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ABSTRACT. The resistance to sliding and the extent of till deformation beneath soft-bedded glaciers
depend on the spatially averaged level of effective stress N, which is controlled by the distribution of
water pressure at the bed. Major subglacial conduits that facilitate large-scale water transport are
expected to be predominantly aligned with the direction of maximum hydraulic gradient, which is
normally parallel to the slope of the glacier surface. When the basal heat flow promotes net melting or
freezing, seepage transport can enable water exchange between these conduits and the rest of the basal
surface area. For a simple glacier geometry with subglacial conduits that are aligned parallel to a
uniform slope, the seepage transport is driven primarily by gradients in effective stress. Balance
equations determine how N varies with conduit spacing and the heat-flow regime. Considerations of
thermodynamic equilibrium require that ice penetrates the pore space at high effective stress. Even
when the glacier base experiences net melting, for a given heat-flow regime there are limits on the
conduit spacing that can be attained before a finite till layer becomes partially frozen throughout.
During net freezing, the resistance to flow through partially frozen sediments limits the steady-state
conduit spacing. The partially frozen zone can actually be restricted to smaller thicknesses when the
freezing rate is greater.

LIST OF SYMBOLS

b Location of till base
d Length scale
D Distance to drainage divide
Df Location of first ice-infiltration
g Acceleration due to gravity
h Fringe thickness
H Glacier thickness
k Permeability
k0 Permeability of water-saturated till
K Ice–liquid interfacial curvature
Ke Effective thermal conductivity
l Location of glacier base
L Latent heat of fusion
N Effective stress at sliding surface
NC Near-conduit effective stress
ND Effective stress at drainage divide
NQ Effective stress scale
p Pore pressure adjacent to warmest ice
pf Effective stress for ice infiltration
Qb Heat flux into glacier base
Qf Heat produced by dissipation
Qg Geothermal heat flux

Rp Radius of pore throats

Si Ice-saturation level
t Time
T Temperature
Tf Ice-infiltration temperature
Tl Temperature at glacier–till interface
Tm Bulk melting temperature

u Darcy transport velocity
V Freezing rate
W0 Sliding rate scale
Ws Sliding rate
x Cross-glacier coordinate
y Down-glacier coordinate
z Vertical coordinate
� Exponent in permeability relation
� Exponent in ice-saturation relation
�il Ice–liquid interfacial energy
�p Pore–film pressure difference
� Viscosity of water
� Friction coefficient
�i Density of ice
�l Density of liquid water
�s Density of solid particles
	n Normal stress
	T Magnitude of bridging stresses

b Basal shear stress
� Porosity

1. INTRODUCTION
The most significant cause of future sea-level rise is likely to
be enhanced discharge through outlet glaciers and ice
streams that are ‘lubricated’ by subglacial meltwater
(Solomon and others, 2007). The distribution of water
pressure at the glacier bed controls the effective stress N,
which is expected to influence the basal shear resistance 
b
to glacier sliding and till deformation (e.g. Paterson, 1994).
However, the sliding law that describes how 
b, the sliding
rate Ws and N are related has remained elusive. The
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predictive abilities of models for glacier and ice-sheet flow
are limited by this deficiency in our understanding of the
basal boundary conditions (Fountain and Walder, 1998;
Marshall, 2005). The work described here examines the
controls that seepage flows exert on the average effective
stress N beneath soft-bedded glaciers.

The morphology of subglacial drainage is thought to play
a key role in the dynamics of glacier flow (e.g. Weertman,
1972; Kamb, 1987). For example, observations (Harper and
others, 2007; Bartholomaus and others, 2008) and theory
(Lliboutry, 1968; Fowler, 1987; Schoof, 2005) suggest that
changes in the water volume stored in cavities beneath
hard-bedded glaciers alter the surface area over which
significant shear resistance is imparted to the glacier base.
Similar behavior may also occur beneath soft-bedded
glaciers, particularly when the bed itself is deformed by
the overriding glacier flow (e.g. Schoof, 2007). While
connections between basal water supply and glacier motion
have long been recognized, several recent developments
have drawn further attention to the dynamic nature of
subglacial processes. These include reported correlations
between summer surface melting and accelerated flow near
the margins of the Greenland ice sheet (Zwally and others,
2002; Price and others, 2008), recent satellite observations
of lake drainage events beneath West Antarctica (Fricker
and others, 2007), global positioning system (GPS)
measurements of short-term flow variations in ice-stream
regions (Bindschadler and others, 2003) and the intriguing
discovery of glacial earthquakes with surface-wave magni-
tudes of 5 and larger in Greenland and Alaska (Ekström and
others, 2003).

Subglacial drainage systems are dominated by channel-
ized flows that efficiently transport water over long
distances (e.g. Röthlisberger, 1972; Weertman, 1972; Nye,
1976; Shoemaker, 1986; Walder and Fowler, 1994; Ng,
1998; Clarke, 2005). Beneath soft-bedded glaciers with
relatively flat beds, water transport between major sub-
glacial conduits and most of the basal surface area is
expected to occur through seepage flows. The hydraulic
gradients needed to drive this local transport imply effective
stress variations that can be integrated to evaluate the
average effective stress N for a given drainage configuration
and heat-flow regime. The average basal shear stress is
expected to depend on N; for example, 
b ¼ �N if till
behaves as a Coulomb-plastic material with friction co-
efficient � and negligible cohesion.

In addition to storing and transporting vast quantities of
fresh water, glaciers are among the most powerful erosive
agents on the planet (Alley and others, 1997). The current
work is of relevance to the manner in which soft-bedded
glaciers entrain sediments. The treatment has parallels with
that described in an earlier study by Iverson (2000). A
series of laboratory experiments (Iverson, 1993; Iverson and
Semmens, 1996) and field studies (Iverson and others,
2007) provide convincing evidence for the ability of ice
to regelate into porous sediments when the effective stress
is high. Iverson (2000) modified and extended the theory
of Philip (1980) to predict the steady-state depth of
ice penetration that enables a balance between the rates
of melting and pressure-induced regelation. Since the
predicted rate of regelation increases with effective stress,
the thickness of the regelation layer, identified here as a
fringe, is expected to increase towards major drainage
conduits.

A significant uncertainty noted by Alley and others (1997)
and Iverson (2000) concerned the role of the ice–liquid
surface energy in impeding ice infiltration through fine-
grained till. The themodynamic and mechanical equilibrium
conditions at the ice–liquid interface have recently been
formulated to take these effects into account and determine
a lower-bound pf on the effective stress required for ice to
infiltrate a given sediment (Rempel, 2008). For soft-bedded
glaciers, a one-dimensional treatment of the vertical force,
mass and heat balance at the glacier bed demonstrates links
between the effective stress N, the rate of basal freeze-on V
(or melting with V < 0), sliding speed Ws and details of the
near-bed temperature distribution and till properties. A
major advance is the prediction for N > pf of the steady-
state fringe thickness h during both net melting and net
freezing at the glacier bed. For convenience, the assumption
made here is that the fringe is attached to the glacier base
and hence able to transport its sediment load with the
glacier at sliding speed Ws.

Many past field studies of subglacial hydrological net-
works have taken place on hard-bedded valley glaciers that
experience substantial diurnal and seasonal variations in the
flux of meltwater that reaches the bed (Iken and Bind-
schadler, 1986; Stone and Clarke, 1993; Fountain and
others, 2005; Lappegard and others, 2006; Bartholomaus
and others, 2008). These glaciers often have much smaller or
negligible melt inputs to the bed during winter months, and
water storage at the bed is limited to the volumes contained
in cavity systems downstream of bedrock obstacles. There
have been a few important field studies of the fluid pressure
distributions beneath ice sheets that are sufficiently cold and
thick to be relatively unaffected by inputs of surface
meltwater. They are generally expected to be underlain by
hydrological networks that are not strongly affected by
seasonal forcings (e.g. Engelhardt and Kamb, 1997). The
modeling efforts described below are most directly applic-
able to relatively stable situations such as these, but model
extensions can be made to investigate the dynamics in more
transient environments. For example, an interesting inter-
mediate case is suggested by extensive studies of the
hydrological networks near the margins of Breiðamerkur-
jökul, Iceland (Boulton and others, 2007a,b). There, high
geothermal heat input causes major melt conduits to persist
over decadal-long observation periods, with hydrological
networks augmented by a series of more ephemeral conduits
that accommodate summer meltwater inputs.

This paper is organized as follows. First, a description is
given of the conditions for thermodynamic and mechanical
equilibrium at the glacier base, the transport of heat and
fluid mass and the constitutive behavior of till. These
considerations are then implemented to predict the major
characteristics of hydrological networks that underlie an
idealized glacier that is separated from impermeable bed-
rock by a layer of permeable till. The modeling is focused on
cases of steady drainage where seepage flow through the till
transports water between subglacial conduits and the glacier
base. A broad range of potential steady-state behavior is
examined using a simplified treatment that approximates the
seepage flow by focusing on the depth-integrated horizontal
transport. The effects of vertical fluid flow within the
unfrozen till are not expected to alter the gross qualitative
behavior, as demonstrated in the Appendix by comparisons
between the depth-integrated treatment and a more com-
plete treatment that accounts for these complications. The
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paper closes with a discussion of the implications of this
work and directions for future research.

2. MODEL FORMULATION
The temperature and fluid pressure beneath warm-based,
soft-bedded glaciers are determined by the local equilibrium
conditions. The local heat balance determines whether
water freezes onto or melts away from the glacier base.
Mass-balance considerations necessitate lateral water trans-
port through the unfrozen till to facilitate this phase change.

Basal equilibrium conditions
For liquid water and ice to coexist in equilibrium, the
temperature must be close to the pressure-melting point
TmðpÞ. Lateral pressure gradients in the water immediately
adjacent to the ice drive fluid transport when the local heat
balance promotes net freezing or melting. Thermodynamic
and mechanical equilibrium are assumed at the ice–liquid
interface. Three different potential geometries for portions of
the basal interface are shown schematically in Figure 1.

In Figure 1a, the till and ice are separated by a layer of
water that is of a thickness (e.g. O(1 mm)) such that
intermolecular forces between the till and ice are of
negligible strength. There are many subglacial environments
where such macroscopic water layers are present, including
lakes, channels, water sheets and cavities. In this paper, the
term ‘conduit’ is used to refer to any such region that may
facilitate rapid liquid transport (Weertman, 1972). In
Figure 1a, the ice–liquid interface is depicted as being flat
for simplicity although, in practice, its geometry may be
more complicated. Mechanical equilibrium requires that the
liquid pressure p on the ice–water interface be equal to the
normal stress 	n in the ice. As defined here, the effective
stress N � 	n � p ¼ 0 in such regions. (A common alter-
native definition not used here refers to the effective stress as
the difference between the ice pressure, that is the average
of the principal components of the stress tensor, and the fluid
pressure p. The definition of N given here is chosen to

simplify the presentation of the vertical force balance and be
consistent with the use of Terzaghi’s effective stress principle
(Terzaghi, 1943) in the description of frictional resistance
below.) Thermodynamic equilibrium is achieved when the
interface temperature Tl ¼ TmðpÞ.

In Figure 1b, the ice conforms to the upper surfaces of till
particles from which it is separated by thin liquid films.
Thermodynamic equilibrium requires that the temperature of
the ice–liquid interface Tl < Tm so that some of the glacier
weight can be supported by interactions between the ice
and the till particles across the liquid films (e.g. Shreve,
1984; Dash, 1989; Dash and others, 1995, 2006; Wettlaufer,
1999). Where the ice–liquid interface veers away from the
particles, the Gibbs–Thomson effect describes how surface
energy �il prevents it from penetrating through the pore
throats when Tl > Tf. For pore throats of characteristic radius
Rp, Tf ¼ Tm 1� 2�il= �iLRp

� �� �
where �i is the ice density and

L is the latent heat of fusion. For physical intuition,
Tm � Tf � 0:006�C when Rp ¼ 10 mm. The pore geometry
is difficult to quantify directly, but Tf can be inferred from
measurements of the water content of porous media at
different sub-Tm temperatures. For many different sediment
types, the value of Tf can be extracted from tables of data
compiled by Andersland and Ladanyi (2004). In the pores
immediately beneath the ice, mechanical equilibrium
requires that (Rempel, 2008)

N ¼ �ilK þ �p � �iL
Tm � Tl

Tm
, ð1Þ

where K < 2=Rp is the curvature of the ice–liquid interface
in the pore throats and �p is the difference in fluid pressure
between the pores and the films that separate the ice from
the particles. Because rates of melting and freezing are
typically quite low (i.e. <100mma�1), �p can be considered
negligible everywhere except where water must flow long
distances through films around larger clasts and boulders.

The strengths of ice–till interactions increase as the
temperature cools and the liquid films get thinner. For this
reason, if N increases at the ice base, Tl must decrease to

Fig. 1. Schematic diagrams of the region near a glacier base above water-saturated sediments. (a) A macroscopic conduit is present; the
glacier base is at Tl ¼ Tm and the fluid pressure immediately adjacent to ice is p ¼ 	n. (b) Sediment particles support part of the glacier
weight; p < 	n and Tl < Tm, but Tl still exceeds the level Tf needed for ice to extend through pore throats of radius Rp (i.e. K � 2=R < 2=Rp).
(c) A partially frozen fringe of thickness h and ice saturation Si extends beneath the glacier base; at z ¼ l, Tl < Tf and the temperature rises to
Tf only at z ¼ l � h, where the fluid pressure p < 	n � pf .
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enable ice–till interactions to support an increased load. As
Equation (2) indicates, this causes the curvature of the ice–
liquid interface to increase. Ice first penetrates through the
pore throats once K ¼ 2=Rp so that Tl ¼ Tf and
N � pf ¼ �iLðTm � TfÞ=Tm. Because the presence of ice in
the pores reduces the permeability, the pressure pf is an
important natural scale for effective stress variations associ-
ated with seepage transport under soft-bedded glaciers. For
the example given above with Tm � Tf ¼ 0:006�C,
pf � 7 kPa. Larger values of pf are expected for sediments
that are characterized by smaller pore apertures (e.g.
Andersland and Ladanyi, 2004; Rempel, 2008).

In Figure 1c, the ice extends downwards into the till to
form a fringe of thickness h and porosity �, with a partial ice
saturation Si that decreases with temperature (e.g. Cahn and
others, 1992). The temperature at the base of the fringe is Tf,
whereas the temperature at z ¼ l where the ice first
encounters till is Tl < Tf. For this case, mechanical equi-
librium requires that at z ¼ l � h (Rempel, 2008)

N �
Z l

l�h
�s � �ið Þgð1� �Þ dz þ pf � �iL

Tm

Z Tl

Tf
ð1� �SiÞ dT

� �2i �
V
�2l

Z l

l�h

1� �Sið Þ2
k

dz, ð2Þ

where �s and �l are the densities of the soil particles and
liquid water, g is the acceleration due to gravity, � is the
viscosity of water, V is the rate of freezing (V < 0 for
melting) and k is the ice-saturation-dependent permeability
to fluid flow. The first term on the right-hand side of
Equation (2) accounts for the weight of till within the fringe.
The next two terms are the net vertical force per unit area
produced by intermolecular interactions between the ice
and till. The final term accounts for the deviation of the fluid
pressure from hydrostatic conditions that is required to move
water vertically through the fringe. Derivations of Equa-
tions (1) and (2) and further discussion of minor correction
terms that are neglected here are given in Rempel (2008). A
similar relationship to Equation (2) can be extracted from
field-tested models of frost heave (e.g. O’Neill and Miller,
1985; Nixon, 1991; Fowler and Krantz, 1994) that have
recently been updated within the context of a contemporary
understanding of pre-melting behavior (e.g. Dash and
others, 1995, 2006; Rempel and others, 2001, 2004;
Rempel, 2007).

Heat balance
The flow of heat into the glacier base at z ¼ l controls the
rate of freezing or melting. The latent heat consumed during
freezing is balanced by the heat transport into and away
from the interface so that the freezing rate is

V ¼ 1
�iL

�
Qb � Qg þQf

� ��� @

@t
h�Si

� �
: ð3Þ

In Equation (3), Qb is the heat flux into the glacier base, Qg

is the geothermal heat flux, Qf is the rate of work performed
at the basal interface and

h�Si ¼
Z l

l�h
�Si dz

is the ice content of the fringe. Spatial and temporal changes
in Qb are controlled by the rate of mechanical dissipation in
the ice in addition to advective and diffusive heat transport
through the ice. Qg is expected to be nearly constant over

relatively large distances and long timescales. For ice that
slides over till at velocity Ws, the rate of mechanical
dissipation at the sliding interface Qf ¼ 
bWs can vary over
short distances because of heterogeneities in 
b. The final
term in Equation (3) accounts for changes in the ice content
of the fringe (if present). For physical intuition, the steady
freezing rate predicted by Equation (3) is approximately
0:1½Qb � ðQg þQfÞ� (mma�1 mW�1 m2) so that for a tem-
perate glacier with Qb � 0, V � �6mm a�1 when
Qg þQf � 60mWm�2.

Water transport
Water flows to or from the glacier base to facilitate the
melting or freezing required by the heat balance. Transport is
driven by gradients in the fluid potential, and the volume
flux along each pathway depends on the resistance to flow
produced by interactions with solid surfaces. For a given
potential drop, flow through large conduits is most efficient
and is expected to transport the greatest fluid volumes (e.g.
Röthlisberger, 1972; Walder and Fowler, 1994; Fountain and
Walder, 1998).

When most of the basal cross-sectional area of a soft-
bedded glacier is adjacent to water-saturated till, fluid
transfers with conduits are accommodated by seepage flows
that move water according to Darcy’s law at transport rate

u ¼ � k0
�
r p þ �lgzð Þ, ð4Þ

where k0 is the permeability of the unfrozen sediment. The
hypothesis explored here is that the requirements for
seepage transport can exert a dominant control on the
average effective stress at the glacier base.

The fluid pressure p ¼ 	n �N, where N satisfies the local
basal equilibrium considerations outlined above. If the layer
of unfrozen sediment is thin in comparison to the scale of
horizontal transport then the rate of vertical fluid motion is
small enough that the vertical fluid pressure gradient is
approximately hydrostatic and the seepage transport rate
can be written:

u � � k0
�
rxy

�
�ig H þ lð Þ þ �s � �ið Þg 1� �ð Þh �N þ 	T

�
:

ð5Þ
In Equation (5), rxy is the horizontal gradient operator and
	T is defined as the amount by which bridging stresses cause
	n to exceed the glacier weight per unit area. Minor terms
involving the density difference between water and ice are
neglected.

The seepage flow satisfies a mass conservation condition
so that within the water-saturated till,

@

@t
�l�ð Þ þ r � �luð Þ ¼ 0: ð6Þ

Equation (6) can be vertically integrated over the thickness
of a till layer with its base at z ¼ b to find that changes in
the horizontal seepage flow rate are governed by

@

@t

�
�l� l � b � hð Þ�þrxy �

�
�l l � b � hð Þu� ¼ ��iV : ð7Þ

To arrive at Equation (7), the till layer has been assumed to
rest upon an impermeable substrate and freezing at the top
of the till layer is treated as a sink on the horizontal
transport.
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Weertman (1972) showed that beneath hard-bedded
glaciers the requirements of creep closure can cause the
normal stress distribution near the boundaries of Röthlisber-
ger channels to prevent water exchange with the rest of the
glacier base. This is consistent with the predictions of
Equation (5) when rxy 	T �Nð Þ changes sign as a conduit is
approached from outside. Walder and Fowler (1994) argued
that water supply to ‘canals’ cut into soft sediments would
not be impeded to the same extent as for conduits on top of
impermeable substrates. Ng (1998, 2000) calculated the
normal stress distribution at the ice–till interface outside an
idealized canal with a width that greatly exceeds its depth. It
was found that j	T j is negligible at distances much larger
than the canal width, but increases abruptly to become
undefined at the conduit boundary. Regularization of this
result probably requires a more detailed analysis that
incorporates additional physical interactions within the thin
boundary layer where j	T j becomes significant (Ng, 2000).
This difficult problem is not considered further here; r	T is
in fact neglected in the calculations that follow. Instead, the
simplifying assumption is that water is transported across a
boundary layer near the conduit wall, and a specified
effective stress NC is applied as a boundary condition on the
till side of the conduit.

The behavior of ice in till
Certain properties of the till are important for determining
the behavior of the subglacial system. Tests on a range of
unconsolidated materials suggest that the dependence of ice
saturation on temperature is well represented by an empir-
ical relationship of the form (Andersland and Ladanyi, 2003;
Rempel, 2007, 2008)

Si ¼ 1� Tm � Tf
Tm � T

� ��

, ð8Þ

where T < Tf and the exponent � is typically less than unity.
The permeability in the fringe is modeled using an empirical
relationship of the form (Nixon, 1991; Andersland and
Ladanyi, 2004)

k � k0
Tm � Tf
Tm � T

� ��

, ð9Þ

where the exponent � is typically greater than unity and k0 is
the permeability of water-saturated (i.e. ice-free) till.

For the calculations presented here, Equations (8) and (9)
are evaluated using parameters reported for Chena silt, a
fine-grained sediment that has been well characterized in
terms of its ice-saturation behavior and permeability vari-
ations with sub-zero temperatures (Andersland and Ladanyi,
2004). Good correlations between empirical ice-saturation
parameters � and Tf from Equation (8) and the measured
specific surface areas SSA of many different silts and clays
suggest that (SSA) might be used to estimate Tf and hence pf
for different subglacial sediments (Rempel, 2008). Notably,
the SSA of Chena silt is within the range reported for
sediments recovered from the base of Kamb Ice Stream,
West Antarctica (Christoffersen and Tulaczyk, 2003). It can
be argued that most tills are likely to be more poorly sorted
than those derived from marine sediments near the Siple
Coast. Nevertheless, the onset of ice infiltration that defines
the pressure scale pf is expected to be controlled primarily
by the most fine-grained fraction of heterogeneous particle
mixtures. Clearly, glaciers are underlain by a rich variety of
sediments and the soil parameters used here are only meant

to illustrate the types of behaviors that are expected. Direct
measurements of variations in Si and permeability with
temperature are needed for specific field settings.

3. STEADY HYDROLOGICAL NETWORKS
Figure 2 shows a schematic view of the drainage system
beneath a soft-bedded glacier that is flowing in the –by
direction. Variations in H, l and b are also assumed to occur
only in the by direction. Under these simplified conditions,
when downstream variations in 	T are small, the maximum
hydraulic gradient and hence the subglacial conduits are
expected to be aligned with the surface slope. For a given
conduit spacing 2D, the model framework described above
can be used to predict the average effective stress that
persists over the glacier bed. When the sliding velocity
Ws ¼ 0 and there is a uniform rate of basal melting, the
results below agree with those given previously by Shoe-
maker (1986) who provides an interesting analysis of the
connections between subglacial drainage and the near-
terminus profiles of idealized ice sheets.

Cross-sections through two potential steady-state hydro-
logical networks are shown schematically in Figure 3. These
can be thought of as close-ups of part of the lower portion of
Figure 2 under different heat-flow regimes. In Figure 3a, the
basal heat flux Qb is insufficient to remove the combination
of geothermal (Qg) and dissipative (Qf) heat, so V < 0 and
net melting occurs at the glacier base according to Equa-
tion (3). A seepage flow transports meltwater to the conduit,
and the effective stress distribution required to drive this flow
has N decreasing towards the drainage divide.

In Figure 3b, the basal heat flux Qb exceeds the sum of
Qg and Qf so V > 0. Equation (3) describes the rate with
which net freezing takes place at the glacier base. As shown,
mass balance is satisfied by flow through a conduit on the
left that supplies the seepage flow tapped by the freeze-on
process. The decrease in fluid pressure needed to drive this
flow increases the effective stress N towards the drainage
divide at larger x. If the seepage flow path is sufficiently long
that N > pf far from the supply conduit, a fringe with partial
ice saturation will form (as indicated on the right).

No fringe present: h ¼ 0
The controls on average effective stress are illuminated by
examining simple cases in which r	T ! 0. With the fringe

Fig. 2. Schematic diagram of a glacier that sits upon a layer of till
cut by subglacial conduits.
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absent, h ¼ 0 and Equation (5) becomes

u � k0
�

@N
@x

bx þ @

@y
N � �ig H þ lð Þ½ �by� 	

, ð10Þ

where bx and by are unit vectors. Seepage flows have
components in both the direction of glacier flow and in
the cross-flow direction. The total seepage flux in the down-
glacier –by direction is assumed to be relatively constant in
comparison with that of the cross-glacier bx direction. This is
expected to be the case when variations in till thickness
l � b and surface slope � in the direction of glacier flow
occur over a length scale that is much longer than the
distance D from a conduit to the drainage divide.

Experiments suggest that till can often be approximated as
a Coulomb-plastic material (e.g. Terzaghi, 1943), with the
local shear resistance satisfying 
b � �N for a constant
friction coefficient � (Kamb, 1970; Clarke, 1987; Iverson
and others, 1998; Tulaczyk and others, 2000; Fowler, 2003).
For sliding rateWs, substitutingQf ¼ �NWs into Equation (3)
and defining the length scale

d � ðl � bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0=Ws

p
,

the pressure scale

NQ ¼ ðQg �QbÞ=ð�W0Þ
and the velocity scale

W0 � �lk0L=½��ðl � bÞ�,
Equation (10) combines with the steady-state mass-balance
condition from Equation (8) to give

d2N
dx2

¼ NQ

l � bð Þ2 þ
N
d2 : ð11Þ

Equation (11) describes how the effective stress changes over
a characteristic distance d . For example with Nð0Þ ¼ NC,
NðDÞ ¼ ND and dN=dx ¼ 0 at x ¼ D, the profile satisfies

NðxÞ ¼ ND þNQ
W0

Ws

� �
cosh D � x

d

� �
�NQ

W0

Ws
, ð12Þ

where Ws > 0. When Qg > Qb and melting takes place, the
mass balance requires that NC > ND. However,
NC < ND < jNQ jW0=Ws when Qb > Qg and freezing oc-
curs. The upper limit on the effective stress at the drainage
divide ND < jNQ jW0=Ws during freezing arises because
higher values of N generate enough frictional dissipation to
cause net melting. Profiles of the effective stress distribution
for this and other cases are shown in Figure 4, and their

mathematical descriptions are summarized in Table 1 and in
the Appendix.

Of more importance to the overall glacier behavior than
the local value of NðxÞ is the average effective stress over
the glacier base:

N ¼ 1
D

Z D

0
NðxÞ dx

� �
: ð13Þ

Importantly, N and by extension the average basal shear
stress 
b ¼ �N is sensitive to the glacier sliding rate even
when the till behaves locally as a Coulomb-plastic material.
The sensitivity of N to Ws is greatest when Qb and Qg are
similar in magnitude and the conduit spacing is large. For
example, during freezing with ND approaching
jNQ jW0=Ws, D � d and Equation (13) predicts that
N / W�1

s , as noted in Table 1 (section A). Such ‘rate-
weakening’ behavior suggests the potential for instability, as
discussed below in section 4.

In the special case where the dissipative heat flux Qf ¼ 0,
for example when Ws ¼ 0 and the glacier does not slide, the
average effective stress between the conduit and the divide
is (for details see Table 1, section B)

N ¼ 1
3
NC þ 2

3
ND: ð14Þ

Fig. 3. Possible hydrological networks: (a) net melting takes place at
the glacier base and (b) net freezing takes place and ice is accreted
to the glacier base.

Fig. 4. Profiles of (a) scaled effective stress N=pf and (b) scaled
fringe thickness h=ðl � bÞ when D ¼ 2ðl � bÞ, Qg ¼ 60mWm�2

and for the values of Qb given in the legend.
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Since ND > NC when freezing takes place at the glacier
base, whereas NC > ND during melting, Equation (14)
predicts that for the same overall magnitude of effective
stress difference jNC �NDj, N is higher during freezing than
during melting. The argument that N is greater during
freezing than melting has been made before based on the
dependence of void ratio on effective stress. Here, even
though changes in void ratio have not been accounted for, N
is still shown to be higher during freezing than melting
because of the distribution of NðxÞ required to drive the
seepage transport. The N=pf profile for Qb ¼ 30mWm�2

and the lower of the two profiles with Qb ¼ 90mWm�2 in

Figure 4a provide examples where N ranges between similar
but opposite values at the conduit and divide. However, it is
clear that N is higher for the freezing case (e.g.
Qb ¼ 90mWm�2 > Qg).

Figure 5a and b show predicted values of N=pf and
D=ðl � bÞ respectively as a function of Qb with
Qg ¼ 60mWm�2 in the limiting cases where pf > N > 0.
Solid curves are for dissipative heating Qf ¼ �NWs with
� ¼ 0:6 and Ws ¼ 10ma�1. Nominal values for the other
control parameters are summarized in Table 2. Dashed lines
are for the special case when Qf ¼ 0. As long as
Qf 	 jQg �Qbj, the role of dissipation in producing

Table 1. Equations describing the steady-state behavior with Nðx ¼ 0Þ ¼ NC and Nðx ¼ DÞ ¼ ND

A. melting or freezing with frictional heating, no fringe B. melting or freezing without frictional heating, no fringe

Qf ¼ �NWs > 0;max Nð Þ 
 pf :

NðxÞ ¼ ND þNQ
W0

Ws

� �
cosh D � x

d

� �
�NQ

W0

Ws

cosh
D
d

� �
¼ NC þNQ

W0

Ws

� �
= ND þNQ

W0

Ws

� �

N ¼ d
D

NC þNQ
W0

Ws

� �
tanh

D
d

� �
�NQ

W0

Ws

Qf ¼ 0;max Nð Þ 
 pf :

NðxÞ ¼ NC � NQ

l � bð Þ2 Dx � x2

2

� �

D ¼ ðl � bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 NC �NDð Þ=NQ

q

N ¼ 1
3
NC þ 2

3
ND

C. melting with frictional heating, fringe present D. melting without frictional heating, fringe present

Qf ¼ �NWs > 0;NC > pf > ND;Qg þ �NCWs > Qb :

NðD > x > DfÞ ¼ ND þNQ
W0

Ws

� �
cosh D � x

d

� �
�NQ

W0

Ws

cosh D �Df

d

� �
¼ pf þNQ

W0

Ws

� �
= ND þNQ

W0

Ws

� �

Qf ¼ 0;NC > pf > ND;Qg > Qb :

NðD > x > DfÞ ¼ pf �
NQ

l � bð Þ2 D x �Dfð Þ � x2 �D2
f

2

 �

Df ¼ D � ðl � bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 pf �NDð Þ=NQ

q

Nðx < DfÞ Equation (15), hðDfÞ ¼ 0; hðx < DfÞ satisfies:
d
dx

1� h
l � b

� �
dN
dh

� �s � �ið Þg 1� �ð Þ
 �

dh
dx

� 	
¼ NQ

l � bð Þ2 þ
N
d2

dh
dx

����
x¼D�

f

¼
� pf þNQ

W0
Ws

� �
tanh D �Dfð Þ=d½ �

pfQgd
Ke Tm�Tfð Þ 1þ pf�Ws

Qg

� �
þ �iNQd

�l l�bð Þ 1þ pfWs
NQW0

� �

Nðx < DfÞ Equation (17), hðDfÞ ¼ 0; hðx < DfÞ satisfies:
d
dx

1� h
l � b

� �
dN
dh

� �s � �ið Þg 1� �ð Þ
 �

dh
dx

� 	
¼ NQ

l � bð Þ2

dh
dx

����
x¼D�

f

¼ �D �Df

l � b
NQ=

pfQg l � bð Þ
Ke Tm � Tfð Þ þ

�i
�l
NQ

 �

E. freezing with frictional heating, fringe present F. freezing without frictional heating, fringe present

Qf ¼ �NWs > 0;ND > pf > NC;Qg þ �NDWs < Qb :

NðDf > x > 0Þ

¼
NCþNQ

W0
Ws

� �
sinh Df�xð Þ=d½ �þ pfþNQ

W0
Ws

� �
sinh x=dð Þ

sinh Df=dð Þ �NQW0

Ws

Qf ¼ 0;ND > pf > NC;Qg < Qb :

NðDf > x > 0Þ ¼ NC þ pf �NCð Þ x
Df

þNQ

2
Dfx � x2

l � bð Þ2

Nðx > DfÞ Equation (15), hðDfÞ ¼ 0; hðx > DfÞ satisfies:
d
dx

1� h
l � b

� �
dN
dh

� �s � �ið Þg 1� �ð Þ
 �

dh
dx

� 	
¼ NQ

l � bð Þ2 þ
N
d2

dh
dx

����
x¼Dþ

f

¼
pf þNQ

W0
Ws

� �
coth Df

d

� �� NC þNQ
W0
Ws

� �
csch Df

d

� �
pfQgd

Ke Tm�Tfð Þ 1þ pf�Ws
Qg

� �
þ �iNQd

�l l�bð Þ 1þ pfWs
NQW0

� �

Nð> DfÞ Equation (15), hðDfÞ ¼ 0; hðx > DfÞ satisfies:
d
dx

1� h
l � b

� �
dN
dh

� �s � �ið Þg 1� �ð Þ
 �

dh
dx

� 	
¼ NQ

l � bð Þ2

dh
dx

����
x¼Dþ

f

¼ pf �NCð Þ l � b
Df

þNQ

2
Df

l � b

 �
=

pfQg l � bð Þ
Ke Tm � Tfð Þ þ

�i
�l
NQ

 �

x ¼ D where dh=dx ¼ 0 or dN=dh ¼ ð�s � �iÞgð1� �Þ x ¼ D where dh=dx ¼ 0 or dN=dh ¼ ð�s � �iÞgð1� �Þ
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additional melt is minor so the solid curves tend towards the
dashed lines at large and small values of Qb. As shown in
Figure 5a, N is twice as large during freezing with NC ¼ 0
and ND ¼ pf as it is during melting with NC ¼ pf and
ND ¼ 0. When Qg and Qb are closely matched, dissipative
heating exerts an important control on the quantity of liquid
to be transported. With NC ¼ 0 during freezing, D increases
rapidly as ND approaches the limiting value jNQ jW0=Ws.
Values of D=ðl � bÞ plotted in Figure 5b are the largest
possible, with pf > N > 0 everywhere between the conduit
and divide. When N > 0 everywhere, for larger D a fringe is
expected to form; the fringe is located near the divide when
freezing takes place and near the conduit when melting
takes place.

As suggested by Figure 5, the drainage behavior is
particularly sensitive to small changes in parameter values
when Qb exceeds Qg by only a small amount. Figure 6
illustrates this further with several effective stress profiles
calculated using Qb ¼ 63:3mWm�2, D ¼ 20ðl � bÞ and
the closely spaced values of ND=pf listed in the legend.
Although the basal heat flux is sufficient to remove the

geothermal heat, frictional heating still leads to net basal
melting when Qb < Qg þND�Ws. Hence, although
Qb > Qg is the same in each of the calculations shown
in Figure 5, only the smallest two values of ND=pf are low
enough to allow net freezing to the glacier base. The value
of ND=pf ¼ 0:5 was chosen so that Qb ¼ Qg þ �WsND

and no net fluid flow is required. Slightly higher values
of ND=pf produce frictional melting and require N to
increase towards the drainage conduit at x ¼ 0. This
suggests that when Qb and Qg are similar in size, small
changes in the effective stress at a drainage divide have
the potential to produce major reorganizations in the
subglacial flow that are accompanied by disproportionately
large changes in N.

Fringe present: h > 0
When N > pf, the local basal equilibrium considerations
discussed above require that a partially frozen fringe form,
as described by Equation (2) and shown schematically in
Figure 1c. Rempel (2008) showed that h can be approxi-
mated reasonably well when the temperature gradient is
treated as constant and the details of the temperature profile
are neglected. Using Equation (3) to obtain the steady-state
freezing rate, an estimate of the fringe thickness h is
determined as the solution to

N � �s � �ið Þgð1� �Þh þ pf � �iL
Tm

Z Tl

Tf
ð1� �SiÞ dT

� �i�Ke

�2l L
Qb

Qg þQf
� 1

� �Z Tf

Tl

ð1� �SiÞ2
k

dT , ð15Þ

where Tl � Tf � ðQg þQfÞh=Ke.
Figure 7 depicts solutions to Equation (15) using the soil

parameters for Chena silt given in Table 2 to obtain Si and k
from Equations (8) and (9). N ¼ pf at h ¼ 0 and, as h
increases, the effective stress at the fringe base initially
increases to support the added weight of till. When
Qb < ðQg þQfÞ so that V < 0 and net melting takes place,
water is driven downwards through the fringe. This implies
that the fluid pressure gradient through the fringe must be

Fig. 5. (a) N=pf as a function of Qb with Qg ¼ 60mWm�2. The
solid line shows the predictions of Equation (13) (where
Ws ¼ 10ma�1) and the dashed lines depict the predictions of
Equation (14). Between the vertical dotted lines, N � Nmax and
freezing takes place with D � d . (b) The drainage divide distance
D=ðl � bÞ as a function of Qb for the same conditions as in (a).

Fig. 6. Effective stress profiles for several values of ND=pf in the
transitional region with Qb � Qg þ �NDWs. For the calculations
shown here, N=pf ranges from a minimum of approximately 0.435
(bottom curve) to a maximum of 0.565 (top curve).
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less than hydrostatic so the last term in Equation (15) is
positive and N increases monotonically as h gets larger.
When Qb > ðQg þQfÞ, the fluid pressure gradient through
the fringe must be elevated to drive flow upwards and N
begins to decrease once h is sufficiently large. The solid
curves in Figure 7 show predictions for h when
Ws ¼ 10ma�1 and dissipation along the assumed sliding
surface at the base of the fringe enhances the local heat
supply. A comparison with the dashed curves for Ws ¼ 0
reveals that increased dissipation is associated with higher N
at any given value of h.

In regions along the glacier base where a fringe is present,
the steady-state mass-balance condition from Equations (5)
and (7) can be written as

d
dx

1� h
l � b

� �
dN
dh

� ð�s � �iÞgð1� �Þ
 �

dh
dx

� 	

¼ NQ

l � bð Þ2 þ
N
d2 : ð16Þ

Here, the seepage flux in the down-glacier direction is again
assumed to vary gradually in comparison with that in the
cross-glacier direction. Solutions to Equation (16) are
required to match with solutions to Equation (11) at
x ¼ Df, where N ¼ pf and h ¼ 0. Further details of the
predicted behavior are summarized in sections C–F of
Table 1.

Figure 8 shows predicted values for the scaled average
effective stress N=pf as a function of the scaled distance to
the drainage divide D=ðl � bÞ. The solid curves labeled with
their corresponding Qb values are for the default case where
Qf ¼ �NWs and Ws ¼ 10m a�1. For comparison, the
dashed curves in Figure 8 show the predicted behavior
when Qf ¼ 0. For the case of a temperate glacier with a
basal heat flux ofQb ¼ 0, N increases monotonically with D
until it reaches 2pf near D � 3ðl � bÞ. The lower solid curve
for Qb ¼ 30mWm�2 predicts similar behavior, but with a
slower monotonic rise in N with D. Note that Qb < Qg for
this case as well, so net melting takes place. The curve
terminates at N=pf � 1:5 and D=ðl � bÞ � 4 because the

fringe becomes thick enough at this point to encompass the
entire nominal till thickness of l � b ¼ 3m. For the case
where Qb ¼ 0, h � l � b ¼ 3m when D � 3ðl � bÞ and
N � 2pf. Calculations for cases with Qb 
 Qg were per-
formed for an assumed effective stress at the divide of
ND ¼ 0. Higher choices of ND would produce higher values
of N for a particular choice of D. These calculations
demonstrate that when melting takes place, only a limited
channel spacing is permitted before the entire till layer is
infiltrated with ice.

Two sets of calculations are shown in Figure 8 with
Qb > Qg so that net freezing occurs at the glacier base. In
each case, the effective stress at the conduit is set to NC ¼ 0.
With increases in D, N increases initially until the threshold
from Figure 5b is reached for that particular value of Qb, at
which point a fringe first begins to form at x ¼ Df ¼ D.
Increases in D are possible for a steady-state system with a
fringe that extends from the divide to ever smaller values of
Df. A maximum steady-state divide distance is soon
reached, however. Further decreases in Df are also
accompanied by decreases in D so that with the same
value of NC (i.e. NC ¼ 0 here) there are two possible steady-
state values of N for any particular D. The higher steady-state
N is for the case in which the fringe extends over a larger
portion of the glacier base.

As shown here, the range of possible steady-state values
of D and N is greater for cases of freezing with Qb closer to
Qg. These results show that when net freezing occurs, the
maximum steady-state channel spacing does not necessarily
correspond to the entire till layer being infiltrated with ice.
Instead, for the cases examined here, the maximum D is
connected with the limit to the steady-state N that can be
achieved (refer to the left-most curves in Fig. 7) as a result of
the reduced permeability to vertical fluid transport through
the fringe.

The horizontal solid line in Figure 8 with N ¼ 0 corres-
ponds to the case where Qb ¼ Qg with ND ¼ 0. With no
imbalance between the background geothermal heat flow
and the basal heat flux, since no dissipative heating is

Fig. 8. Variation in N=pf with D=ðl � bÞ for Qg ¼ 60mWm�2 with
the values of Qb listed in the legend. The calculations involving net
freezing at the glacier base (i.e. Qb ¼ 90 and 120mWm�2) were
made with Nð0Þ ¼ NC ¼ 0.

Fig. 7. Approximate steady-state fringe thickness h as a function of
effective stress N, with Qg ¼ 60mWm�2 and the values of Qb

noted in the legend. Dissipative heating is modeled with
Qf ¼ �NWs, and the temperature gradient is approximated as
uniform and equal to ðQg þQfÞ=Ke.
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expected when N ¼ 0, no net water transport is required,
the effective stress is constant everywhere and N ¼ 0.

Figure 4 shows profiles of N=pf and h=ðl � bÞ for the
parameters used to produce Figure 8. For the cases where
Qb < Qg so that melting takes place, with fixed values of D
and ND (calculations here were made with D ¼ 2ðl � bÞ
and ND ¼ 0) the requirements for fluid drainage admit a
unique profile of N=pf. As expected from the values of
N=pf shown in Figure 8, the effective stress increases
towards the drainage conduit more rapidly when Qb ¼ 0
than when Qb ¼ 30mWm�2. This is because larger fluid
fluxes accompany more vigorous melting and require
correspondingly larger effective stress gradients to drive
flow. The fringe depth near the drainage conduit is greater
when N=pf is higher there, and so a larger volume of till is
expected to be frozen to the glacier base when Qb is low.
The presence of deep frozen regions near the drainage
conduit tends to restrict fluid access. Since the fringe depth
is reduced for lower conduit spacings, this suggests a
potential mechanism for setting the spacing of drainage
conduits. Note that more closely spaced conduits not only
have the advantage that fluid access is not restricted by
thick fringes, but also allow for lower N as shown in
Figure 8.

For the cases where Qb > Qg þQf so that freezing takes
place, two steady-state N=pf profiles are possible for
sufficiently small values of D=ðl � bÞ with fixed NC

(calculations shown in Fig. 4 were made with NC ¼ 0). Only
a restricted range of steady-state conduit spacings is possible
for a given value of Qb > Qg. For example, the N=pf profile
with lower N for Qb ¼ 90mWm�2 requires no fringe
formation. However, the case with lower N for
Qb ¼ 120mWm�2 requires a fringe that extends to nearly
one-fifth of the depth of the till layer. This difference in

behavior can be traced to the larger fluid supply rate required
of the more vigorous freezing in the latter case.

he effective stress gradient
vanishes at the drainage divide where flow in thebx direction
ceases. As indicated by Equation (16), this happens when
either dh=dx ¼ 0 or dN=dh ¼ �s � �ið Þg 1� �ð Þ. Further
analysis shows that the former condition always applies for
the lower N=pf profile at a particular Qb > Qg þQf and NC.
Gradients in h at the drainage divide also vanish for the
upper N=pf profiles when N=pf is sufficiently close to its
maximum shown in Figure 8 for a particular Qb > Qg þQf.
However, as shown in Figure 4b by the lower curve for
Qb ¼ 90mWm�2, dh=dx 6¼ 0 for the higher of the two N=pf
profiles at this basal heat flux. A linear stability analysis
shows tha t those s teady- s ta te so lu t ions wi th
dN=dh ¼ �s � �ið Þg 1� �ð Þ are only marginally stable. Per-
turbations that lead to slight increases in h at the divide are
expected to cause N to drop slightly. This will reduce the
frictional heat input and allow more freezing to take place
until, eventually, the entire sediment layer becomes frozen.
In other words, a steady state with dh=dx 6¼ 0 at the drainage
divide is not expected to persist.

4. DISCUSSION
The simple models presented here illustrate how subglacial
drainage systems impose limits on the steady-state behavior
of glaciers and ice sheets. For example, the average effective
stress N is predicted to be limited to a small multiple of the
pressure scale pf that marks the local value of the effective
stress N at which ice first invades the pore space. Even for
tills with very small pore apertures, pf is typically expected
to be less than 1 bar; coarse-grained substrates can be
associated with values of pf that are vanishingly small. There
are many glaciological settings in which the inferred average
basal shear stress 
b is low enough to be consistent with
till operating as a Coulomb plastic material, with

b � �N ¼ OðpfÞ. There are also circumstances in which
the inferred 
b is sufficiently large that it greatly exceeds
expected values of pf. This could imply that the subglacial
sediments are particularly fine-grained or are perhaps
mantled by fine-grained material so that pf is unusually
large; it could also imply that thick fringe layers extend
beneath the glacier.

A further possibility that has not been explored here, but
often seems likely to hold, is that the inferred average basal
shear stress is dominated by the effects of basal topography,
much as is generally accepted to be the case for glaciers
that slide over hard beds (e.g. Kamb, 1970; Paterson, 1994).
The modeling framework employed here could be extended
to explore the effects of bed undulations on subglacial
freezing behavior to quantify their influence on 
b. Strong
field evidence for the importance of subglacial hetero-
geneity in 
b includes the inferred ‘sticky spots’ that are
thought to be responsible for temporal variations in sliding
rate along the Siple Coast ice plain (Bindschadler and
others, 2003).

When no fringe is present, for a given conduit spacing
the average effective stress N is predicted to decrease with
increased sliding speed Ws. Such behavior is contrary to
what has sometimes been inferred and modeled for tills that
appear to deform in a viscous fashion. In many circum-
stances the effects of basal topography are expected to

Table 2. Nominal parameters used for the calculations presented
here. Values of Tm � Tf, k0,� and � are for Chena silt (Andersland
and Ladanyi, 2004). These parameter values imply that the pressure
scale pf � 35 kPa, the velocity scale W0 � 130ma�1 and the
distance scale d � 11m. With the nominal value of Qg, NQ ranges
from NQ � 24 kPa when Qb ¼ 0 to NQ � �24 kPa when
Qb ¼ 120mWm�2

Parameter Nominal value Unit

g 9.8 m s–2

k0 4.1�10�17 m2

l � b 3 m
Ke 2 W (mK)–1

L 3.35�105 J kg–1

Qg 60 mWm–2

Tm � Tf 0.031 K
Tm 273 K
Ws 10 ma–1

� 3.1 –
� 0.53 –
� 1.8�10�3 Pa s
� 0.6 –
� 0.35 –
�i 920 kgm–3

�l 1000 kgm–3

�s 2650 kgm–3
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produce enhanced 
b with increased Ws, and this may be
partly responsible for the inferred behavior. Moreover, a
comparison between the solid and dashed curves in Figure 8
indicates that when a fringe is present and freezing takes
place, N is lower for steady sliding and dissipation at finite
Ws than it is when Ws ¼ 0. The opposite situation arises for
the case where melting takes place with a fringe present
and the steady N is higher with dissipation than without.

In circumstances where more rapid sliding produces
lower sliding resistance, the potential exists for a runaway
effect that could be responsible for producing regions of
localized fast glacier flow. The steady-state predictions
shown here suggest that very low values of N can be
associated with cases of intermediate basal heat flow, when
Qg < Qb < Qg þ �WsND and conduit spacings are large
because very little meltwater is generated. It is commonly
assumed that fast-flowing regions such as ice streams
require rapid melt generation, yet detailed studies suggest
that the situation may be more complicated. In some
cases (e.g. beneath Whillans Ice Stream, West Antarctica),
the heat-flow regime curently supports relatively low
melting rates and even areas with net freezing (Joughin
and others, 2004).

The calculations shown here and illustrated in Figure 6
are consistent with the theory that small changes can
produce significant disruptions to the steady behavior. It is
interesting to speculate whether the dynamics of seepage
flows may bear significant responsibility for the transient
behavior of ice streams.

The conduit spacing D has been treated here as given,
whereas in practice this key characteristic of hydrological
networks should be determined dynamically. Walder and
Fowler (1994) suggested that conduit spacing is set by a
piping condition, where seepage fluxes are limited by
erosive processes at conduit boundaries. Shoemaker (1986)
explored the potential for piping at the ice-sheet terminus to
regulate the conduit spacing by limiting the maximum size
of hydraulic gradients, but favored a mechanism in which
spacing was set by a maximum in the allowable pressure
drop from conduit to divide. The current model also
suggests that the pressure change from conduit to divide
limits the maximum allowable D, and further constrains
what this maximum allowable pressure change should be.
When Qb < Qg þQf so that net melting occurs, the conduit
spacing reaches its limiting value when NC rises sufficiently
for the fringe to penetrate the entire depth of the till layer
(i.e. h ¼ l � b; see Fig. 8). By contrast, under freezing
conditions with Qb > Qg þQf, the steady conduit spacing
attains a stable maximum at intermediate D that is
controlled by the permeability structure of the partially
frozen sediments of the fringe once it reaches a finite
thickness (that can still be much lower than l � b).

It is interesting to note that for a fixed conduit spacing,
the resistance to fluid flow through the fringe can be
sufficient to cause N for freezing conditions with
Qb > Qg þQf to be significantly lower than N for melting
conditions with Qb < Qg þQf. This behavior is contrary to
what is commonly assumed based on the poroelastic
properties of tills. Gradients in void fraction are not
expected to be significant for the steady behavior examined
here and so have been neglected, whereas temporal
changes in void fraction can have a more important
influence on transient events.

For the calculations presented here, pf was taken as that
corresponding to Chena silt. Other sediments are expected
to have larger or smaller values of pf, depending on the sizes
of their pore apertures. For example, with pore apertures of
characteristic radius Rp, pf � 2�il=Rp varies from 70 kPa to
7 kPa to 0.7 kPa as Rp varies from 1 mm to 10 mm to 100 mm.
The value of the unfrozen permeability k0 � 4:1� 10�17 m2

for Chena silt is towards the low end of values typically
quoted for tills. As noted in the Appendix, the depth-
integrated seepage flow models presented here are expected
to perform better for higher values of k0, which tend to
promote larger aspect ratios D=ðl � bÞ.

Topographic variations and heterogeneous basal proper-
ties in natural glacier systems produce a far richer variety of
behavior than the elementary models shown here could ever
hope to capture. Nevertheless, the basic considerations
employed here can be used as a guide for future studies
aiming to explore the essential features of drainage inter-
actions in more realistic settings.

5. CONCLUSIONS

The average effective stress N beneath soft-bedded glaciers
is constrained by subglacial drainage requirements. When
flow between most of the glacier base and major conduits
occurs primarily through seepage flows, the conduit spacing
and heat-flow regime strongly influence N. Beyond a critical
level of N, the hydraulic gradients required for seepage
transport lead to local values of N > pf so that ice penetrates
the pore space to form a fringe of partially frozen sediment
with thickness h, extending beneath the glacier base. When
net melting takes place, the fringe is thickest near drainage
conduits and higher values of N require increases in h that
can eventually lead to freezing of the entire till thickness.
When net freezing takes place, the fringe is thickest near
drainage divides and there is a maximum conduit spacing
that can support steady-state behavior. For any conduit
spacing below this maximum, two steady-state values of N
are possible, the lower of which is always stable. The higher
steady-state N has a more extensive fringe that can be
unstable to small perturbations in its thickness. This suggests
the potential for transient freezing through the till layer that
could produce dramatic changes in basal shear stress.
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APPENDIX

Effects of vertical seepage transport
It is useful to consider more closely the circumstances under
which the depth-integrated model should perform at its best.
The length scale d emerged in the previous sections as the
natural length scale for hydrologically significant changes in
N when Qf > 0. Further calculations confirm that for
jND �NCj comparable to pf or greater, D � l � b when
d � l � b. This occurs when W0 � Ws or equivalently
when �lk0L=½�Ws�ðl � bÞ� � 1. Substituting for the proper-
ties of the water system summarized in Table 2 and using the
nominal friction coefficient of � ¼ 0:6, this implies that
d � l � b when k0=½Wsðl � bÞ� � 3� 10�12 s. The seepage
transport is best approximated by the depth-integrated
treatment for conditions of less rapid sliding over more
permeable sediments that are present in thinner layers. The
depth-integrated treatment is also very good for cases where
Qb and Qg are very closely matched, as suggested by the
dotted vertical boundaries in the middle of Figure 5b.

The model results presented in Table 1 treated the
seepage transport using depth-integrated equations that are
expected to be a good approximation when D � l � b. In
many of the cases considered here, however, the divide
distance D is only larger than the till thickness l � b by a
modest amount. While the qualitative behavior described by
the depth-integrated equations is expected to be robust,
vertical seepage transport should affect the detailed quanti-
tative behavior. A few calculations are useful for illustrating
the overall effects.

In Figure 9, levels of N=pf as a function of D=ðl � bÞ are
compared for the one-dimensional (1-D) depth-integrated
predictions of Table 1 and predictions of more complete (2-
D) finite-difference calculations in which either the conduit
extends the full 3m depth of the till (solid curve), or the
conduit extends only 1m down from the top of the 3m thick
till layer (dot-dashed curve). The 2-D model solves Laplace’s
equation for N on a rectangular domain, with no flux
boundary conditions at the base and the divide. Along the
x ¼ 0 axis where the conduit is present, N is set to NC at
ðx, zÞ ¼ ð0, lÞ with a hydrostatic gradient extending down-
wards to the conduit base. A no-flux condition is set beneath

the conduit for the case where it penetrates only the top
meter of the 3m till depth. The mass-balance condition is
applied along the rest of the glacier boundary for 0 
 x 
 D
and z ¼ l, where melting acts as a water source or freezing
acts as a water sink. By comparing the solid curves with the
dashed curves it can be seen that when the conduit extends
the full depth of the till layer, the differences between the 2-
D and 1-D predictions for N=pf are minor even at divide
distances D that are comparable to l � b. The comparison is
less satisfactory when the conduit extends only a fraction of
the till depth, as shown by the dot-dashed curve. However,
the depth-integrated 1-D predictions still reflect the overall
trends. In comparison to the 2-D predictions, the depth-
integrated model underestimates N=pf for cases of net
freezing with Qb > Qg and overestimates N=pf for cases of
net melting with Qb < Qg.
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Fig. 9. N=pf as a function of D=ðl � bÞ calculated while treating the
seepage flow as 2-D and for the depth-integrated 1-D model
(dashed). Decreasing N=pf values with D=ðl � bÞ are for melting
conditions with Qb ¼ 30mWm�2 and NC ¼ pf . Increasing values
are for freezing conditions with Qg ¼ 90mWm�2 and NC ¼ 0.
Calculations were terminated for the melting cases once D was
sufficiently large that ND � 0 and for freezing cases when ND � pf.
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