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A rough outline of all six lectures

The beginning: The C*-algebra of a group.

Actions of finite groups on C*-algebras and examples.

Crossed products by actions of finite groups: elementary theory.

More examples of actions.

Crossed products by actions of finite groups: Some examples.

The Rokhlin property for actions of finite groups.

Examples of actions with the Rokhlin property.

Crossed products of AF algebras by actions with the Rokhlin property.

Other crossed products by actions with the Rokhlin property.

The tracial Rokhlin property for actions of finite groups.

Examples of actions with the tracial Rokhlin property.

Crossed products by actions with the tracial Rokhlin property.

Applications of the tracial Rokhlin property.
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Recall: Group actions on C*-algebras

Definition

Let G be a group and let A be a C*-algebra. An action of G on A is a
homomorphism g 7→ αg from G to Aut(A).

That is, for each g ∈ G , we have an automorphism αg : A→ A, and
α1 = idA and αg ◦ αh = αgh for g , h ∈ G .

When G is a topological group, we require that the action be continuous:
(g , a) 7→ αg (a) is jointly continuous from G × A to A.
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Recall: The action of SL2(Z) on the torus

Recall: Every action of a group G on a compact space X gives an action
of G on C (X ).

The group SL2(Z) acts on R2 via the usual matrix multiplication. This
action preserves Z2, and so is well defined on R2/Z2 ∼= S1 × S1.
SL2(Z) has finite cyclic subgroups of orders 2, 3, 4, and 6, generated by(

−1 0
0 −1

)
,

(
−1 −1
1 0

)
,

(
0 −1
1 0

)
, and

(
0 −1
1 1

)
.

Restriction gives actions of these on S1 × S1.
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Reminder: The rotation algebras

Let θ ∈ R. Recall the irrational rotation algebra Aθ, the universal
C*-algebra generated by two unitaries u and v satisfying the commutation
relation vu = e2πiθuv . Some standard facts, presented without proof:

If θ 6∈ Q, then Aθ is simple. In particular, any two unitaries u and v in
any C*-algebra satisfying vu = e2πiθuv generate a copy of Aθ.

If θ = m
n in lowest terms, with n > 0, then Aθ is isomorphic to the

section algebra of a locally trivial continuous field over S1 × S1 with
fiber Mn.

In particular, if θ = 0, or if θ ∈ Z, then Aθ ∼= C (S1 × S1).

The algebra Aθ is often considered to be a noncommutative analog of the
torus S1 × S1 (more accurately, a noncommutative analog of C (S1 × S1)).
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The action of SL2(Z) on the rotation algebra
Recall: Aθ is the universal C*-algebra generated by two unitaries u and v
satisfying the commutation relation vu = e2πiθuv .

The group SL2(Z) acts on Aθ by sending the matrix

n =

(
n1,1 n1,2
n2,1 n2,2

)
to the automorphism determined by

αn(u) = exp(πin1,1n2,1θ)un1,1vn2,1

and
αn(v) = exp(πin1,2n2,2θ)un1,2vn2,2 .

Exercise: Check that αn is an automorphism, and that n 7→ αn is a group
homomorphism.

This action is the analog of the action of SL2(Z) on S1 × S1 = R2/Z2. It
reduces to that action when θ = 0.
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The action of SL2(Z) on the rotation algebra (continued)
Recall: Aθ is the universal C*-algebra generated by two unitaries u and v
satisfying the commutation relation vu = e2πiθuv .

Recall that SL2(Z) has finite cyclic subgroups of orders 2, 3, 4, and 6,
generated by(

−1 0
0 −1

)
,

(
−1 −1
1 0

)
,

(
0 −1
1 0

)
, and

(
0 −1
1 1

)
.

Restriction gives actions of these groups on the irrational rotation algebras.

In terms of generators of Aθ, and omitting the scalar factors (which are
not necessary when one restricts to these subgroups), the action of Z2 is
generated by

u 7→ u∗ and v 7→ v∗,

and the action of Z4 is generated by

u 7→ v and v 7→ u∗.

Exercise: Find the analogous formulas for Z3 and Z6, and check that they
give actions of these groups.
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Another example: The tensor flip

Assume (for convenience) that A is nuclear and unital. Then there is an
action of Z2 on A⊗ A generated by the “tensor flip” a⊗ b 7→ b ⊗ a.

Similarly, the symmetric group Sn acts on A⊗n.

The tensor flip on the 2∞ UHF algebra A =
⊗∞

n=1M2 turns out to be
essentially the product type action generated by

∞⊗
n=1

Ad


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 on
∞⊗
n=1

M4.

Exercise: Prove this. (Hint: Look at the tensor flip on M2 ⊗M2.)

Another interesting example is gotten by taking A to be the Jiang-Su
algebra Z . It is simple, separable, unital, and nuclear. It has no nontrivial
projections, its Elliott invariant is the same as for C, and Z ⊗ Z ∼= Z .
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The free flip
Let A be a C*-algebra, and let A ? A be the free product of two copies
of A. (Use A ?C A to get a unital C*-algebra.) Then there is an
automorphism α ∈ Aut(A ? A) which exchanges the two free factors. For
a ∈ A, it sends the copy of a in the first free factor to the copy of the
same element in the second free factor, and similarly the copy of a in the
second free factor to the copy of the same element in the first free factor.
This automorphism might be called the “free flip”. It generates a actions
of Z2 on A ? A and A ?C A.

There are many generalizations. One can take the amalgamated free
product A ?B A over a subalgebra B ⊂ A (using the same inclusion in both
copies of A), or the reduced free product A ?r A (using the same state on
both copies of A). There is a permutation action of Sn on the free product
of n copies of A. And one can make any combination of these
generalizations.

See the appendix for some actions on Cuntz algebras, along with a
reminder of the definition of Cuntz algebras.
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Recall: Construction of the crossed product by a finite
group
Let α : G → Aut(A) be an action of a finite group G on a unital
C*-algebra A. As a vector space, C ∗(G ,A, α) is the group ring A[G ],
consisting of all formal linear combinations of elements in G with
coefficients in A:

A[G ] =

{∑
g∈G

cg · ug : cg ∈ A for g ∈ G

}
.

The multiplication and adjoint are given by:

(a · ug )(b · uh) = (a[ugbu
−1
g ]) · uguh = (aαg (b)) · ugh

(a · ug )∗ = α−1g (a∗) · ug−1

for a, b ∈ A and g , h ∈ G , extended linearly. We saw that there is a unique
norm which makes this a C*-algebra.
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Examples of crossed products by finite groups
Let G be a finite group, and let ι : G → Aut(C) be the trivial action,
defined by ιg (a) = a for all g ∈ G and a ∈ C. Then C ∗(G ,C, ι) = C ∗(G ),
the group C*-algebra of G . (So far, G could be any locally compact
group.)

Since we are assuming that G is finite, C ∗(G ) is a finite dimensional
C*-algebra, with dim(C ∗(G )) = card(G ). If G is abelian, so is C ∗(G ), so
C ∗(G ) ∼= Ccard(G). If G is a general finite group, C ∗(G ) turns out to be
the direct sum of matrix algebras, one summand Mk for each unitary
equivalence class of k-dimensional irreducible representations of G .

Now let A be any C*-algebra, and let ιA : G → Aut(A) be the trivial
action. It is not hard to see that C ∗(G ,A, ιA) ∼= C ∗(G )⊗A. The elements
of A “factor out”, since A[G ] is just the ordinary group ring:

(a · ug )(b · uh) = (aιg (b)) · ugh = (ab) · ugh.

Exercise: prove this. (Since C ∗(G ) is finite dimensional, C ∗(G )⊗ A is just
the algebraic tensor product.)
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Examples of crossed products (continued)
Let G be a finite group, acting on C (G ) via the translation action on G .
That is, the action α : G → Aut(C (G )) is αg (a)(h) = a(g−1h) for
g , h ∈ G and a ∈ C (G ).

Set n = card(G ). We describe how to prove that C ∗(G , C (G )) ∼= Mn.
This calculation plays a key role later.

Recall multiplication in the crossed product: (a · ug )(b · uh) = (ab) · ugh.

For g ∈ G , we let ug be the standard unitary (as above), and we let
δg ∈ C (G ) be the function χ{g}. Thus

∑
g∈G δg = 1 in C (G ). Then

αg (δh) = δgh for g , h ∈ G . (Exercise: Prove this.) For g , h ∈ G , set

vg ,h = δgugh−1 ∈ C ∗(G , C (G ), α).

These elements form a system of matrix units. We calculate:

vg1,h1vg2,h2 = δg1ug1h−1
1
δg2ug2h−1

2

= δg1αg1h
−1
1

(δg2)ug1h−1
1
ug2h−1

2
= δg1δg1h−1

1 g2
ug1h−1

1 g2h
−1
2
.
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Examples of crossed products (continued)

G is a finite group, n = card(G ), and α : G → Aut(C (G )) is
αg (a)(h) = a(g−1h) for g , h ∈ G and a ∈ C (G ). We want to get
C ∗(G , C (G )) ∼= Mn.

We defined

δg = χ{g} ∈ C (G ) and vg ,h = δgugh−1 ∈ C ∗(G , C (G ), α),

and we got
vg1,h1vg2,h2 = δg1δg1h−1

1 g2
ug1h−1

1 g2h
−1
2
.

Thus, if g2 6= h1, the answer is zero, while if g2 = h1, the answer is vg1,h2 .
This is what matrix units are supposed to do. Similarly (do it as an
exercise), v∗g ,h = vh,g .

Since the elements δg span C (G ), the elements vg ,h span
C ∗(G , C (G ), α). So C ∗(G , C (G ), α) ∼= Mn with n = card(G ). Exercise:
Write out a complete proof.
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Examples of crossed products (continued)

Let G be a finite group, acting on C (G ) via the translation action on G .
(That is, αg (f )(h) = f (g−1h).) Set n = card(G ). Then
C ∗(G , C (G )) ∼= Mn.

Now consider G acting on G × X , by translation on G and trivially on X .
Exercise: Use the same method to prove that
C ∗(G , C0(G × X )) ∼= C0(X ,Mn) (which is Mn ⊗ C0(X )).

A harder exercise: Prove that for any action of G on X , and using the
diagonal action on G × X , we still have C ∗(G , C0(G × X )) ∼= C0(X ,Mn).
Hint: A trick reduces this to the previous exercise.

This result generalizes greatly: for any locally compact group G , one gets
C ∗(G , C0(G )) ∼= K (L2(G )), etc.
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Equivariant homomorphisms

We will describe several more examples, mostly without proof. To
understand what to expect, the following is helpful.

For α : G → Aut(A) and β : G → Aut(B), we say that a homomorphism
ϕ : A→ B is equivariant if ϕ(αg (a)) = βg (ϕ(a)) for all g ∈ G and a ∈ A.
That is, for all g ∈ G , the following diagram commutes:

A
ϕ−−−−→ B

αg

y yαg

A
ϕ−−−−→ B

An equivariant homomorphism ϕ : A→ B induces a homomorphism

ϕ : C ∗(G ,A, α)→ C ∗(G ,B, β),

just by applying ϕ to the algebra elements.
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Equivariant homomorphisms (continued)

ϕ : A→ B is equivariant if ϕ(αg (a)) = βg (ϕ(a)) for all g ∈ G and a ∈ A.
We get

ϕ : C ∗(G ,A, α)→ C ∗(G ,B, β)

by applying ϕ to the algebra elements.

Thus, if G is discrete, the standard unitaries in C ∗(G ,A, α) are called ug ,
and the standard unitaries in C ∗(G ,B, β) are called vg , then

ϕ

(∑
g∈G

cgug

)
=
∑
g∈G

ϕ(cg )vg .

Exercises: Assume that G is finite. Prove that ϕ is a *-homomorphism,
that if ϕ is injective then so is ϕ, and that if ϕ is surjective then so is ϕ.
(Warning: the surjectivity result is true for general G , but the injectivity
result can fail if G is not amenable.)
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Digression: Conjugacy
For α : G → Aut(A) and β : G → Aut(B), we say that a homomorphism
ϕ : A→ B is equivariant if ϕ(αg (a)) = βg (ϕ(a)) for all g ∈ G and a ∈ A.

If ϕ is an isomorphism, we say it is a conjugacy. If there is such a map,
the C* dynamical systems (G ,A, α) and (G ,B, β) are conjugate. This is
the right version of isomorphism for C* dynamical systems.

Recall that equivariant homomorphisms induce homomorphisms of crossed
products. It follows easily that if G is locally compact and ϕ is a conjugacy,
then ϕ induces an isomorphism from C ∗(G ,A, α) to C ∗(G ,B, β).

Recall from the discussion of product type actions on UHF algebras that
we claimed that the actions of Z2 on A =

⊗∞
n=1M2 generated by

∞⊗
n=1

Ad

(
1 0
0 −1

)
and

∞⊗
n=1

Ad

(
0 1
1 0

)
are “essentially the same”. The correct statement is that these actions are
conjugate. Exercise: prove this. Hint: Find a unitary w ∈ M2 such that
w
(
1 0
0 −1

)
w∗ = ( 0 1

1 0 ), and take ϕ =
⊗∞

n=1 Ad(w).
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Equivariant exact sequences
The homomorphism ϕ is equivariant if ϕ(αg (a)) = βg (ϕ(a)) for all g ∈ G
and a ∈ A.

Recall that equivariant homomorphisms induce homomorphisms of crossed
products.

Theorem

Let G be a locally compact group. Let 0→ J → A→ B → 0 be an exact
sequence of C*-algebras with actions γ of G on J, α of G on A, and β of
G on B, and equivariant maps. Then the sequence

0 −→ C ∗(G , J, γ) −→ C ∗(G ,A, α) −→ C ∗(G ,B, β) −→ 0

is exact.

When G is finite, the proof is easy: consider

0 −→ J[G ] −→ A[G ] −→ B[G ] −→ 0

Exercise: Do it. (You already proved exactness at J[G ] and B[G ] in a
previous exercise.)
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Examples of crossed products (continued)
Recall the example from earlier: Zn acts on the circle S1 by rotation, with
the standard generator acting by multiplication by ω = e2πi/n.

For any point x ∈ S1, let

Lx = {ωkx : k = 0, 1, . . . , n − 1} and Ux = S1 \ Lx .
Then Lx is equivariantly homeomorphic to Zn with translation, and Ux is
equivariantly homeomorphic to

Zn ×
{
e2πit/nx : 0 < t < 1

} ∼= Zn × (0, 1).

The equivariant exact sequence

0 −→ C0(Ux) −→ C (S1) −→ C (Lx) −→ 0

gives the following exact sequence of crossed products:

0 −→ C0((0, 1), Mn) −→ C ∗(Zn, C (S1)) −→ Mn −→ 0.

With more work (details are in my crossed product notes), one can show
that C ∗(Zn, C (S1)) ∼= C (S1,Mn). The copy of S1 on the right arises as
the orbit space S1/Zn.
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Examples of crossed products (continued)
We use the standard abbreviation C ∗(G ,X ) = C ∗(G , C0(X )).

For the action of Zn on the circle S1 by rotation, we got

C ∗(Zn,S
1) ∼= C (S1/Zn, Mn) ∼= C (S1,Mn).

Recall the example from earlier: Z2 acts on Sn via the order two
homeomorphism x 7→ −x .

Based on what happened with Zn acting on the circle S1 by rotation, one
might hope that C ∗(Z2, S

n) would be isomorphic to C (Sn/Z2, M2). This
is almost right, but not quite. In fact, C ∗(Z2,S

n) turns out to be the
section algebra of a bundle over Sn/Z2 with fiber M2, and the bundle is
locally trivial—but not trivial.

We still have the general principle: A closed orbit Gx ∼= G/H in X gives a
quotient in the crossed product isomorphic to K (L2(G/H))⊗ C ∗(H). We
illustrate this when G is finite (so that all orbits are closed) and H is either
{1} (above) or G (C ∗(G ), and see the next slide).
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Examples of crossed products (continued)
Recall the example from earlier: Z2 acts on S1 via the order two
homeomorphism ζ 7→ ζ.

Set
L = {−1, 1} ⊂ S1 and U = S1 \ L.

Then the action on L is trivial, and U is equivariantly homeomorphic to

Z2 × {x ∈ U : Im(x) > 0} ∼= Z2 × (−1, 1).

The equivariant exact sequence

0 −→ C0(U) −→ C (S1) −→ C (L) −→ 0

gives the following exact sequence of crossed products:

0 −→ C0((−1, 1), M2) −→ C ∗(Z2, C (S1)) −→ C (L)⊗ C ∗(Z2) −→ 0,

in which C (L)⊗ C ∗(Z2) ∼= C4. With more work (details are in my crossed
product notes), one can show that C ∗(Z2, C (S1)) is isomorphic to{

f ∈ C ([−1, 1], M2) : f (1) and f (−1) are diagonal matrices
}
.
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Crossed products by inner actions
Recall the inner action αg = Ad(zg ) for a continuous homomorphism
g 7→ zg from G to the unitary group of a C*-algebra A. The crossed
product is the same as for the trivial action, in a canonical way.

Assume G is finite. Let ι : G → Aut(A) be the trivial action of G on A.
Let ug ∈ C ∗(G ,A, α) and vg ∈ C ∗(G ,A, ι) be the unitaries corresponding
to the group elements. The isomorphism ϕ sends a · ug to azg · vg . This is
clearly a linear bijection of the skew group rings.

We check the most important part of showing that ϕ is an algebra
homomorphism. Recall that ugb = αg (b)ug (and vgb = ιg (b)vg = bvg ).
So we need ϕ(ug )ϕ(b) = ϕ(ugb). We have

ϕ(ugb) = ϕ(αg (b)ug ) = αg (b)zgvg

and, using zgb = αg (b)zg ,

ϕ(ug )ϕ(b) = zgvgb = zgbvg = αg (b)zgvg .

Exercise: When G is finite, give a detailed proof that ϕ is an isomorphism.
(This is written out in my crossed product notes.)
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Crossed products by product type actions
Recall the action of Z2 on the 2∞ UHF algebra generated by

α =
∞⊗
n=1

Ad

(
1 0
0 −1

)
on A =

∞⊗
n=1

M2.

Reminder: Ad(v)(a) = vav∗. Set

v =

(
1 0
0 −1

)
and zn = v⊗n ∈ (M2)⊗n ∼= M2n .

Then write this action as α = lim−→n
Ad(zn) on A = lim−→n

M2n .

It is not hard to show that crossed products commute with direct limits.
(Exercise: Do it for finite G .) Since Ad(zn) is inner, we get

C ∗(Z2,M2n ,Ad(zn)) ∼= C ∗(Z2)⊗M2n
∼= M2n ⊕M2n .

Now we have to use the explicit form of these isomorphisms to compute
the maps in the direct system of crossed products, and then find the direct
limit.
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Crossed products by product type actions (continued)
The action of Z2 on the 2∞ UHF algebra is generated by

α =
∞⊗
n=1

Ad

(
1 0
0 −1

)
on A =

∞⊗
n=1

M2.

We wrote this action as α = lim−→n
Ad(zn) on A = lim−→n

M2n . Then

C ∗(Z2,A, α) ∼= lim−→
n

C ∗(Z2,M2n ,Ad(zn))

∼= lim−→
n

C ∗(Z2)⊗M2n
∼= lim−→

n

(M2n ⊕M2n).

The maps turn out to be unitarily equivalent to

(a, b) 7→
((

a 0
0 b

)
,

(
a 0
0 b

))
,

and a computation with Bratteli diagrams shows that the direct limit is
again the 2∞ UHF algebra. (For general product type actions, the direct
limit will be more complicated, and usually not a UHF algebra.)
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Crossed products by product type actions (continued)
Recall the action of Z2 on the 2∞ UHF algebra generated by
α =

⊗∞
n=1 Ad

(
1 0
0 −1

)
on A =

⊗∞
n=1M2. Write it as α = lim−→n

Ad(zn) on
A = lim−→n

M2n , with maps ϕn : M2n → M2n+1 .

Exercise: Find isomorphisms σn : C ∗(Z2,M2n ,Ad(zn))→ M2n ⊕M2n and
homomorphisms ψn : M2n ⊕M2n → M2n+1 ⊕M2n+1 such that, with ϕn

being the map induced by ϕn on the crossed products, the following
diagram commutes for all n:

C ∗
(
Z2, M2n , Ad(zn)

) σn−−−−→ M2n ⊕M2n

ϕn

y yψn

C ∗
(
Z2, M2n+1 , Ad(zn+1)

) σn+1−−−−→ M2n+1 ⊕M2n+1 .

(You will need to use the explicit computation of the crossed product by
an inner action and an explicit isomorphism C ∗(Z2)→ C⊕ C.) Then
prove that, using the maps ψn, one gets lim−→n

(M2n ⊕M2n) ∼= A. (This part
doesn’t have anything to do with crossed products.) Conclude that
C ∗(Z2,A, α) ∼= A.
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Motivation for the Rokhlin property
Recall that an action (g , x) 7→ gx of a group G on a set X is free if every
g ∈ G \ {1} acts on X with no fixed points. Equivalently, whenever g ∈ G
and x ∈ X satisfy gx = x , then g = 1. Equivalently, every orbit is
isomorphic to G acting on G by translation. (Examples: G acting on G by
translation, Zn acting on S1 by rotation by e2πi/n, and Z acting on S1 by
an irrational rotation.)

Let X be the Cantor set, let G be a finite group, and let G act freely
on X . Fix x0 ∈ X . Then the points gx0, for g ∈ G , are all distinct, so by
continuity and total disconnectedness of the space, there is a compact
open set K ⊂ X such that x0 ∈ K and the sets gK , for g ∈ G , are all
disjoint.

By repeating this process, one can find a compact open set L ⊂ X such
that the sets Lg = gL, for g ∈ G , are all disjoint, and such that their union
is X .

Exercise: Carry out the details. (It isn’t quite trivial.)
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The Rokhlin property

Definition

Let A be a unital C*-algebra, and let α : G → Aut(A) be an action of a
finite group G on A. We say that α has the Rokhlin property if for every
finite set F ⊂ A and every ε > 0, there are mutually orthogonal projections
eg ∈ A for g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

For C*-algebras, this goes back to about 1980, and is adapted from earlier
work on von Neumann algebras (Ph.D. thesis of Vaughan Jones). The
Rokhlin property for actions of Z goes back further.

The original use of the Rokhlin property was for understanding the
structure of group actions. Application to the structure of crossed
products is much more recent.
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The Rokhlin property (continued)
The conditions in the definition of the Rokhlin prperty:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

The projections eg are the analogs of the characteristic functions of the
compact open sets gL from the Cantor set example.

Condition (1) is an approximate version of gLh = Lgh. (Recall that
Lg = gL.)

Condition (3) is the requirement that X be the disjoint union of the Lg .

Condition (2) is vacuous for a commutative C*-algebra. In the
noncommutative case, one needs something more than (1) and (3).
Without (2) the inner action α : Z2 → Aut(M2) generated by Ad ( 0 1

1 0 )
would have the Rokhlin property. (Exercise: Prove this statement.) We
don’t want this. For example, M2 is simple but C ∗(Z2,M2, α) isn’t.
(There is more on outerness in Lecture 5.)
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Examples
The conditions in the definition of the Rokhlin property:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

Exercise: Let G be finite. Let act G on G by translation. Prove that the
action of G on C (G ) (namely αg (f )(h) = f (g−1h)) has the Rokhlin
property.

Exercise: Let G be finite. Let A be any unital C*-algebra. Prove that the
action of G on

⊕
g∈G A by translation of the summands has the Rokhlin

property.

Exercise: Let G be finite, and let G act freely on the Cantor set X . Prove
that the corresponding action of G on C (X ) has the Rokhlin property.
(Use the earlier exercise on free actions on the Cantor set.)

In the exercises above, condition (2) is trivial. Can it be satisfied in a
nontrivial way? In particular, are there any actions on simple C*-algebras
with the Rokhlin property?
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An example using a simple C*-algebra (more in the next
lecture)
The conditions in the definition of the Rokhlin property:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

We want an example in which A is simple. Thus, we won’t be able to
satisfy condition (2) by choosing eg to be in the center of A.

From Lecture 1, recall the product type action of Z2 generated by

β =
∞⊗
n=1

Ad

((
1 0
0 −1

))
on A =

∞⊗
n=1

M2.

We will show that this action has the Rokhlin property.

In fact, we will use an action conjugate to this one: we will use w = ( 0 1
1 0 )

in place of
(
1 0
0 −1

)
.

Reasons for using
(
1 0
0 −1

)
will appear in Lecture 4.
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An example (continued)

We had

w =

(
0 1
1 0

)
.

The action α of Z2 is generated by

∞⊗
n=1

Ad(w) on A =
∞⊗
n=1

M2.

Define projections p0, p1 ∈ M2 by

p0 =

(
1 0
0 0

)
and p1 =

(
0 0
0 1

)
.

Then
wp0w

∗ = p1, wp1w
∗ = p0, and p0 + p1 = 1.
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The action α : Z2 → Aut(A) is generated by β =
⊗∞

n=1 Ad(w) on
A =

⊗∞
n=1M2. Also, wp0w

∗ = p1, wp1w
∗ = p0, and p0 + p1 = 1.

Recall the conditions in the definition of the Rokhlin property. F ⊂ A is
finite, ε > 0, and we want projections eg such that:

1 ‖βg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

Since the union of the subalgebras (M2)⊗n = An is dense in A, we can
assume F ⊂ An for some n. (Exercise: Check this!)

For g = 0, 1 ∈ Z2, take

eg = 1An ⊗ pg ∈ An ⊗M2 = An+1 ⊂ A.

Clearly e0 + e1 = 1. Check that β(e0) = e1 and β(e1) = e0, and that e0
and e1 actually commute with everything in F . (Proofs: See the next
slide.) This proves the Rokhlin property.
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An example (continued)

The projections e0 and e1 actually commute with everything in F ,
essentially because the nontrival parts are in different tensor factors.

Explicitly: Everything is in An+1 = M2n+1 , which we identify with
M2n ⊗M2. In this tensor factorization, elements of F have the form

a⊗ 1,

and
eg = 1⊗ pg .

Clearly these commute.

For β(e0) = e1: we have β|An+1 = Ad
(
w⊗n ⊗ w

)
, so

β(e0) =
(
w⊗n ⊗ w

)
(1⊗ p0)

(
w⊗n ⊗ w

)∗
= 1⊗ wp0w

∗ = 1⊗ p1 = e1.

The proof that β(e1) = e0 is the same.
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Appendix: Cuntz algebras and some actions on them

We will be more concerned with stably finite simple C*-algebras here, but
the basic examples of purely infinite simple C*-algebras should at least be
mentioned.
Let d ∈ {2, 3, . . .}. Recall that the Cuntz algebra Od is the universal
C*-algebra on generators s1, s2, . . . , sd satisfying the relations

s∗1 s1 = s∗2 s2 = · · · = s∗dsd = 1 and s1s
∗
1 + s2s

∗
2 + · · ·+ sds

∗
d = 1.

Thus, s1, s2, . . . , sd are isometries with orthogonal ranges which add up
to 1. The Cuntz algebra O∞ is the universal C*-algebra generated by
isometries s1, s2, . . . with orthogonal ranges. Thus, s∗1 s1 = s∗2 s2 = · · · = 1
and s∗j sk = 0 for j 6= k .

These algebras are purely infinite, simple, and nuclear. Details and other
properties are on the next slide.
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Cuntz algebras (continued)
Some standard facts, presented without proof.

Od is simple for d ∈ {2, 3, . . . ,∞}. For d ∈ {2, 3, . . .}, for example,
this means that whenever elements s1, s2, . . . , sd in any unital
C*-algebra satisfy

s∗1 s1 = s∗2 s2 = · · · = s∗dsd = 1 and s1s
∗
1 + s2s

∗
2 + · · ·+ sds

∗
d = 1,

then they generate a copy of Od .

Od is purely infinite and nuclear.

K1(Od) = 0, K0(O∞) ∼= Z, generated by [1], and K0(Od) ∼= Zd−1,
generated by [1], for d ∈ {2, 3, . . .}.
If A is any simple separable unital nuclear C*-algebra, then
O2 ⊗ A ∼= O2.

If A is any simple separable purely infinite nuclear C*-algebra, then
O∞ ⊗ A ∼= A.

The last two facts are Kirchberg’s absorption theorems. They are much
harder.
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Actions on Cuntz algebras
For d finite, Od is generated by isometries s1, s2, . . . , sd with orthogonal
ranges which add up to 1, and O∞ is generated by isometries s1, s2, . . .
with orthogonal ranges.

We give the general quasifree action here. Two special cases on the next
slide have much simpler formulas.

Let ρ : G → L(Cd) be a unitary representation of G . Write

ρ(g) =

 ρ1,1(g) · · · ρ1,d(g)
...

. . .
...

ρd ,1(g) · · · ρd ,d(g)


for g ∈ G . Then there exists a unique action βρ : G → Aut(Od) such that

βρg (sk) =
d∑

j=1

ρj ,k(g)sj

for j = 1, 2, . . . , d . (This can be checked by a computation.) For d =∞,
a similar formula works for any unitary representation of G on l2(N).
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Actions on Cuntz algebras (continued)
The Cuntz relations: s∗1 s1 = s∗2 s2 = · · · = s∗dsd = 1 and
s1s
∗
1 + s2s

∗
2 + · · ·+ sds

∗
d = 1. (For d =∞, s1, s2, . . . are isometries with

orthogonal ranges.)

Some special cases of quasifree actions, for which it is easy to see that
they really are group actions:

For G = Zn, choose n-th roots of unity ζ1, ζ2, . . . , ζd and let a
generator of the group multiply sj by ζj .

Let G be a finite group. Take d = card(G ), and label the generators
sg for g ∈ G . Then define βG : G → Aut(Od) by βGg (sh) = sgh for
g , h ∈ G . (This is the quasifree action coming from regular
representation of G .)

Label the generators of O∞ as sg ,j for g ∈ G and j ∈ N. Define
ι : G → Aut(O∞) by ιg (sh,j) = sgh,j for g ∈ G and j ∈ N. (This is
the quasifree action coming from the direct sum of infinitely many
copies of the regular representation of G .)
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Actions on Cuntz algebras: The tensor flips on O2 and O∞

There are tensor flip actions of Z2 on O2 ⊗O2 and O∞ ⊗O∞. Since

O2 ⊗O2
∼= O2 and O∞ ⊗O∞ ∼= O∞,

one gets actions of Z2 on O2 and O∞.

More generally, any subgroup of Sn acts on the n-fold tensor products
(O2)⊗n and (O∞)⊗n. This gives actions of these groups on O2 and O∞.
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