T3, Ty = Ty, Ty Ty, - (3.1)

(iii) (exchange relations) For any quadrilateral (71, 72,73, 74) in X:

_ —1 —1
$724 - x721x731x734 + 33723.1‘713.13714 . (32)

Likewise (similarly to Section 2.5), we define the big triangle group Tx of ¥ to be
generated by all ¢, v € [['(X)] subject to:
o t, =1if v is trivial.

e (triangle relations) t, t;;t% = ty, 1!y, for all triangles (y1,72,73) in X.

The following fact is obvious.

Lemma 3.13. For each marked surface ¥ the assignments t, — x~ define a homomor-
phism of groups:

It is natural to conjecture that this homomorphism is an isomorphism.
The following result is also obvious.

Lemma 3.14. (a) For each marked surface ¥ there is a unique involutive anti-
automorphism - of As, (resp. of Ts) such that T = x= (resp ty = t5) for all v € [['(X)].
(b) If v is a simple special loop around i € I,(X)UI(X), then Ty = x., (Tesp. ty =t.).
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Remark 3.15. This bar anti-involution is analogous to the one in quantum algebras. Also,
Lemma 3.14(b) asserts that simple loops around an ordinary and special punctures are
“close relatives.”

The following result, in fact, asserts that the assignments > — Ty and X — Ay are
respectively functors Surf — Groups and Surf — Q — Alg.

Theorem 3.16. For any morphism f : ¥ — X' in Surf the assignments t., +— ty()
(resp. x = Tf(y)) define a homomorphism of groups f, : Ts. — Ty (resp. of algebras
fe : As — Asy ) and the following diagram is commutative

Ty —— Asx

f*l f*l . (3.4)

Ty — Asy

We prove Theorem 3.16 in Section 3.11.

Definition 3.17. For a marked surface ¥ denote by 3 the marked surface obtained from ¥
by turning each special puncture into the ordinary one, i.e., ¥ = X, I(f]) =I(2)uI(Y),
L(2) = 0.

A~ A

Clearly, [[(2)] C [[(2)] = I(2) and the complement [['(2)]\ [[(X)] consists of classes

of curves originating or terminating in formerly special punctures.

Proposition 3.18. The assignments t, + t, for v € [I'(X)] define a homomorphism of
groups

Ty, — Ti) y (35)
where 3 is as in Definition 3.17.

Remark 3.19. It is natural to conjecture that (3.5) is injective. Note, however, that the
natural identification Id : ¥ < 3 is not a morphism in Surf since it takes I,(X) to
Ip(f}), so we expect that there is no homomorphisms Ay — Ay, which together with
(3.5) would make the diagram (3.4) commutative, and illustrate this with the following
example.

Example 3.20. Let ¥ = P»(1) with the vertex set I = {1,2} and a single special punc-
ture 0. For ¢ € I denote by ~; the clockwise loop at 7 around 0 inside X. For 4,5 € I,
i # j denote by ’y;; (resp. ’y;) the boundary curve from ¢ to j so that 0 is to the right
(resp. to the left).
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A quadrilateral in P5(1)

We abbreviate z; := 2, T; == 25, z;; = Ty Ty 1= T,- for the corresponding
generators of Asy.

Then, according to Definition 3.12, Ay has a presentation:

= _ = _ + -1+ o= =1 - 4+ —1_+ _ - -1 -
L1 = X1, X2 = T2, Lo 1Ty Tyg = Ty ly Lyg, L1aly Lo = T1g¥g Loy

o1 ~ 1y TR N
Ty =Ty Ty Tig + T Ty Tig, T1 = TioTy Toy + T1oTy Toy -

Let 3 be obtained from ¥ by converting all special punctures into ordinary ones (as
in Definition 3.17). Therefore, curves on S are those on ¥ plus four additional ones:
directed intervals g ; from O to each 7 and ;o := Yo. 11 We abbreviate the generators of
Ay, same way as in As and zg; 1= T, ,, Ti0 = Ty, -

Then, according to Definition 3.12, A has a presentation:

T| =1, Tg = X2, ac;rlelez = x;lelxﬁ,

+, -1+ _ - =1 — -1 _ -1
TioTy Ty = T1pTy Toy, T01(T3) 5520—5”02(551%) 10

_ —1/. .+ - - —lipt -
T1 = T10Tqq (x5 + 1321)7 T2 = T20T1g (x5 + 9512) .
In particular,

=1 + —1 .+ . +o—1,.—
T2 =TTy Tip + Ty Ty Tip + T Ty Tip + Tg1 Ty Ty,

=1 + —1 .+ R + -1, -
Tl =TTy Toy + TiaTy Tgy + TioTy Toy + TiaTsy Toy -

Therefore, there is no homomorphism Ay — Ai or As, — As, which would send
i = Ty, mf; — x;‘; (which justifies Remark 3.19).

3.4. Triangulations of marked surfaces

Let ¥ be a marked surface, given distinct v,+" € [I'(X)], define their intersection
number n. 4 € Zx>o to be the number of intersection points in the interiors of their
generic representatives minus the endpoints of vy and +'. Clearly, n, . is well-defined,
i.e., does not depend on the choice of representatives. By definition, n, , = ny/ , = nx
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for all v,~’. Note that n, - = 0 iff v and 4" do not intersect (and may have only endpoints
in common).

Given a marked surface ¥, we say that a subset IV C T'°(X) is non-crossing if ny » = 0
for all distinct v,+" € I, i.e., one can simultaneously choose generic representatives of
classes in IV such that they pairwise do not intersect in ¥ and do not self-intersect (i.e.,
may have only endpoints in common). Furthermore, we say that A is a triangulation of
¥ if A is a maximal non-crossing subset of T°(X) such that A = A.

Clearly, if I,(X) # 0, then any triangulation A of ¥ has a special loop \;; at some
J € I5(¥) around each i € I,(X), i.e., \;; defines a 2-gon (\;;, Aij) in A homeomorphic to
Py(1). Tt is customary to fix a generic representative of each 4% € A so that X is literally
cut into triangles and P;(1)’s.

It is well-known that all triangulations of X are finite of same cardinality. Moreover,
any triangulation A’ can be obtained from a given triangulation A by a sequence of flips
of diagonals in quadrilaterals in A (see e.g., [12, Proposition 7.10] and [10, Theorem 4.2]).

Given an 7-gon Q = (y1,...,7,) in ¥ and a triangulation A of 3, we say that 40 € A
is attracted to Q if either 7° intersects @ or there is a triangle 7 = (y~,7%,7") in A such
that v~ intersects Q; denote by Ag = Ag(Q, A) the set of all v € A attracted to Q.

The following is immediate.

Theorem 3.21. Let A be a triangulation of 3. Then for each r-gon Q = (v;,...,7.) in
Y there exists an n-gon P = (y1,...,%) € (Ao(Q, A))™ for some n > r, a triangulation
A of [n], and an order-preserving embedding v : [r] < [n] such that:

(a) vij € Ao(Q,A) iff (i,5) € AC.

(0) Vi = Vu(k),u (et for all k € [r] (i.e., Q is a “sub-polygon” of P).

In fact, if @ = (7,7), v € [['(¥)], we will construct a canonical polygon Pa(y) as
follows.
We need the following obvious fact.

Lemma 3.22. Let A be a triangulation of ¥ and let v € [I'(X)] \ A. Then there exists a
unique (up to relabeling) triangle 71 = (y1,7—,7v4+) € A® such that n,_ > 0 and the
closest to s(v) intersection point of v with A is the intersection point of v and y_.

The initial triangle for

We refer to such a triangle as initial for +. Fix the initial triangle 7 as in Lemma 3.22
and denote by v(!) the unique (class of) curve which starts as y_, follows this “route” until
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the first intersection point of v_ and - and then “becomes” 7. Repeating this process,

(s)

we obtain a new initial triangle 75 = (v, v ﬁf)) for v*), s =1,...,5—1, where j > 2

is unique with vU) = v; € A. This process converges by induction in ny A := > 744,
YoEA
because ny A > nym A > 0 > nyo A = 0. Denote Fa(y) == (71,-..,75) € A7 and
refer to this sequence as a A-factorization of . By definition, v € vy 0--- 0, in the
multi-groupoid [T'(X)], which justifies the terminology.
Finally, we set Pa(y) := (Fa(y), Fa(%)) and refer to it as the canonical polygon of v
in A due to the following obvious result.

Lemma 3.23. Each Pa(v) = (71, -.,7n) S an n-gon in A.

Canonical polygon, no special punctures, v self-intersects

X; .r | <O> | | ‘ |

Canonical polygon, one special puncture

3.5. Triangle groups and their topological invariance

For each triangulation A of ¥ we define the triangle group Ta = Ta(X) to be gener-
ated by all t$1, ~ € A subject to (same relations as in Ty):



A. Berenstein, V. Retakh / Advances in Mathematics 328 (2018) 1010-1087 1063

o t, = 1if v is trivial.
LI t;zltA,3 = t;gt;;tgl for any triangle T' = (y1,v2,73) in A.

Also, for each triangulation A of ¥ denote by YA the subgroup of Ta generated by:

—1
Yy =t by
for all v,~4" € A such that (v,7/,v") is a triangle in A for some 7" € A.

Theorem 3.24. For any two triangulations A and A’ of a marked surface ¥ there exists
a group isomorphism:

Jana i TA=ZTa
such that faan(Ya) =Yar.
We prove Theorem 3.24 in Section 3.11.

Remark 3.25. Theorem 3.24 implies that isomorphism classes of groups Ta and Yy are
topological invariants of surfaces. However, by contrast with Theorem 3.16, we do not
expect the assignments 3 +— Ta to be functorial.

Our next result is classification of triangle groups of marked surfaces.

Theorem 3.26. Let ¥ be a marked surface with the Euler characteristic x(X3), the set
I =I(X) # 0 of marked points, the set I, C I of marked boundary points, and h = |I]
special punctures. Then for any triangulation A of 3 one has:
(a) If ¥ has a boundary or special punctures, then Ta is a free group in:

o |I| + 1 generators if 3 is a disk with |I| + |Iy| =2, h =0.

o 2h + 3|I| — 4 generators if ¥ is a disk with |I| + |I| =2, h > 0.

o 2h +4(|I| — x(X)) — |Ib| generators otherwise.
(b) If ¥ is a closed surface without special punctures, then Ta is:

o Trivial if ¥ is the sphere with |I| = 1.

o A free group in 3|I| — 4 generators if ¥ is the sphere with |I| € {2,3}.

o A free group in 2 generators if ¥ is the real projective plane with |I| = 1.

o A 1-relator torsion free group (in the sense of Definition A.6) in 4(|I] — x(2)) +1
generators otherwise.

We prove Theorem 3.26 in Section 3.12 by choosing an appropriate triangulation of X.

Remark 3.27. If 3 has r boundary components, then it is homotopy equivalent to a
bunch of g > r circles and x(X) = 1—g. If ¥ is a closed orientable (resp. non-orientable)
surface, then it is homeomorphic the connected sum of g copies of the torus (resp. of the
real projective plane) and x(X) = 2 — 2g (resp. x(X) =2 — g).
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Example 3.28 (See Example 3.51 below for details). If A is a triangulation of the torus,
the Klein bottle, the real projective plane respectively with one, one, two (ordinary)
punctures, then Ta is generated by variables a, b, ¢, d, e subject to, respectively the fol-
lowing relations:

(i) for the torus with one puncture: abede = cbeda;

(ii) for the Klein bottle with one puncture: abcde = ebeda;

(iii) for the real projective plane with two punctures: abcbe = ededa.

Example 3.29. If A is a triangulation of the sphere with m + 1 punctures, we can view
it as glued from a regular 2m-gon with S = [m] C [2m], o(k) = m+1 -k, e(k) = + for
k € [m] (with some notation from the proof of Theorem 3.26 in Section 3.12). Then Ta
is generated by ci,..., Com, t3,...,tam_1 subject to the relation t3csty - - - com—_otom—_1 =

lom—1C3tam—2 - - - Cam—2l3.
3.6. Noncommutative Laurent Phenomenon for surfaces

The following result extends Noncommutative Laurent Phenomenon for n-gons (The-
orem 2.10) to all marked surfaces.

Theorem 3.30 (Noncommutative Laurent Phenomenon for surfaces). Let ¥ be a marked
surface and let A be a triangulation of X. Then for each v € [I'(X)] the element x of
As belongs to the subalgebra of As generated by :cffol, Yo € A. More precisely, in the
notation of Theorem 2.10, one has

Ty = Z Ti (3.6)

icAdm o(1,5)

where A° is the triangulation of [n] assigned (as in Theorem 3.21(a)) to the canonical
polygon Pa(Y) = (71,-..,7n) tn A with v = v1 5, and we abbreviated

e _1 PR _1

Ti *= Loy iy x'Yig,ig Tig.ia x7i2m71,i2m72:L.’Yi27n,71'ri2m
for an i=(0 ) 2m >1
y sequence i = (i1,...,i2m) € [n]*™, m > 1.

We prove Theorem 3.30 in Section 3.11.
Remark 3.31. Theorem 3.30 is a noncommutative generalization of [23, Theorem 6.1].

Example 3.32. Let 3 be a regular triangle with the clockwise vertex set I = {1,2,3} and
a special puncture 0 in the center. For ¢ € I denote by \; the special loop at ¢ around O.
As in Example 3.7, for ¢,j € I, i # j denote by 7;; (resp. v;;) the curve from i to j so
that 0 is to the right (resp. to the left) of the curve and abbreviate x; := x,, xf; =T
for the corresponding generators of Asy.
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Clearly, every triangulation of 3 contains vi5, Va1, Yas, V32, Va1, Y1z Let A be the tri-
angulation of ¥ containing also 1 and 5. Then (3.6) reads:

gt =l = ==l = =kl o == = =1 — =1 —
Tg = To Ty Tip+Tg Ty Tyg, $23—5E21($21) T3+ T Ty Tiz+To T,y T15(775) L1355
R (b VL= (=1 = (p—)—1 +y-1,.+
L3 = L3127 $13+$31($21) Ty (73) 3323"'9332(%2) z1(73;) La3

+ 133_2(171_2)71331—2(%_2)71@1_3 + Ig_l (l’;l)71172_1$1_15CT2(%_2)71%_3 .

Let 3 be as in Definition 3.17. Therefore, simple curves on 3 are those on ¥ plus six
additional ones: directed intervals 7o; from 0 to each ¢ and v, := 7, ;. We abbreviate
the generators of Ag, same way as in As and zo; 1= T, ,, Ti0 = T, -

Let A be the triangulation of 3 obtained from A by adding the intervals Y0,1 and ¥1 0.
Then (3.6) reads:

1 - 1 - _ - N— _
w3 = wg07 w3 +agy(23) g (23) Tlags + ag(en) e (23) e,

+agy () e (o) e 4 a (ad)) Tragay ey (ey) el +

_ N 1 N1 — 1 - 1 -
+ oy (23)) ady + ag () el + afiay el (a) T e + 2 (23) T eg ey e
3.7. Noncommutative (n,1)-gon

In this section we consider the (n,1)-gon ¥ = P, (1) (with the clockwise ordering of the
set [n] = Iy(P(n,1))). We abbreviate A, 1 := Ay, and refer to it as the noncommutative
(n,1)-gon. Clearly, A, 1 is generated by ;z:f; =+ and (xfj)’l, i,j € [n], where 7$ is

ij

+ =

the curve corresponding to (3,7, =) under the bijection in Lemma 3.10 where x} i

for i € [n] (we abbreviate z; := z; = ;). The following is immediate.

Lemma 3.33. The algebra A, 1 is generated by (mfj)il, 1,7 € [n] subject to:
(i) (triangle relations) For any distinct i, j, k € [n]:

oh () Lat +y-1.,.—

_ == N=1_ - 4+ —\—1 4+ _ -
ii\Trj) Ty = mik(xjk) mji’xij($kj) Lpi = xik(xjk) L -
(ii) (2-gon exchange relations) For any distinct i,j € [n]:

C— ot l— - =1+
Tj=T5,T, xij+mjixi T -

(iii) (4-gon exchange relations) For any cyclic (i,j,k,¢) in [n] and € € {—,+}:

ah = xj_k(xfk)ileé ()l ol = xfk(x;ks)ilxj_; + o (ag) g
Ty = x;k(xfk)ilxi_é + xj_i(@;ja)ilxlzee g =g (xh,) e + me_ka(xj_ka)ilxji

Clearly, the assignments xf; — xﬁ define an involutive anti-automorphism of A, 1.

One can easily show
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i if i € [n]
i—n ifi¢n]

Also for distinct 4,5 € [2n] define the sign ¢;; € {—,+} by setting ¢;; := + if the
clockwise arc from ¢ to j is shorter than the clockwise arc from ¢ to i +n and €;; := —

For each n > 1 define a map 7 : [2n] — [n] by 7(i) = {

otherwise.

Note that the restriction of the function f : C — C given by z — 22 to the unit disk
D C C centered at 0 is a map f : D — D hence for each n > 1 it is a morphism f, :
Py, — P,(1) in Surf for all n > 1 (where the marked boundary points are appropriate
roots of unity and the special puncture in P, (1) is the center 0 of D). The following is
immediate corollary of Theorems 3.9 and 3.16.

Corollary 3.34. For each n > 1 one has:

e The morphism f, in Surf defines a surjective map T'(Psy,) = [2n] X [2n] — [n] X
[n] x {—,4+} = [['(P(n,1))] given by (i) — ’yfrié)m(j) for all distinct i,j € [2n].

e The assignments x;; — 31:7?(’1)7r

of algebras (fn)« : Agn = Ap 1.

) for all distinct i,j € [2n], define an epimorphism

Remark 3.35. For any 1 < i < j < k < n, the triple (Wi;,'yjjc,vlgi) is a triangle in
Y = P(n, 1) because it is the image of the triangle (i,j + n, k) in [2n] under the above
morphism f,, : Py, — P,(1). Note, however, that all intersections Yii OV Vi Yig O Ve
’yj_k M 7y; are non-empty.

3.8. Universal localizations of noncommutative surfaces

Generalizing (2.4), for any triangulation A of any marked surface ¥ let Aa be the
subalgebra of Ay, generated by all z, v € [[(X)] and all 27!, o € A.
Clearly, the assignments ¢, — z, v € A define a homomorphisms of algebras:

iA : QTA — .AA . (37)
The following result is a generalization of Theorem 2.8 to all marked surfaces.
Theorem 3.36. For each triangulation A of 3 one has:
(a) The homomorphism ian given by (3.7) is an isomorphism of algebras.
(b) As = AA[STY], where S is the submonoid of Aa \ {0} generated by all x.,
Y e L))

We prove Theorem 3.36 in Section 3.13.
Theorems 3.26, 3.36, and A.7 imply the following.

Corollary 3.37. For each triangulation A of X the homomorphism (3.7) is injective.
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Theorem 3.36 implies that for each ¥ the natural homomorphism QT A < Frac(QTa)
defines a homomorphism of algebras:

As — Frac(QT,A) . (3.8)
In view of Theorem A.7, we propose the following conjecture.

Conjecture 3.38. For each X the homomorphism (3.8) is injective, e.g., the submonoid
Sa of QTa \ {0} is divisible in the sense of Definition A.4.

Remark 3.39. Conjecture 3.38 generalizes the expected injectivity of (2.3). To prove
Conjecture 3.38 for non-closed surfaces (i.e., with free T according to Theorem 3.26) it
would suffice to show that the monoid Sa is generated by Q* - Ta and a subset of prime
elements in QTA.

3.9. Noncommutative angles and reqular elements in noncommutative surfaces

Similarly to Section 2.3, for each triangle (71,72, v3) denote by T, ., ,, the element
of Ay, given by:

_ 1 -1
T’Yla’Ym’Ys - ‘Tﬁl Lryg z73 (3.9)

and refer to it as a noncommutative angle of (y1,72,73) at s(y1) = t(73).
Given a triangulation A of X, for any i € I define the total angle T~ at i € I by:

TiA = ZT71772,73 ’ (310)

where the summation is over all clockwise triangles (y1,72,73) in A such that s(y;) = i.
Theorem 3.40. For any triangulations A, A’ of ¥ and i € I one has:
TA =12 .

Therefore, in what follows, we simply denote T; := TZ-A for any triangulation A of 3.

Furthermore, denote by Us; the subalgebra of As; generated by all z,, v € [I['(¥)],
x;ol, Yo € OT'(X) and all total angles T;.

In particular, the algebra U,, from 2.3 is naturally isomorphic to Up, . The following
is an analogue of Lemma 2.18.

Lemma 3.41. The algebra Us, satisfies the following relations:
(a) (reduced triangle relations) for all triangles (y1,72,73) in [L(X)] such that v2 is a
boundary curve:

S D
Toyy Ty Toyy = Ty, T Ty, (3.11)
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(b) (reduced exchange relations) for all quadrilaterals (v1,7v2,73,74) in ¥ such that
Y2,73 are boundary curves:

-1 _ -1
.’17713!7}23 x’Y24 - x’Yl4 + 56‘712.’[}7321‘734 . (312)

Remark 3.42. It is natural to conjecture that the relations (3.11) and (3.12) are defining
for Us;.

Noncommutative Laurent phenomenon (3.6) guarantees that Us; belongs to each sub-
algebra Aa C As.
The following is an analogue of Conjecture 2.20.

Conjecture 3.43. For each n > 2 one has:

Us =()Aa (3.13)
A

where the intersection is over all triangulations A of X.

We say that an element of Ay is regular if it belongs to each subalgebra Aa as A
runs over all triangulations of 3. Thus, similarly to Section 2.3, Conjecture 3.43 asserts
that regular elements of Asx, belong to Us.

3.10. Noncommutative cohomology of surfaces

Given a surface X, for each triangle (v1,72,73) in ¥ we define the element
Ty yemys € As (in notation (3.9)) by:

Tyivevs = Ivivevs T Tromsm + Thgme -

That is, Ty, 4,5 1S the sum of all noncommutative angles of the triangle (v, v2,7s3).

Then define the algebra H(X) to be the quotient of Ayx, by the ideal generated by all
Ty vavs) = Tvives) @8 (71,72,73) and (71,73, 73) run independently over all triangles
of ¥. We refer to H(X) as the noncommutative cohomology of X.

This notation is justified by the following construction.

Fix a triangulation A of . For each loop 6 in ¥ which does not pass through marked
points, define the element [0])y € A by:

[9]/A = Z Evi,v2,73 (0) - T e ys

the summation is over all clockwise triangles (v1,72,73) in A such that 6 intersects v,
1 if v3 is to the right of 6

and 7y, (but not 3) and e, 4,45 (0) 1=
( ) noms (0) —1 if g is to the left of §
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Note that if & = 6; is a (small) clockwise loop around a puncture i € I, then [0]y = T2,
the total angle at 4 (defined in (3.10)).
Furthermore, define [0]a € H(X) by

[0]a :=7(ia([0]A)) ,

where ia is the homomorphism QTa — As given by (3.7) and 7 : Ay — H(X) is the
canonical epimorphism.
The following immediate result is an analogue of Theorem 3.40.

Theorem 3.44. Given a loop on ¥ not passing through marked points, then for any tri-
angulations A and A’ of ¥ one has:

This allows us to define a noncommutative loop [0] € H(X) by [0] := [f]a for any
triangulation A of X.

3.11. Proof of Theorems 3.6, 3.9, 5.16, 3.2/, and 3.30

Proof of Theorem 3.6. Clearly, the composition f' o f : ¥ — X" is a continuous map
with finite fibers. Also,

(f o NTHIE") = f7H T UE) = FHIED) = 1(8)
(f" o NHI(E)) = f1(f(Is(2)) C f1(1:(X) C L(Z") .

This verifies the first requirement of Definition 3.5 for f’ o f.
Furthermore, prove that I7°f = If | f_l(If/). Indeed,

HF = (fo /)" L(E")\ L(E) = 1T IL(S") \ L(Z)
= fTHLE)V U\ L(D) = (FHIE) U I\ (D) = I u 1!

since [/ (I(2") = L(E)YUTH, f7HI(E)) = fHIEN\ I, fHIT) N I(E) = 0,
and f~1 (AU B) = f~1(A)U f~Y(B) for any disjoint subsets A and B of ¥'.

Let now p € £\ I7°f. By above, this is equivalent to that p € 2\ I/ and f(p) € &'\ I1".
Hence there is a neighborhood O, of p in ¥ (O, is a half-neighborhood if p € 9X) such
that the restriction of f to O, is injective and a (half-)neighborhood Oy, of f(p) in &’
such that the restriction of f’ to Oy,) is injective. In particular, O, := FHOsp) is a
neighborhood of p in ¥ and the restriction of f’ o f to O;) is injective. This verifies the
second requirement of Definition 3.5 for f’ o f.

Let now p € If'of. By above, this is equivalent to that either p € I/ or f(p) € 17,
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In the first case, clearly, f(p) € X'\ 1/ ', therefore there is a neighborhood © f(p) of f(p)
in ¥’ such that the restriction of f’ to Oy (p) is injective and a neighborhood U, of p in ¥
such that the restriction of f to U, is a two-fold cover of the neighborhood O, = f(U,)
ramified at f(p). Therefore, the restriction of f to the neighborhood U, = ~HOo,N 0,)
is a two-fold cover of O, N O}, ramified at f(p) and the restriction of f’ to O, N O, is
injective. Thus, the restriction of f’o f to U, is a two-fold cover of f(O, N O,) ramified
at (/o )(p).

In the second case, clearly, p € X\ I/, therefore there is a neighborhood Opofpin ¥
such that the restriction of f to O, is injective and a neighborhood Uy ,) of f(p) in p
such that the restriction of f’ to Uy, is a two-fold cover of the neighborhood Oy/(¢¢p)) =
f(Uy) ramified at f(f'(p)). Therefore, the restriction of f’ to the neighborhood }(p) =
f(Op) NU(p) is a two-fold cover of f'(U},) ramified at f'(f(p)) and the restriction of
ftoO, = f_l(l/{}(p)) is injective. Thus, the restriction of f'o f to O, is a two-fold cover
of f'(Uy,,) ramified at (f"o f)(p).

This verifies the last requirement of Definition 3.5 for f’ o f.

The theorem is proved. O

Proof of Theorem 3.9. Without loss of generality, it suffices to prove the first assertion
in the case when C C C’ and C’\ C is a single loop around i € I/ not enclosing any
points I(X) U I,(X) U I/ \ {i} (where we regard C and C” as subsets of ). Moreover, it
suffices to take C' = {p} for some p € X, p # i, so that C’ is a simple loop at p around ¢
(e.g., C" is contractible to p in X\ I(X)).

By definition, there is a neighborhood U, of p such that the restriction of f to U, is a
two-fold cover of f(U,) ramified at f(p). Once again, without loss of generality, we may
assume that C’ intersects U, and there exist exactly two distinct points p’,p” € C such
that f(p') = f(p"). This implies that f(C’) C ¥’ is a (self-intersecting) loop at f(p) with
a single self-intersection point f(p’) = f(p”). If we denote by +' the equivalence class of
FC) in X'\ (I(Z) U LX) U{f(p)}, then, clearly, [y']; is trivial.

This proves (a).

Parts (b), (c) and (d) follow.

The theorem is proved. O

Proof of Theorem 3.16. We need the following fact.

Lemma 3.45. In the notation of Theorem 3.9, for any polygon P = (vy1,...,7n) in X the
tuple f(P) = (f(71),-.., f(7n)) s a polygon in X'.

Proof. Indeed, let P = (y1,...,7,) be a polygon in ¥ and let g : P, — X be an
accompanying morphism. Then ¢’ = f o g is a morphism P, — X’ in Surf such that
g'(i,it) = f(y;) for i € [n], i.e., f(P) is an n-gon in X').

The lemma is proved. O
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Thus the triangle relations in Ty, are carried by f, to those in Tys/. This proves the
assertion for groups.

Likewise, the triangle and exchange relations in Ay are carried by f, to those in Ax:.
This proves the assertion for algebras. The commutativity of the diagram (3.4) follows.

The theorem is proved. O

Proof of Theorem 3.24. It suffices to prove the assertion only for neighboring triangula-
tions A and A’, i.e., for a quadrilateral (y1,72,73,74) in A such that A\ A’ = {713,731}

and A’ \ A= {’724,’}/42}.
The following result is obvious.

t712t';412t’)’43 Zf“Y =713

Lemma 3.46. In the notation as above, the assignment t, t734t;2{1t721 if v = a1

Ty otherwise
fori,j € 4], i # j, defines an isomorphism pa ar : TaA=Tar.

The second assertion follows immediately because one has for v,y € A, v ¢

{713, 731}3

t’7211 t724t’>’34t7’ if Y =713 Yv12,v24Yvas,y! if Y ="3
fan(Yyy) = t’y413t742t712t7' if v =731 =  Yrsaye¥ror,y 7 =73 €Var.
oy otherwise Yvy' otherwise

This proves the theorem. O

Proof of Theorem 3.30. Indeed, let f : P, — ¥ be an accompanying map for the canon-
ical polygon Pa(y) = (71,---,7)- Then, by Theorem 3.16, the assignments x;; + 2.,
define an algebra homomorphism f, : A,, — As, where A,, = Ap, is the noncommuta-
tive n-gon as in Section 2.2. Applying f, to (2.5) with i = 1 yields (3.6).

The theorem is proved. O

3.12. Noncommutative triangle groups and proof of Theorem 3.26

We need the following immediate result.

Lemma 3.47. For any marked surface ¥ there is n > 1, a subset S C [n], an injective
map o : S — [n]\ S, and a function e : S — {—,+} such that ¥ is obtained fmm P, (h),
(0()F,0(i) ife(i)=

or all
(0(i),0(i)*) ife(i) = f

h = |I4(%)| by gluing the chord (i,i*) to the chord {

ieS.
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Remark 3.48. Clearly, for any n > 2 and any pair (0,¢) as in Lemma 3.47, there is a
marked surface X, . obtained from P, (h) by such a gluing procedure.

The following is an obvious version of Theorem 3.16.

Lemma 3.49. Let f : ¥ — X/ be as in Theorem 3.16 and let A and A’ be triangulations of
¥ and ¥ respectively such that f(A) C A'. Then the assignments t, = ts,) for v € A
define homomorphism of groups f. :Ta — Ta.

Combining Lemmas 3.47 and 3.49 and taking into account that under the gluing map
f i Po(h) — X, the image f(A) of any triangulation A of P,(h) is a triangulation of
¥ =¥, ., we see that the quotient group of Ta by the relations

to’ i) t,o0(i if 1) = tg ).o(i if ) = +
i+ = (@to@ 1 6(2) + s = (i)o()+ 1 E(Z) ’ (3.14)
to(i)o(+ i (i) =— R 1 0))

i € S, is naturally isomorphic to Tf(a) (of course, Tfay = Tar for any triangulation
A" of ¥ by Theorem 3.24).
We will use this observation with the appropriately modified starlike triangulation
A = A, of P,(h), where A, is the starlike triangulation of [n] as in (2.6) with i = 1.
Namely, for all n > 2, Ay is obtained from A; by adding h curves WS), s € [h]
from the vertex 1 to the vertex 2 outside of A; so that each 2-gon ((7§;))_177$71)),
s € [h] contains exactly one special puncture (here, with a slight abuse of notation, 'ylg

is the chord (1,2) in [n]) and a clockwise loop ’yf) around each special puncture inside

S)\ — s—1
(W), s e [n).

Lemma 3.50. Suppose that n > 2. Then the group Tx, is generated by t; = le’ﬁ,

i=3....n—1, ¢, = tg g+, Ck = tk+,k7 k € [’ﬂ], Ys = tvfé)’ Zg = t"/fqh s € [h], and
Un =l my-as subject to (if n >4):
12

Cot3cz -ty 1Cn_1C, c1 = CiC, Cpo1tn_1Cn_2 - - t3Ca (3.15)
and (if h>0):

Uy = (21 yier 20) (25 awn tee) - (2 tunyy o) (3.16)
Proof. Clearly, t1; = citaca---tj_1cj—1, tju1 = Cj_1tj—1---Cotacy in Tp, for j =

1,...,n. Thus, Ta, is generated by to,...,tn_1, ck, Tk, K = 1,...,n subject to the
relations:

Cp = C1taco - - Cpatp_1Cn—1,Cn = Cp—1lp—1 - CataCy .
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By eliminating to, we see that Ta, is subject to the relation (3.15). Further-
more, the 1-gon relations in the 1-gons (’y%s)) and triangle relations in the triangles
((’){;))71’7597’){;_1)) for the remaining generators Ys = t,y(s)a ys = t(,y(s))—l Zs = t,y(s)a

12 12 1
Zs =t )1, 5 € {0} L[] of T read:

= _ — =—1 = -1
Rs = Zsy Ysfs Ys—1 = Ys_17s Ys

for s € [h] (here yo = ¢1, Yo = ¢1). That is, one can eliminate all Z,, s € [h] and one can
solve recursively for all 7, s € [h]:

T, =121 'y 21) (25 tyeyr Pa2) - (25 sy zs)

so that the remaining generators z; and ys, s € [h] are free.
The lemma is proved. O

Combining Lemmas 3.47 and 3.50, we see that for n > 3 the group Ty(a) is generated

by tj,j=3,...,n—1, ¢, G, k=1,....,n, ys, 25, s € [h], and 7, subject to (3.15) and
the following relations for all ¢ € S:

¢ ife(i) =4 _ ¢ ife(d)=+
Co(i) = yCo(i) = ;

c ife(d)=— it e(i) = —
where ¢ ;= G izl 7 = e ifi#1
l Y ifi=1"" y, ifi=1

Thus, if n > 3, then the group Tz has (n —3) +2(n—|[S|) +2h = 3n -3 —2|S|+2h
generators t;, j = 3,...,n— 1, ¢k, Gk, k € [n]\ 0(5), ys, 2s, s € [h] and exactly one
relation (3.15). Now compute the Euler characteristic of ¥ using the triangulation A" of
Y. obtained by removing all h loops around special punctures from f(A). By definition,

xE)=[-E+T,

where FE is the number of edges and T is the number of triangles in A”. Clearly, T = n—2
and F = (n —3) + (n — |5]), therefore,

1
X(2) = 1]~ ((n=3) + (= IS) +n—2 = 11|+ 1=t |8] = 1] 41— & — ]

because n — 2|S| = |I|. Therefore, the number of generators of T4 is:

bt
3n—3—2|S\+2h:2n—3+|Ib|—|—2h:4(|1\+1—X(E)—%)—3+|Ib|+2h

=4I| = x(2)) +1— || + 2h .



1074 A. Berenstein, V. Retakh / Advances in Mathematics 328 (2018) 1010-1087

We now consider several cases.
Case 1. n > 3 and either ¥ has boundary, i.e., SUc(S) # [n] or A > 0. The above implies
that Tya) is free in 4(|1| — x(¥)) — [1s| + 2h generators.
Case 2. n = 2 (hence h > 0). Then, clearly, Tz is a free group in 2h + 2 generators.
Therefore:

o If n =2, h > 2, then Ty(a) is free in 2h + 2 — 2|S| generators, where |S| € {0,1}.

o If n =2, h =1, then Ty is free in 4 — S| generators, where |S| € {0,1}.
Case 3. n = 1, then f is the identity map and ¥ is a disk with |I| = || = 1 and h
special punctures. If h = 0, then, clearly, Tx is free in two generators ¢, and t=, where
~ is the clockwise loop. Suppose that A > 0. Then one can choose a triangulation A of
Y in such a way that, in addition to v it consists of a special loop Ag, s € [h] around
each special puncture and a clockwise loop ;s enclosing first s special punctures (from
the left to the right), s = 2,...,h (so that Ay =1 and v, = 7). Then Tx is generated
by zs = tx,, Ys = ty,, U = ly,, s € [h] subject to the following triangle relations in the
h — 1 triangles (Vs—1,As,7s), $ = 2,..., A

1 1
Ys—175 "Ys = YsZs Ys—1

for s = 2,...,h if h > 2. That is, similarly to the equations (3.16), one can solve
recursively for all §,, s =2,..., h:

Vo = (295 010s) -+ (2395 " 2312) - (2227 ' 2221)

(since y; = 7; = z1) so that Ta is freely generated by zs, s € [h] and ys, s = 2,..., h.
This finishes the proof of Theorem 3.26(a).
Case 4. n > 3 and ¥ has no boundary, i.e., || = 0 hence S U o (S) = [n] and h = 0.
Then n = 2|S| is even and Tya) is a 1-relator torsion-free group in 4(|I| — x(X)) + 1
generators ty, k = 3,...,n — 1, ¢4, C, k € S. Suppose that ¥ is a sphere with |I| < 3
punctures. Then Ta) trivial for |I| = 1 because all loops are contractible, is free in 2
generators t, and t,-1 if |[I| = 2, where 7 is an arc between these two punctures, and
if |I| = 3, it is free in 5 generators, because we can take S = {1,3} C [4], o(1) = 2,
0(3) =4, (1) = (3) = + so that Ty(a) is freely generated by c1,¢1, c3,¢3,t1. Otherwise,
it is, clearly, non-free. This finishes the proof of Theorem 3.26(Db).
The theorem is proved. O

Example 3.51. If A is a triangulation of the torus, the Klein bottle, the real projec-
tive plane respectively with one, one, two (ordinary) punctures, then Tx is generated
by ¢1, ¢, ¢1,Ca, t3 subject to, respectively (with some notation from the proof of Theo-
rem 3.26 in Section 3.12):

(i) for the torus with one puncture: Cthélc{lcl = Eﬁ{lcltgég, because A is glued
from a square with diagonal (1, 3), where: S = {1,2} C [4], 0(1) =3, 0(2) =4, (1) =
£(2) = + (equivalently, abcde = cbeda after substitution a = t3, b =7¢;, c = 02_1, d=cy,
e=725").
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(ii) for the Klein bottle with one puncture: 02t3616{101 = Elcglcltgﬁg, because A is
glued from a square with diagonal (1,3), where: S = {1,2} C [4], o(1) = 3, 0(2) = 4,

e(1) = 4+, €(2) = — (equivalently, abcde = ebeda after substitution a = t3, b = ¢,
c=C Ld=c,e=ct).

(iii) for the real projective plane with two punctures: cztgclﬁglcl = Elcglélt;ﬁg,
because A is glued from a square with diagonal (1,3), where: S = {1,2} C [4], o(1) = 3,
0(2) =4, £(1) = £(2) = — (equivalently, abcbc = ededa after substitution a = t3, b = ¢y,

0252717 d=7¢,e= 051).
3.18. Noncommutative curves and proof of Theorem 3.30

For each v € [I'(¥)], a triangulation A of 3 define the elements t, A € QT A same way
as in Theorem 2.10:

= > h, (3.17)

icAdm o(1,5)

where A® is the triangulation of [n] assigned (as in Theorem 3.21(a)) to A and the
canonical polygon Pa(v) = (71,...,7n) with v = 71 ; and we abbreviated

— _1 PR _1
ti 1= t'Yil Jig t’Yig,ig t7i3ai4 t%gm,l vigm_2 t%sz1 i2m
for any sequence i = (iy,...,i2,) € [n]?™, m > 1.

We refer each t$ as it as a noncommutative triangulated curve.

Clearly, if ¥ = P,(0) is an n-gon (i.e., a disk with I(X) = I,(X) = [n]) so that
v = (p,q) € [n] x [n], then ¢ = t£, is as in (2.40).

To finish the proof of Theorem 3.36, we need the following result.

Proposition 3.52. The assignments x — t$ for v € [I'(X)] define an epimorphism of
algebras

As — QTA[SK'] (3.18)
where Sa is the sub-monoid of QT A generated by all tﬁ.

Proof. It suffices to show that the elements t$ satisfy the defining relations of Ay from
Definition 3.12.
We need the following result.

Lemma 3.53. Let Q = (71, ...,7.) be ann-gon in ¥ and let A be any triangulation of X.
Then the assignments x;; — x,;, i,j € [r] define a homomorphism of algebras

A, — QTA[SK'] . (3.19)
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Proof. Let P = (71,...,7), A% and ¢ : [r] = [n] be as in Theorem 3.21. Then, in view
of Theorem, for any accompanying morphism f : P, — ¥ Therefore, the assignments
(i,7) — f(i,j) = ij restricted to A® define a homomorphism of algebras fa : QT a0 —
QT A such that fA(tiAjo) = t%j for i,j € [n]. Since fa(Sac) C Sa, then passing to the
universal localizations, this gives an algebra homomorphism

QTao[Sxs] — QTA[SK'] -

Composing it with the isomorphism A, = QTao[Sxs] given by Theorem 2.8(b) and
the homomorphism A, — A, given by zx, = z,4),.) give the desired homomor-
phism (3.19). The lemma is proved. O

Using the Lemma with r = 3,4, we finish the proof of the proposition. O

Since each @, v € [['(X)] is invertible in As;, the universality of localization QT A[S']
implies that (3.7) extends to a homomorphism of algebras

QTA[SK'] — As . (3.20)

By the construction and Theorem 3.30, (3.7) takes each t$ to xa and therefore is an
epimorphism Q[TaA] = Aa. In turn, (3.20) is an epimorphism as well.

Thus, we obtained two mutually inverse epimorphisms (3.19) and (3.20), which implies
that they are isomorphisms of algebras.

Therefore, (3.18) is an isomorphism, which proves Theorem 3.36(b). Theorem 3.36(a)
also follows because (3.7) is a restriction to QTa of the isomorphism (3.20) and
ia(QTA) = Aa.

Theorem 3.36 is proved. O

4. Noncommutative discrete integrable systems
4.1. An integrable system on a cylinder

Denote by ¥4 ,, an annulus (i.e., a cylinder) with no punctures, one marked point p
on the outer circle and r marked points py, ..., p, on the inner circle (listed clockwise).

It is easy to see that equivalence classes of curves from p to {p1,...,p,} in X1, are
in a natural bijection with Z: the n-th curve v,, goes (without self-intersections) from p
to ps where s = n mod r and ~, has the winding number ¢ such that n = rq + s (so
that the arc is winding clockwise if ¢ > 0 and counterclockwise if ¢ < 0).

We also denote ~; (resp. 7, ) the short counterclockwise boundary arc in the inner
circle from p; to the previous point p;— (resp. from p;- to p;), i € [r]; and by v+ (resp. 7 1)
the clockwise (resp. counterclockwise) loop in the outer circle.
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We abbreviate in the algebra .Azl’rz Ty 1= Ty, Ty i= Ty, , Cp 1= x%ﬂﬁn =T d:=
Ty, d = x5+ for n € Z (where we extend +,, periodically so that v, ,, = v, for all
n € Z).

Since (V,_1,7", Yn—r,75 ) is @ 4-gon in I'(X;,) = [[(Z1,)] containing triangles
(V=1 Tp—1>Tn) and (7,,, 7", Yn—r) for all n € Z, the following fact is immediate from
Definition 3.12.

Lemma 4.1. For each r > 1 one has in As, . :
(i) (triangle relations)

——1= —1- - 51 - -1
Tn-1C,, Tpm = TnC, Tn—1, Tnd Tp_p =Tp_rd Ty . (4.1)
(ii) (exchange relations) For each n € Z:
—1

—_ —1 _ -1 — 5 _ —_ -1
Tnr1d " Tp =Cp +Tp_1d Ln—r, Tnd Tpp1=Cp+Tnrd Tp_1. (42)

Note that for each m € Z the annulus ; , has a triangulation

Am = {7+37+;7;77; "'77;377?;7771’7771,'"77m+raim+r} .

Triangulation A; of the cylinder ¥ o

Hence the group T, generated by z,,Z,, n = 1,...,7 + 1, ¢;,¢, i = 1,...,7, d,d
subject to the triangle relations

_ -1 " 1 —1—
Trp1d x1 =T1d " Tyy1, Ts—1C, Ts = TsCq Ts—1, (4.3)

s=2,...,r+1 (with the convention p,, = p, hence ¢, 1, = ¢y, Gryn, =y, for n € Z) is
naturally isomorphic to the triangle group Ta,. Moreover, in the notation of Section 3.8,
the subalgebra Aa, of As; (generated by all 2, v € I'(¥4 ) and all x;ol, Yo € Aq) is the
group algebra ZT, by Theorem 3.36(a).

Proposition 4.2. For each r > 1 we have:
(a) Each x,, Ty, n € Z is sum of elements of T, in ZT,..
(b) The total angle T, € ZT, at p is given by T, = E_lacn,rac;l +d eyt =

Ca s 2
T, %, d t+ 7, Ty d  for eachn € Z.
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Proof. Part (a) follows directly from Theorem 3.30 and Corollary 3.37.
Prove (b). Consider a triangle (v, vn,¥,_,) in Ap— and (Y, ¥, Fppr) In Ay
The following is an immediate corollary of Theorem 3.40.

Lemma 4.3. T, = T+ 5, 5, + 15+

sIn 7771«}»7‘ :

Using this and taking into account that

-1 -1 _ ——1= -1 -1 -1 _ ——1= -1
Tyt i, =04 Tny” =T, Tppd ", Tﬂ/+,’ynﬁn+r =d Tpypr,” =T, Tnird
in the notation (3.9), we obtain (b).
The proposition is proved. O

Remark 4.4. Using the triangulation A,,, it is easy see that

n
-1 -1 -1 -1 ——1 -1
T,=d vpx,_ . +d Zp_rx, + E T 1CmTo,

m=n+1l-r

for all n € Z.

Clearly, by Theorem 3.40, T}, does not depend on n.
If r is even, we can refine these observations and thus recover the recursion (1.4).

,and D = d7!,

T, ifniseven c, if n is even
Indeed, set U, := n =

T, ifnisodd , ¢, ifnisodd

D:=d .

By definition, T, is freely generated by D, D and C;, i € [r], U;, j € [r + 1] and, by
Proposition 4.2, U,, € QT,. is a sum of elements of T,.. This and Proposition 4.2 imply
the following result.

Theorem 4.5. Let v > 1 be even. Then each element U, € ZT,, n € Z satisfies the
recursion:

(4.4)

Up_p_1DU, =C,, +U,_1DU,_, ifn is even
U,DUp—_y_1 = Cp +Un_yDUn_1 ifn is odd

(with the convention Cp4, = Cy ). Furthermore, the element H, € Frac(ZT,), n € Z,
given by

H, = {EUn—rUn_l + DU, 4. Ut ifn is even (45)

U, U,_.D + U;lUn+Tﬁ if n is odd

does not depend on n and belongs to ZT,..
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The recursion (4.4) clearly coincides with the recursion (1.4) with &k = r + 1 and the
element H,, given by (4.5) coincides with the element given by (1.5).

Remark 4.6. In fact, Remark 4.4 implies that the “conserved quantity” H = H,, is equal
(for any n € Z) to

o n/2
DULU,2, + DUny Uit + 3 Uspy 1 ComUspy + Usyy 1 Com1Usy s
m=(n+2—r)/2
if n is even
_ (n—1)/2
Un_lUnfTD + Urj—lrUnD + Z U2;n17102mU27ni + U2;n1+102m+1U5n}L
m=(n+1-r)/2
if n is odd

4.2. An integrable system on an infinite strip

In this section we establish Laurentness of another noncommutative recursion (which
specializes to the discrete integrable system recently studied by P. Di Francesco in [9]).
Indeed, let ¥, be a horizontal strip with marked boundary points I = I_ LI I, where
I. ={iy,i € Z} (resp. I_ = {i_,i € Z}) is the marked point set on the left (resp on
the right) boundary line. Then, clearly, I'(Xo) = [['(X0)] = {(ic, Jer) : 4,5 € Z, €, €
{—,+},i # jife =¢€'}. Clearly, ¥o = U xn where ¥ . C ¥ is

m— 7m+7
m~ ,mtEeZnEl~o

the convex hull of the real intervals [m~™ +1,m~ +n]_ CI_, [m* +1,m" +n], CI,.
Clearly, it is an 2n-gon embedded (as a parallelogram) into %, where we identify its

vertex set [2n] with {(m~ +1)_...,(m™ +n)_tU{(mT + 1)L ...,(m" +n)y} via
. (m~ +k)- ifkgn-
(mt+2n+1—-k)y ifk>n

We denote by Ag:ﬁ . acopy of As,, under the above identification of the vertex
set [2n]. ,

Then the natural inclusions EZ@—,W C E;‘;,_Vm,Jr form'’~ <m~,m'T <mt, m' +
n' > m~4n, m'" +n’ > m* +n are morphisms in Surf so they define (by Theorem 3.16)

— Agnr , so we denote by

+

the appropriate homomorphisms of algebras As» .

m/ =~ ,m

N
Ay the direct limit lim Ayn . under these homomorphisms.

Clearly, the following noncommutative Ptolemy relations (in the form (2.14)) hold
in Ay__:

T(i+1) 4,55 P (1) 4 g LU+ D i = Tt D iz T L+ 4,6+ )85 (41)5 Tigie (4.6)
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together with the triangle relations:

-1 _ -1
Tie oz L (j41) 5,57 LEFD 1 ix = Tig,(G+D5Tjp (j41)5 TiF iz (4.7)
for all 4,5 € Z.

Remark 4.7. It is natural to conjecture that the relations (4.6) and (4.7) are defining for

As__ and (in view of Remark 2.6 that) all natural homomorphisms Ayn — As__

,771+
are injective.

Note that ¥, has a triangulation

Ao = {(ix, (i+1)x), (((+1D)ayin); (imyiy), (igyis), (ioy (i4+1)4), (((4+1) 1,0 ) :i € Z} .

i, (i+1),

I+.' — ——

i (i1

Triangulation Ay, of X

Hence the group T generated by d; 4+ := Tiy (i41)g > di+ = Tiy (i41)g> Ti = Ti_ 4y,
Ti = Tiy iy Yi = Ti_ (i41),s Yi = Ti_ (i+1)4, ¢ € Z subject to the triangle relations

——1_ 1 = _ _
xidi,eri = yidi,ixiv yidi,fxi+1 = ‘TiJrldi,—lyi (4.8)

for ¢ € Z is naturally isomorphic to the triangle group Ta_ . Corollary 3.37 implies that
the subalgebra A of As_ (generated by all 2., v € ['(X) and all 27!, 79 € Ay) is
the group algebra ZT .

Proposition 4.8. In Asx,_ we have:
(a) Bach x;, j_, i,j € Z is sum of elements of Too in ZTw.
(b) The total angle T;, € ZT, at iy is given by

Tli - xj;,ii (xﬂ%(lfl)ixii,(i—l)i + x]¥x(l+1)ixii,(i+1)i)
_ -1 ) ) -1 ) ) -1
= <x(i71)i,iix(2*1)idx + Qg(iJrl)i,iim(lfl)ir,];)351‘1,3'1

for each j € Z.

Proof. Part (a) follows directly from Theorem 3.30.

Prove (b). Consider triangles in the vertices (i+,j, (i — 1)+) and (i+,j¢, (i + 1)+)
n Y.

The following is an immediate corollary of Theorem 3.40.
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Lemma 4.9. T3, = Tliy ), (i (- 1)2) (=D siz) T Tlin i), G (14D ) (D) 1 5) -
Using this and taking into account that

1

o o -1 . ‘ -
Tt i) G (i=1) ) (5= 1) vic) = LjeieTiz, (=T (i—1)2 = T(i=1)4,ix TV d5:Tig jz o

-1 —1 -1 4 -1
Tlis ), G (i41) ), (4D 4i2) = Tj iy T (D)2 Liy (191)2 = L1y e T ir Tix o

in the notation (3.9), we obtain (b).
The proposition is proved. O

Remark 4.10. Using the triangulation A, it is easy see that

-1 -1, =-1 -1, 571 -1
Tii =diy _yixwy +7T; diqy; +digy Ty,
—1 -1 -1 —1 -1, -1
Ti, =vy; wiad;_y 4ty dicz; +x; yid .

We can refine these observations and thus recover the recursions (1.6), (1.7). Indeed,
set

Uij = wi_ gy, Vij =iy i, Aj = L(G1) 4,510

_ 1 —
Aj =X Bj

J4, (1) B;j

- o
PGy P T T Gy

By definition, T is freely generated by A;, A;, B;, B, Ui, Vii, Uiit1, @ € Z and, by
Proposition 4.8, each Uf; € QT is a sum of elements of T,. This and Proposition 4.8
imply the following result.

Theorem 4.11. The elements U;;,Vi; € ZT i,j € Z satisfy (1.6), (1.7). Furthermore,
the elements Hi € Frac(ZT), i € Z, given by (1.8) do not depend on j and belong to
ZT...

Appendix A. Noncommutative localizations

Recall that for a multiplicative monoid S'its linearization ZS is the ring ZS = @, . g Z-
[s] with the natural extension of multiplication on S.

Given a multiplicative submonoid S of a unital ring R, define the universal localization
R[S™1] of R by S to be quotient of the free product R * (ZS°P) by the ideal generated
by all elements of the form s x [s] — 1, [s] * s — 1 for any s € S.

By definition, one has a canonical ring homomorphism

R— R[S7!]. (A1)

In other words, R[S™1] is the unital ring R’ with the universal property that one has
a ring homomorphism R — R’ under which the image of each element of S in invertible.
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Note that (A.1) in not always injective. For each unital ring R denote by R* the set
of all units (i.e., invertible elements) in R.
The following fact is obvious.

Lemma A.l. For any ring homomorphism ¢ : R — R’ and any submonoid S C R\ {0}
such that ¢(S) C (R')* there is a unique ring homomorphism g : R[S™'] — R’ such
that the composition R — R[S™1] — R’ is .

For each submonoid S € R\ {0} define its saturation S to be the set of all r € R
such that the image of r in R[S~!] is invertible. Clearly, S is a submonoid of R\ {0}
containing S. We say that S is saturated if S = S. The following obvious fact justifies
this definition.

Lemma A.2. For any submonoid S C R\ {0} one has R[S™'] = R[S ~']. Moreover, S is
the largest submonoid of R\ {0} with this property.

Following Malcev and Cohn, we say that a unital ring is of class £ if it can be embedded
into a skew-field.

Lemma A.3. Let R be any ring of class €. Then for any multiplicative submonoid S of
R\ {0} the canonical homomorphism (A.1) is injective.

Proof. Indeed, let F be a skew field and ¢ : R — F be a monomorphism. By definition,
for any submonoid S of R\ {0}, ¢ factors as ¢ = go f, where f : R — R[S™!] and
g : R[S™1] — F are canonical homomorphisms. Since ¢ is a monomorphism, then f is
also a monomorphism. O

Definition A.4. For a ring R of class £ we say that a submonoid S of R\ {0} is divisible
if R[S~1] is also of class &.

Following Cohn, we say that a submonoid S of R\ {0} is factor-closed if for any
a,b € R\ {0}, ab € S implies that a,b € S.

Proposition A.5. Let R be of class € and S be a divisible submonoid of R\ {0}. Then
the saturation S of S is a factor-closed submonoid of R\ {0}.

Proof. Since S is divisible, in particular, the canonical homomorphism R — R’ =
R[S™1] = R[S™!] is injective. It suffices to prove that if z,5 € R such that zy € S,
then # € S, y € S. Indeed, let z := (zy)~! and ¢ := yzz — 1 in R'. By definition,
zyz = 1 = zzxy. This implies that 2t = xyzx —x = 1.2 — 2 = 0. Since R’ has no zero
divisors and x # 0, then ¢t = 0, i.e., (yz)x = 1. Since x(yz) = 1, we see that x is invertible
in R’ hence z € S. Similarly, y € S as well.

The proposition is proved. O
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Below we provide a sufficient criterion for a group algebra of a group to belong to
class £ and for divisibility of some of its submonoids.

Definition A.6. A group G is called 1-relator torsion-free if G is isomorphic to F/(x)
where F' is a finitely generated free group, € F'\ {1} is not a proper power in F', and
(x) denotes the normal subgroup of F' generated by x.

Results of Malcev, Newman, J. Lewin and T. Lewin (see e.g., [5, Section 8.7], [22])
imply the following.

Theorem A.7. Let G be any finitely generated free group or any l-relator torsion free
group. Then the group algebra R = QG is of class €. In particular, for any submonoid
S C QG \ {0} the canonical homomorphism (A.1) is injective.

We will need the following result, which is a particular case of [26, Theorem 10.11]
(here F; denotes a free skew field freely generated by ¢ elements).

Proposition A.8. Let £ > 1 and assume that € elements t1,...,ty of Fy¢ generate Fy.
Then tq,...,tp are free generators. In particular, the assignments c; — t; fori=1,...,¢
define an injective homomorphism of algebras QF; — Fy.

Following Cohn, we say that a ring R is a left (resp. right) semifir if each finitely
generated left (resp. right) ideal J is isomorphic to R™ for a unique n = n;. R is called
a semifir if it is both left and right semifir. We use below the standard definition of a
universal R-field, see [5, Section 7.2].

Theorem A.9. Let R be a semifir. Then:

(a) There exists a universal skew field Frac(R) containing R as a subalgebra and
generated by R.

(b) For any factor-closed submonoid S of R\ {0} the canonical homomorphism Rg —
Frac(R) is injective.

Proof. Recall from [5] that:

e an n X n matrix A over a unital ring R is full if for any factorization A = BC for
some n X p matrix B and a p X n matrix C' one has p > n;

e A homomorphism f : R — R’ is honest if the image of each full matrix is full.

e A set ¥ of square matrices over a unital ring R is multiplicative if any upper block-
triangular matrix with diagonal in ¥ also belongs to ¥ and ¥ is closed under simultaneous
permutation of rows and columns.

e A set ¥ of matrices over a unital ring R is called factor-closed if AB € % for some
n X n matrices A and B over R implies that A, B € X..

e For any set X of square matrices over a unital ring R, Ry denotes the universal
localization ([5, Theorem 2.1]) so that the image of each element of ¥ under the canonical
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homomorphism R — Ry is an invertible matrix (e.g., Rg = R[S™!] in the notation as
above).
Then Theorem A.9(a) immediately follows from the following result.

Theorem A.10. /5, Section 7.5, Corollary 5.11]) For each semifir R the universal local-
ization Frac(R) := Rg, where @ is the set of full matrices over R, is a skew field and

the canonical homomorphism R — Frac(R) is honest (hence injective).

To prove (b) we need following results from [5].

Proposition A.11. ([5, Section 7.5, Proposition 5.7(ii)]) Given unital rings R and R’ and
a honest homomorphism f : R — R/, then for any factor-closed multiplicative set ¥ of

square matrices over R, the canonical homomorphism fx : Ry — R’ is injective.

For any S C R denote by Xg the set of all matrices over R of the form PM(Q where P
and @ are invertible matrices over R and M is an upper triangular matrix over R with
diagonal entries in S.

Lemma A.12. (/5, Section 7.5, Lemma 10.1]) Let R be a semifir. Then for any factor-
closed submonoid S of R\ {0} the set Xg is factor-closed and multiplicative.

Finally, letting R be a semifir and R’ = Frac(R) in Proposition A.11, ¥ = X5 as in
Lemma A.12 and taking into account that R[S™!] = Rs = Ry, we finish the proof of
part (b).

Theorem A.9 is proved. 0O

It is well-known (see e.g., [8]) that for any finitely generated free group F' its group
algebra R = QF is a semifir. Therefore, Theorem A.9 implies the following corollary.

Corollary A.13. Let F be a finitely generated free group and R = QF. Then any factor-
closed submonoid S of R\ {0} is divisible, more precisely, R[S™'] C Frac(R).

Remark A.14. Based on Theorem A.7, we expect that an analogue of Corollary A.13
also holds for R = QG, where G is a torsion-free 1-relator group.



A. Berenstein, V. Retakh / Advances in Mathematics 328 (2018) 1010-1087 1085

Given a unital ring R, following Cohn, we say that:

e Elements a,b € R are similar if the right R-modules R/aR and R/bR are isomorphic
(clearly, similarity is an equivalence relation on R).

e An element p € R\ R* is prime if for any factorization p = p’p” one has: either
p' € R* or p” € R*.

e A unital ring R is a (noncommutative) unique factorization domain (UFD) if each
nonzero non-unit admits a prime factorization and for any two prime factorizations of a
non-unit z € R:

T=pLocPr=qucgs

one has s = r and ¢; is similar to ps(;) for ¢ = 1,...,r where o is a permutation of

{1,...,r}.

Proposition A.15. Let R be a UFD and S be a submonoid of R\ {0}. Then S is factor-
closed iff it is generated by R™ and a (empty or not) set P which is the union of similarity
classes of prime elements in R.

Proof. Denote by P the set of all primes in S and by Sp the submonoid of R\ {0}
generated by R* and P. Clearly, Sp C S.

Suppose that S is factor-closed. Let us show that S = Sp. We proceed by contradic-
tion, i.e., suppose that there is at least one element € S\ Sp. Then x is not a unit
hence x has a prime factorization x = p;---p,. If r =1, then x = p; € S hence = € Sp
and we arrive at the contradiction. If > 2, then since S is factor-closed, we have p; € S
fori=1,...,r. Hence z € Sp and we arrive at the contradiction once again.

Suppose that P is a union of similarity classes and S = Sp. Let us prove that S
is factor-closed. Suppose that ab € S for some a,b € R. Let us show that a,b € S. If
either a or b is a unit, we have nothing to prove because R* C S. Thus, suppose that
a,be R\ R* and let

a=mpi--- P, b:pr’+1"'pr

be respective prime factorizations with 1 < r’ < r, where p1, ..., p, are some primes in R.
On the other hand, since ab is a non-unit element of S, it admits a prime factorization
ab=q1---qsin S, where q1,...,qs € P. Comparing the factorizations p1 - --pr. = q1 - - ¢s
and using the fact that R is UFD, we obtain: r = s and each p; is similar to one of g;.
Since all primes similar to each g; belongs to P, we obtain pq,...,p, € P hence a € S,
beS.

The proposition is proved. O

Remark A.16. The class of noncommutative UFD’s is rather large: it contains group
rings QF, where F' is any finitely generated free group (see e.g., [6, Theorem 3.4, Propo-
sition 3.5 and Corollary]).



1086 A. Berenstein, V. Retakh / Advances in Mathematics 328 (2018) 1010-1087

Note however, that similarity classes of primes may contain some “unexpected” ele-
ments. For instance, if R is the free ring in z,y then 2y + 1 and yz + 1 are similar (see
e.g. [6]). This motivates the following definition.

Definition A.17. Given a ring R, we say that an element a € R\ {0} is self-similar if all
elements similar to a are of the form wau’, where u,u’ € R*.

Taking into account that (QF)* = Q* - F for a free (or, more generally, an ordered)
group F (see e.g., [21, Theorem 6.29]), we obtain the following conjectural characteriza-
tion of certain self-similar primes in QF'.

Conjecture A.18. Let F' be a free group freely generated by tq,...,t,, m > 2. Then for
k=2,...,m the element 7, :=t1 + ...+t is a self-similar prime, e.g., all elements of
QF similar to 1y belong to Q* - F -1 - F.

Remark A.19. This conjecture was shaped during our discussions with George Bergman,
Dolors Herbera, and Alexander Lichtman. We are immensely grateful to these mathe-
maticians.
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