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Introduction 

One of the features of organisms that makes the study of biology so compelling is 

their apparent complexity. Molecular, cellular, developmental, physiological, neurological, 

and behavioral systems are each fascinating in and of themselves, but it is their interaction 

that generates what we see as the organism as a whole. By necessity, biologists have a 

tendency to break down organisms into their component parts to see how they work. Yet, 

no trait is an island (Dobzhansky 1956). In particular, we need to consider the organism in 

its entirety when looking at evolutionary change. This perspective is necessitated simply 

by the fact that it is the whole individual, not specific traits or particular alleles, that lives 

and dies. The whole individual is therefore the central unit of selection (Lewontin 1970). 

How can we deal with the complexity inherent in trying to integrate biological function 

and evolutionary change across the whole organism? Quantitative genetics provides an 

attractive potential framework because it attempts to summarize important features of the 

genetic system while focusing firmly at the level of the phenotype. The multiple trait 

(multivariate) formulations of quantitative genetics that we will discuss here can be seen 

both as a conceptual framework for integrating multiple systems at many levels and as a 

tool for making quantitative predictions about evolutionary change. Whether it succeeds 

on either count is the subject of active debate (Barton and Turelli 1989). Ways of 

successfully building upon the traditional statistical framework of quantitative genetics is 

one of the exciting areas of future growth within the field of evolutionary genetics. 

A preoccupation of many evolutionary biologists is the prediction of future response 

to selection and/or the retrospective estimation of the selection pressure responsible for 

contemporary phenotypes. In trying to reconcile experimental simplicity with the reality 

that selection acts on the whole organism, we are generally concerned with multiple traits, 

each of which has a polygenic basis and varies continuously (not discretely). For these 

suites of traits, past and future evolution can be explored using the multivariate extension 

of the breeders’ equation (Lande 1979; Lande and Arnold 1983; Ch. 4.1): 

 !z = G!  (1) 

Response to selection (the vector !z) depends jointly on the strength and direction 

of selection (the vector !), and the matrix of additive genetic variances and covariances, G 

(Ch. 4.1) (Those unfamiliar with the concept of covariance should consult the brief 

exposition in Box 1). The contribution of G to evolution is non-trivial, influencing not just 

the response of traits directly under selection, but also the rate and direction of evolution in 

traits that genetically covary with selected traits (Fig. 1). 

As the name suggests, the breeders’ equation has been used extensively by 

plant/animal breeders to select for stock with particular attributes. Typically, breeders are 

interested in response to selection in the short term. In contrast, evolutionary biologists are 

frequently interested in long-term responses. The utility of the breeders’ equation in 

evolutionary biology depends on !  and G remaining relatively stable over the time frame 

of interest. Gain and loss of traits through evolutionary time is sufficient to demonstrate 

that G changes. However, we know very little about how G evolves, which makes it 



difficult to predict when G will evolve, and thus when we can or cannot assume constancy 

and employ Equation (1) in the analysis of evolution. 

The G-matrix evolves through processes that alter allele frequencies: mutation, 

migration, selection, and drift (Arnold 1992; Barton and Turelli 1987; Lande 1980). 

Conditions under which G might remain relatively constant have been predicted both from 

theory (Turelli 1988) and computer simulations (Jones et al. 2003), but we do not know 

how often these conditions are met in natural populations. Empirically, the data suggests G 

might remain relatively stable over the short term, but does not always do so (reviewed by 

Jones et al. 2003). Overall there is little support for researchers assuming a stable G in 

their system. Thus, understanding the evolution of G remains an outstanding issue in 

quantitative genetics. 

Quantitative geneticists will continue addressing these issues by conducting 

computer simulations of evolution and by estimating G from populations under a range of 

conditions. An emerging mechanistic approach to tackling these same issues is built upon 

the fact that G summarizes large amounts of information about the physical genetic and 

developmental bases of traits. G is estimated from observations on the phenotypic 

similarity among relatives, and we have historically been unable to directly observe what 

underlies G. Recent advances in developmental and molecular genetics are bringing us to a 

position where we break down a G-matrix so as to consider the contributions of each locus 

to each trait. This interface between quantitative and molecular genetics may provide 

insight into the evolutionary processes shaping G, thereby expanding the framework 

within which we can understand the evolution of organisms as an integrated whole. 

Concepts 

What makes G? 

In many ways, the G-matrix can be thought of as a nexus connecting genetic 

information with evolutionary processes. On one hand, the structure of G is determined by 

the functional and developmental interactions that generate pleiotropy and by the genomic 

features that characterize linkage relationships among loci. On the other, G determines the 

rate and direction of the response to selection, as well as the pattern of divergence among 

populations. G is a statistical abstraction stuck between these levels, seeking to sufficiently 

summarize the molecular details at one end so that it can serve as an adequate predictor of 

evolutionary response at the other. Lofty goals. The elements underlying these aims bear 

closer scrutiny. 

The essential genetic underpinnings G can be appreciated by a careful study of 

Lande (1980)—which is somewhat akin to saying that the essential underpinnings of sub-

atomic physics can be appreciated by a careful study of a piece of fruitcake
1
. Things are 

not always as self-evident as they could be. Notational difficulties aside, the fundamental 

concepts are actually relatively straightforward. The most important step toward 

understanding what G summarizes at the genetic level is to take a very general view of 

allelic effects at a given locus (Box 2). First, imagine that a large set of alleles at a single 

locus might generate a continuous distribution of effects on a given trait. Next, note that 
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 With apologies to Douglas Adams—and Russ Lande. 

each allele can also affect more than one trait (pleiotropy), such that different alleles at a 

locus will have different levels of direct and pleiotropic effects on the suite of traits under 

study. We can represent the effect an allele at locus i has on trait p as xip. The whole array 

of pleiotropic effects at the locus is then represented by the vector xi (Box 2). Lande 

(1980) in fact uses only this vector notation for compactness. If we really wanted to 

proliferate subscripts, we could have included another subscript (say k) to indicate that xikp 

is the effect of the kth allele from locus i on trait p. Instead, xip serves more like a random 

variable that indicates the particular value that we have drawn from the infinite set of 

possible allelic effects at locus i. In practice, we often want to average over of all of these 

effects. We represent this averaging using the expected-value function, E[], as in E[xip] = 

ip
x . This expectation is taken over all of the individuals in the population and so is 

dependent on the underlying frequencies of the alleles. 

The pattern of association of alleles both within and between loci will generate the 

pattern of genetic variance and covariance for the traits. For now, we will use a system 

with only two traits for simplicity
2
. Following Lande (1980), there are three possible sets 

of allelic association that need to be considered. First, there are associations among the 

effects of alleles segregating at a single locus. Each allele at locus i can have a particular 

influence on each of the two traits (Box 2), so we will collect their effects together in a 

single matrix, Cii: 
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where 2

1i
!  is the usual per-locus additive allelic or genic variance affecting trait 1 and 

21ii
!  

is the additive covariance between traits 1 and 2 contributed by pleiotropic effects of 

alleles at locus i (Box 2). These latter terms will be generated when alleles at a given locus 

tend to affect more than one trait, either directly (e.g., a transcription factor turning on a 

similar set of genes within two different tissues) or indirectly (e.g., a gene that affects 

metabolic efficiency influencing both growth rate and egg production). Big picture: Cii 

give the single-locus-affecting-multiple-traits perspective that is the hallmark of pleiotropy 

and that is frequently the focus of most functional interpretations of genetic covariance 

structure. 

 Second, there can be an association between alleles at different loci within the same 

gamete, summarized by Cij: 
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Each of the terms in this matrix is a covariance of effects across loci within a gamete (i.e. 

cis acting effects) and are the associations that we would expect to be primarily generated 

by physical linkage along a chromosome. Big picture: linkage between loci (or between 

genetic elements within genes) contribute to genetic correlations because these linked 
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at first. You can always come back for the details if interested. 



effects tend to be inherited together. As one breaks down the elements of a gene (say a the 

per nucleotide level), the distinction between linkage and pleiotropy becomes somewhat 

arbitrary. 

 Third, the effects from alleles of loci located on different gametes (i.e., trans acting 

effects) can be correlated with one another, as in C´ij: 
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The prime indicates the allele is from the other gamete. How can this be? How can loci 

from different gametes with effects on different traits possibly matter? If the loci have a 

tendency to be inherited together, say by assortative mating, then they can indeed 

influence the correlation across seemingly unrelated traits. Terms in this matrix are 

therefore especially important in models of sexual selection that depend on a build-up of 

genetic covariance between traits like male display and female preference. Big picture: 

correlations across gametes (contributed separately by a mother and father) can contribute 

to a genetic correlation if the effects of assortative mating can overcome the natural 

tendency for independent segregation among gametes. In most quantitative genetic 

models, except those explicitly concerned with sexual selection, these effects are usually 

assumed to be negligible. 

The G-matrix itself is the sum of these three potential sources of covariance of 

allelic effects, 
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with the sum extending over allelic covariances for all n loci (Lande 1980). This is a little 

easier to interpret by writing the elements of G, say for traits p and q, after separating the 

terms from Equation (5) based on their definitions from Equations (2-4): 
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Here Gpp is the additive genetic variance for trait p, and Gpq is the additive genetic 

covariance between traits p and q. This breaks the composition of the G-matrix into three 

separate (and fairly comprehensible) pieces. In each case, the first term refers to the 

pleiotropic effects of each locus, the second term refers to the variance or covariance 

generated by linkage disequilibrium, and the third term refers to the covariance among 

alleles that can be generated by non-random (or assortative) mating. 

G-matrices thus represent covariances of covariances. Pleiotropic effects of alleles 

at a single locus, linkage of alleles with similar effects at multiple loci, and associations of 

alleles across gametes generated by non-random mating can all generate covariance in 

genic effects, which in turn generate the genetic covariances observed in G. The actual 

values of the covariances in G will depend on the frequencies of the underlying alleles. 

Like all quantitative genetic models, this approach sums over the individual per-locus 

effects so that we deal solely with the summed variances of genic effects. The genetic 

covariances therefore average over many individual genic effects, which can even 

potentially cancel each other out (e.g., Gromko 1995). Ultimately, it is the genic effects 

themselves that harbor the interesting information regarding the functional basis for the 

genetic coupling between traits (Box 2), but it is the overall genetic effects that we can 

observe in the resemblance between relatives. 

Evolution of G 

Although the pattern of genetic covariation among traits can play an important role 

in the evolutionary response of those traits, as exemplified by Equation (1) (Fig. 1), it is 

equally interesting to ask how G itself will evolve. Extrapolating from Lande (1980), the 

deterministic changes in G can be modeled using the equation shown in Box 3. From a 

theoretical perspective, we can consider both how deterministic processes, such as 

selection and mutation, and stochastic processes, such as drift, change G. 

Selection.—Directional selection (!) alone is expected to cause an erosion of 

genetic variation, but the pattern of correlational selection (" ) can potentially mold the 

pattern of genetic covariation. The term ("  – !!
T
) in Box 3 is actually the curvature of the 

adaptive landscape (Phillips and Arnold 1989), so one interesting prediction from this 

model is that G should evolve to match the orientation of the adaptive landscape (Box 2, 

Cheverud 1984; Jones et al. 2003). However, the actual pattern of G will depend on the 

balance of selection with other evolutionary forces. 

Mutation and recombination.—The potential importance of mutation and 

recombination in the evolution of G remain relatively unexplored. The influence of 

recombination is usually ignored because selection ordinarily needs to be fairly strong in 

order to overcome the ability of even small amounts of recombination to eliminate linkage 

disequilibrium. Intermittent admixture of isolated populations can generate substantial 

amounts of linkage disequilibrium, however, as will strong assortative mating among 

similar genotypes. The relative importance of linkage disequilibrium will ultimately 

depend on the genomic organization of genes influencing suites of correlated traits. 

Traditional population genetic models have tended to treat loci as being equivalent to 

distinct genes, which are usually assumed to be loosely linked. Emerging insights into 

molecular genetics may require changes in these assumptions. For instance, if one treats 

the regulatory regions of genes separately from their translational products, then these 

parts of a “gene” need to be treated as two distinct, tightly linked loci. In more explicit 

models of developmental regulation, considering the influence of tight linkage between 

separate factors will become more important. 

There is an even more pressing need to consider the influence of mutational 

covariance on the evolution of G. Over the last few decades, evolutionary geneticists have 

speculated extensively on the potential role of genetic correlations as an evolutionary 

constraint (Barton and Turelli 1989). The true nature of these constraints are most likely to 

be revealed in the pattern of mutational covariance, since it is against this background of 

variance that selection can act and the structure of the G-matrix is determined (Box 2; 



Jones et al. 2003). It remains an open question whether or not patterns of developmental 

interactions among genes will influence new mutations to adhere to constrained pleiotropic 

pathways or whether most loci are instead capable of a wide array of possible phenotypic 

effects (Box 2). Any such mutational biases are bound to have an important influence on 

the long-term evolution of G. As difficult as accurately estimating the elements of G can 

be, estimating the components of M is much harder and unfortunately still leaves us far 

removed from the distribution of the mutational effects themselves. 

Genetic drift.—Stochastic variation in gametic frequencies generated by genetic 

drift will influence both the the evolution of the G-matrix itself (Phillips et al. 2001) and 

the direction of phenotypic evolution, which is mediated by G (Lande 1979). Drift can 

change G both through sampling alleles with differing pleiotropic effects and through a 

build-up (or change in the pattern) of linkage disequilibrium (Eqs. 6-7). The former effects 

might be expected to be more persistent than the latter, although linkage can potentially 

decay fairly slowly (Whitlock et al. 2002). Unfortunately, we do not have a firm 

theoretical handle on the importance of drift through either of these processes (Phillips et 

al. 2001). Within a population, drift is expected to influence all genetic variances and 

covariances similarly; they should decline at a rate of (1 – 1/2Ne) per generation, where Ne 

is the effective population size. If mutation restores some of this variation every 

generation, then we would expect the long-term mutation-drift equilibrium for G to be 

2NeM (after Lynch and Hill 1986). Thus, we expect both the short-term and long-term 

effects of drift to lead to proportional changes in G (Box 1; Phillips et al. 2001). As we 

discuss below, however, there can be tremendous sampling variation around this 

expectation, such that for any given population the orientaion of the G-matrix can change 

substantially due to drift (Phillips et al. 2001), especially over extended periods of time 

(Whitlock et al. 2002). 

When populations diverge through drift, it is predicted that the orientation of 

population means will match the orientation of G (Lande 1979; Phillips et al. 2001). This 

is the same expectation as for the correlated response to selection on a set of traits (Lande 

1979), which unfortunately means the observation that divergence is aligned with the 

major direction of genetic covariation (Schluter 1996) cannot be used to distinguish 

whether drift and selection has been responsible for the divergence among populations 

(although see McGuigan et al. 2004). 

Assumptions and Complications 

The equations and predictions given above are only first approximations of the true 

complexity underlying the evolution of genetic associations among traits. First of all, the 

equations describing the evolution of the G-matrix are derived under the assumption that 

the effects of alleles (both within and between loci) are additive. This is the only way to 

easily write the genic covariances in terms of the deviation of the effects of a particular 

allele from effects of other alleles at the locus. If that deviation depends on genetic 

context, either because of dominance of other alleles at the same locus or by interactions 

between that allele and alleles at other loci (epistasis), then things can get much more 

complicated. Epistasis, particularly when combined with varying levels of linkage, could 

potentially have a large impact on the apparent pattern of pleiotropy at a given locus. 

Imagine, for example, an enhancer region that modulates expression of a given gene in 

different tissues. The pattern of pleiotropy will depend on changes in the enhancer, on 

changes in the structural gene, or most likely, on some coordinated set of changes shared 

between them. To some extent, complications caused by non-linear interactions among 

genetic factors can be statistically accounted for, especially for predictions of changes in 

trait means (Ch. 4.1), but their effects on variances are complex (Whitlock et al. 1995) and 

their influence on genetic covariances is virtually unexplored (see Lopez-Fanjul et al. 

2004). 

An equally complex but more subtle complication is caused by differences in the 

distribution of allelic effects (Box 2). These distributions do not affect the definition and 

interpretation of G in a static sense (Eqs. 2-6), but even if we assume all effects at a locus 

are additive, the distribution of allelic effects can have an important influence on the 

evolution of the elements of G. When allelic effects are normally distributed, as assumed 

by Lande (1980), Equation (7) can be used to describe changes in G. The essential 

underlying result here is that even as the elements of the allelic covariance matrices 

change, under normality, the linear relationship between the allelic effects and the 

phenotypic traits is not (Lande 1980). When the distribution of effects is non-normal, 

however, there is a complex interplay between the higher moments of the allelic effects 

and changes in the moments of the traits themselves (Barton and Turelli 1987). For 

example, if there is skew in the distribution of allelic effects, changes in the trait mean will 

lead to changes in the genetic variance of that trait, irrespective of changes in variation in 

the underlying alleles (Barton and Turelli 1987). More complex approaches that explicitly 

include allelic dynamics provide a strong direction for further work (e.g., Kirkpatrick et al. 

2002), although a general set of results, especially with regards to genetic covariances, 

remains elusive. In the end, all of these complications suggest that we need to know much 

more about the specific nature of the genetic effects of interest before we will be able to 

determine what level of theoretical abstraction is appropriate. 

Case Studies 

There are two broad empirical approaches to determining how G evolves: 

manipulative laboratory experiments and comparative field experiments. Each approach 

has its advantages and disadvantages (Table 1). Generally, laboratory studies can be used 

to generate predictions about which evolutionary process generate what patterns in G, 

while comparative studies of natural populations can identify what patterns (and therefore 

processes) occur in the wild. Table 1 suggests the choice of natural populations is more 

difficult than the choice of taxa for laboratory systems. Meeting the stringent criteria for 

natural populations makes it possible to extrapolate results of the study to other natural 

systems. Here, we use case studies to discuss the attributes and methods of comparative 

field investigations of G versus manipulative laboratory studies of the evolution of G. 

Comparative study 

Butterfly Wing Patterns 

Butterflies have the short generation time and limited space requirements that, when 

coupled with extensive natural variation in size, shape, color and pattern of their wings 



(Fig. 2), make them attractive for quantitative genetic studies. Despite this variation, basic 

pattern elements are relatively easy to identify on most wings, facilitating comparison 

among taxa (reviewed by Nijhout 1991). Wing pattern divergence (!z) has been 

investigated by trying to determine the causative selective force (!) acting upon them, as 

well as by studying their genetic basis (G). It has often proven difficult to determine the 

function of some wing pattern elements (e.g., Lyytinen et al. 2003) and therefore the 

nature of their selection, but the genetic basis of the traits are amenable to investigation. 

Artificial selection to increase or decrease the size of one eyespot in Bicyclus 

anynana  resulted in evolution (in the selected direction) of other eyespots (Monteiro et al. 

1994). By inference, eyespot size genetically covaries positively among eyespots. This 

inference was supported by the calculation of genetic correlations among eyespots in two 

species of butterfly, Junonia (Precis) coenia and J. evarete (Paulsen 1996). All bivariate 

genetic correlations among eyespot sizes were positive. Paulsen (1996) also included other 

wing pattern traits in the G, with an overall conclusion that the size of similar pattern 

elements (e.g., eyespots) tended to positively covary, whereas size among different pattern 

elements (e.g., wing bands) showed no covariation of size. Similarly, there was little 

correlation between size and position of the pattern elements. The pattern of genetic 

correlations appeared similar between Paulsen’s two species, and a similar pattern of 

correlation among replicates of the same element, but not among different elements, has 

been observed in other butterflies (e.g., Kingsolver and Wiernasz 1991; Monteiro et al. 

1994). Is the genetic basis of wing pattern in butterflies similar across taxa and can we use 

the relationships in the breeders’ equation to determine the nature of selection responsible 

for current patterns of diversity? 

Using both matrix-wide and an element-by-element approaches, Paulsen (1996) 

tested the hypothesis that G did not differ between the closely related J. coenia and J. 

evarete. No differences between matrices were detected; we can conclude that G has not 

significantly diverged between these Junonia species. Can we then assume the genetic 

relationships among traits are the same for all other butterfly species? To ascertain how 

broadly applicable the result is we need to consider why G remained stable. The first 

hypothesis to consider is that J. coenia and J. evarete began diverging too recently for 

differences in allele frequency (due to mutation, selection or drift) to accumulate. Putative 

divergence time is positively correlated with divergence in phenotypic covariance matrices 

(P) (e.g., Baker and Wilkinson 2003; Steppan 1997), suggesting this as a plausible 

hypothesis. Since we do not know how long J. coenia and J. evarete have been diverging, 

we cannot infer what a reasonable time frame for assuming stability of G might be. The 

best way to determine if the observed stability is due to recent divergence is to compare 

these G-matrices to those of other butterflies within the framework of a known phylogeny. 

Using a phylogenetic comparative approach, if we observe more recently speciated 

butterflies to have divergent G, we can ask whether stabilizing selection has maintained 

the ancestral pattern of genetic covariation among traits in our two species. 

What generates/maintains the genetic interrelationships among these traits? The 

orientation of G will be determined by an interaction between genetic variation, selection, 

and drift (Box 3). If functional relationships among traits generate patterns of correlational 

selection, then the G should reflect these relationships. Similarly, developmental 

relationships among traits will influence the pattern of mutational input into G, and 

selection should also shape development itself. G may therefore be an interesting place to 

look for a signature of the interaction between function and development. Kingsolver and 

Wiernasz (1991) estimated G for melanin patches on the wings of the butterfly Pieris 

occidentalis. Using data from previous studies, they generated a matrix that described the 

hypothetical thermoregulatory functional relationships among melanin patches and a 

matrix that described the hypothetical developmental relationships among patches. 

Comparing each of these to G, they concluded the observed patterns of genetic covariaton 

were due to both functional and developmental relationships among traits (Kingsolver and 

Wiernasz 1987). 

Hypotheses about the function of eyespots suggest different roles for dorsal 

eyespots, which are not exposed at rest, and ventral eyespots, which are exposed at rest 

(e.g., Breuker and Brakefield 2002; Lyytinen et al. 2003). The existence of a positive 

genetic covariation of eyespot size across both wing surfaces therefore cannot be generated 

by a functional relationship between these traits. Although developmental hypotheses have 

not been formally tested, similar developmental mechanisms (namely response to a 

morphogen gradient) appear to operate in the formation of all eyespots (reviewed by 

Brakefield 2001), suggesting G is influenced by the developmental relationships. If this 

assessment of the relative influences of development and function is correct, we can 

predict change in the function of eyespots will have little impact on G, whereas changes in 

the underlying developmental relationships among traits will result in evolution of G. 

Thus far, we have interpreted similarity of G between species as evidence of 

stability. However, similarity of G in J. coenia and J. evarete might be due to convergent 

or parallel evolution; similar selection regimes generating the same G independently in 

each species. This hypothesis cannot be addressed in a two species system, but instead 

requires a broader phylogenetic context to infer the direction of evolution. An alternative 

hypothesis is that phenotypic divergence between the species was accompanied by 

divergence in G, but that this divergence was not maintained (see Agrawal et al. 2001; 

Reeve 2000). Agrawal et al. (2001) demonstrated genes of major effect could dramatically, 

but transiently change G during directional evolution. Mutagenesis experiments with B. 

anynana has indeed revealed some loci with alleles that dramatically affected eyespot 

development (Monteiro et al. 2003). Questions about transient instability of G could be 

addressed with independent natural populations that have colonized the same habitat at 

different times, or through temporally fine-scale sampling of G during experimental 

evolution. 

Experimental studies 

Effect of Drift on Genetic Covariation of Drosophila Wing Shape 

Phillips et al. (2001) designed a laboratory experiment to test the theoretical 

prediction that random genetic drift does not change the genetic covariation among traits 

(i.e., the orientation). Rather, because it erodes genetic variance, drift will scale G by one 

minus the inbreeding coefficient (see above). Changes in the orientation of G will affect 

the direction in which evolution proceeds (Fig. 1), whereas changes in the variance will 

affect the rate. Exploiting the experimental benefits of Drosophila melanogaster, Phillips 



et al. (2001) generated a large data set consisting of six wing-shape traits measured for 

eight daughters from about 90 families in each of 52 inbred lines (4680 families total) and 

from 1945 families across six control (outbred) lines. The large sample generated here 

facilitated accurate estimation of G. This laboratory data set is equivalent to estimating G 

for 52 neutrally diverging populations (founded by one female and her brother), as well as 

estimating a known ancestral G. 

At first glance, the results of Phillips et al. (2001) supported the theoretical 

prediction that drift reduces genetic variance but does not change the genetic covariation of 

traits. Common principal components analysis supported proportionality of the average 

inbred G (across the 52 lines) to the outbred (ancestral) G (Fig. 3). However, using 

proportionality of G as a signature of drift depends on how drift operates within single 

populations rather than on the average behavior of drifting populations. In this case, the 52 

inbred lines varied considerably in both the orientation of G and the level of genetic 

variance (Fig. 3). Therefore, although theory predicted the average outcome across all 

populations, it could not predict what would occur within any individual population. 

Implicit in this result is the conclusion that G can diverge through drift over very short 

periods of time, although whether this occurs frequently in nature has yet to be determined. 

Following these populations for an additional twenty generations after the initial 

bottleneck demonstrated that the drift-induced changes in G were not transient (Whitlock 

et al. 2002). 

Phillips et al. (2001) noted that the impact of drift on genetic covariance varied from 

trait to trait. Changes induced by drift evidently depended on the underlying genetic 

details. Differences in cell lineage and gene expression patterns have led researchers to 

propose that anterior and posterior portions of D. melanogaster wings are separate 

developmental units, although this hypothesis has been questioned by Klingenberg and 

Zaklan (2000) based on their observation that only a small proportion of variation among 

wings is due to region-specific effects. Unfortunately, it is difficult to determine how traits 

measured by Phillips et al. (2001) fall across these morphogenic regions, making it 

difficult to assess whether G changed more within or between developmental units. In 

separate analyses of anterior and posterior regions of D. melanogaster wings, Zimmerman 

et al. (2000) detected multiple quantitative trait loci (QTL) associated with wing shape, a 

first step toward more finely dissecting the underlying genetic basis of these traits. There 

appears to be significant epistatic genetic variance for wing shape (Gilchrist and Partridge 

2001), suggesting that interactions among loci contributing to shape might be complex. 

Knowing the number of loci contributing to traits in G and the interactions among loci is a 

step toward understanding if variation among traits in these genetic parameters cause the 

genetic relationships among some traits (as summarized in G) to change rapidly, while 

others to remain stable. This also highlights the fact that the choice of a particular set of 

traits and the way in which those traits are measured might strongly influence both the 

interpretation of results and our ability to correlate causal factors across levels of genetic 

organization. 

Distinguishing Pleiotropy from Linkage 

If not all aspects of G respond in the same way to a specific process evolutionary 

processes, the proximal cause must be differences in the underpinnings of G. Observed 

genetic correlations are usually expected to be caused by pleiotropy because correlations 

due to linkage should break down relatively quickly (Lande 1980). That is, theory predicts 

that genetic covariance through pleiotropy will be more stable than covariances generated 

by linkage, which is also consistent with computer simulations that indicate a strong 

stabilizing effect of pleiotropic mutations on the structure of G (Jones et al. 2003). 

Similarly, Mezey and Houle (2003) have shown that shared similarity in G-matrix 

structure is likely to be preserved only in cases in which developmental modules have a 

shared underlying pleiotropic basis. 

Pleiotropy is considered ubiquitous, but is necessarily difficult to distinguish from 

tight linkage. For example, floral traits in plants are tightly coupled both functionally and 

developmentally and also show substantial genetic correlations. Are these correlations 

caused by pleiotropy or linkage? Conner (2002) enforced nine generations of random 

mating in the wild radish (Raphanus raphanistrum) and observed no change in covariance 

of six highly correlated floral traits. Forced random mating should have moved the 

population closer toward linkage equilibrium, especially if the linkage was generated by 

either correlational selection or assortative mating (Box 3). This study therefore strongly 

suggests a pleiotropic basis to the genetic covariances. Of course, very tight linkage may 

take substantially longer to decay (Conner [2002] showed that the genes influencing these 

traits would need to have average recombination rates of less than 0.01-0.05 to retain 

substantial linkage disequilibrium over this time period). When one considers extremely 

tight linkage, say between different control regions within a gene, then the difference 

between linkage and variability in pleiotropic effects becomes somewhat semantic (Box 

2). 

Future Directions 

Comparative approaches 

The recent, rapid acquisition of data on the evolution of G (Steppan et al. 2002) 

places us in a position to refine experimental design and identify approaches that will yield 

the most information. We now know that although G can diverge greatly over few 

generations (e.g., Phillips et al. 2001), but that it does not always do so (e.g., Paulsen 

1996). Therefore, comparisons of natural populations must contribute more than yes, G 

has evolved, or no, G has not evolved. Comparative analyses are still the only way we can 

estimate the direction and rate of evolution of G in natural populations. However, 

comparisons must be made within a robust phylogenetic framework to achieve this aim.  

Although still in its infancy, computer simulations have the potential to generate 

expected distributions of G-matrices under particular evolutionary scenarios (e.g., Jones et 

al. 2003). Empirical data from laboratory experiments (e.g., Phillips et al. 2001) are also 

expanding our understanding of the patterns generated by particular evolutionary 

processes. This information on relationships between pattern and processes will assist in 

the interpretation of patterns observed in phylogenetic comparative studies. At the very 

least, we need to develop null models (e.g., drift) against which other evolutionary 

hypotheses (e.g., selection) can be tested. The phylogenetic framework serendipitously 

facilitates identification of taxa whose G-matrices have evolved more or less than expected 



based on information from the other taxa. We can then address the questions of why and 

how do these taxa differ in population parameters, selection pressure, etc.  

Comparisons within a rigorous phylogentic framework will also help us assess 

whether functional or developmental relationships among traits affect stability of G. 

Integration theory, which predicts developmentally or functionally related traits will be 

pleiotropically controlled (Cheverud 1984), and computer simulations, which show that 

pleiotropic mutations can stabilize G (Jones et al. 2003), lead to the prediction that the 

portion of the G-matrix that describes functionally and/or developmentally related traits 

will be more stable than the portions describing unrelated traits. For example, in the case 

of butterfly wings, Paulsen (1996) detected a marginally insignificant difference (P = 

0.056) between G-matrices from J. coenia and J. evarete for the full set of 29 traits, 

including eyespot size, position and wing vein measurements, whereas a comparison of the 

submatrix of G including just the developmentally related eyespot diameters provided no 

support for divergence between the species (P = 0.273). Further comparisons within a 

robust phylogenetic framework can determine whether, (a) functionally or 

developmentally connected traits are characterized by strong genetic covariation, and 

whether, (b) if G-matrices of these traits are more stable than G of unconnected traits. 

There are still significant methodological issues to be overcome in order to conduct 

the proper analysis in a comparative framework (Phillips and Arnold 1999; Steppan et al. 

2002). Further, there is little value in conducting studies with insufficient power (Box 1), 

so the total level of effort required to conduct a complex comparative analysis among a 

number of different taxa will be substantial—perhaps even daunting. 

Manipulative and experimental approaches 

Although there is no substitute for comparative natural experiments to determine 

what processes shape G under natural evolution, the valuable role of laboratory 

experiments is clearly established (e.g., Phillips et al. 2001; Shaw et al. 1995). As we 

accumulate more data on the behavior of G under particular evolutionary scenarios, we 

can increase the sophistication of experimental studies to include simultaneous action of 

more than one process and thus toward the consideration of how different processes 

interact. We can then generate more realistic predictions of the behavior of G under natural 

conditions. 

The genetic basis of genetic covariances 

There are effectively two levels at which we can attempt to dissect the molecular 

genetic basis of G: detailed analysis of the function and variation of individual genes 

versus broad analysis identifying all loci contributing to a particular suite of traits. By 

considering the action of individual genes, researchers investigating butterfly eyespots are 

moving toward understanding which genes contribute to eyespots, as well as the nature of 

the interactions among those genes (e.g., Beldade et al. 2002). Taking this approach 

generally requires a priori information about the system (for example, information from 

related taxa about genes affecting particular traits or processes) but enables very precise 

consideration of variation at those loci. 

Quantitative trait loci (QTL) analyses represent a method taking the other, top down 

approach to identifying loci associated with phenotypic variation. There are certain 

advantages to using QTL analyses to dissect G: they require no a priori knowledge of the 

genetic basis of traits; they can be used to investigate multiple traits simultaneously, 

facilitating identification of pleiotropic/linked loci; they can potentially be used to estimate 

the total number of loci contributing to any one trait; and can be used to identify 

(candidate) loci for further study. Currently, there are also disadvantages to using QTLs: a 

QTL covers considerably more of the chromosome than a gene does, making it impossible 

to ascertain whether a QTL reflects pleiotropic effects of a single locus or linked loci; and, 

with small genetic differences and small sample sizes, QTL analyses are not very 

powerful. Both of these problems might result in underestimation of loci and 

overestimation of pleiotropy. Lack of power could also result in detection of different QTL 

in different populations, leading us to the erroneous conclusion that the underlying basis of 

G has evolved when in fact it has not (Gibson 2002). Ultimately, we will need the 

combination of functional specificity coupled with global analysis that is promised by the 

genomics revolution. In reality, this will still end up demanding a great deal of fairly 

traditional genetic analysis, but the potential for rapid advance is definitely on the horizon. 

The need for this molecular dissection is inevitable because we ultimately need to 

know much more about the distribution of allelic effects underlying quantitative traits 

before we can move on to a more sophisticated understanding of the evolution of those 

traits. Not all mutations (i.e., not all alleles) have the same effect on all traits to which that 

locus contributes (Box 2; Stern 2000). This highlights a fundamental aspect of G, one that 

is accessible only through developmental genetics. G is determined by allele frequencies 

and, if not all alleles are equally pleiotropic, changes in allele frequency will change the 

orientation of G. The similarity of pleiotropic affects among alleles at a locus might 

depend on whether the locus codes for structural or regulatory proteins (Stern 2000). 

Variation at structural loci is likely to equally impact all traits to which that the protein 

contributes, resulting in similar pleiotropy of all alleles. In contrast, variation at regulatory 

loci might affect when/where proteins are expressed, thus having different effects on 

different traits, and thereby generating different levels of pleiotropy among alleles. The 

different contributions of regulatory versus structural genes to evolution is a subject of 

ongoing debate in molecular evolution and has implications for our understanding of the 

evolution of G. 

G stands at the center of quantitative models that help to describe the pattern of 

phenotypic change generated by a wide variety of evolutionary processes. G also serves as 

a metaphor for the role integrated genetic systems play in understanding the evolution of 

the whole organism. It is perhaps fitting that matrices usually have very box-like 

representations, because for the last several decades the G-matrix has been used as a black 

box into which tremendous amounts of underlying genetic complexity could be placed 

while research focused squarely at the level of the phenotype. To move from metaphor to 

reality, we need to open that box and see what lies inside. 
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Box 1: What is a Covariance? 

Before getting carried away discussing the importance of genetic covariances for 

the evolutionary process, it is necessary to understand what a covariance is. Statistically, a 

covariance describes the association between two variables. It is closely related to the 

more familiar concepts of regression and correlation, which are covariances normalized on 

different scales. The covariance between X and Y is given by: 
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! ). Covariances, rather than correlations, are used to describe the 

evolution of traits because they are not normalized, existing on the same scale as the traits 

themselves. 

At the genetic level, a covariance between two traits is generated when alleles 

affecting both traits tend to be found within the same individual (Box 2). Genetic 

covariances can be estimated using standard quantitative genetic approaches (Ch. 4.1), for 

instance, from the regression of offspring values for trait X on the parental values for trait 

Y (and visa versa). As second-order statistics, covariances require large sample sizes to be 

accurately estimated. As genetic covariances are subject to sampling variation at more than 

one level (genetic and environmental), the accuracy of their estimation is even more 

troubling. Only a few studies in the evolutionary literature are of sufficient sample size to 

provide more than the crudest estimates of the pattern of genetic covariance among traits. 

With only two traits, the genetic covariance is easy to interpret, but as we consider 

more traits it becomes more difficult to interpret the pattern of genetic covariances. 

Principal components analysis is one statistical tool used to interpret patterns of genetic 

covariation among traits (Fig. 3; see Phillips and Arnold 1999). Principal components 

analysis generates new variables (principal components), which are linear combinations of 

the “traits” (genetic variances and covariances) in G. As vectors, principal components 

have direction and length. The first principal component describes the trait combination 

(direction) for which there is the most genetic variance (length). Subsequent principal 

components will describe less variation, but unique directions. G is then interpreted by its 

orientation (the directions of its principal components) and size (the length of principal 

components). For example, two matrices that are proportional to one another (an important 

prediction for genetic drift, for instance) would have identical principal component 

orientations, but the dimensions along each component would be proportionally expanded 

or contracted (see Fig. 4). 



Box 2: Pleiotropic Effects 

 

We might have a tendency to think about pleiotropic effects in a very diffuse way, 

perhaps calling forth the traditional definition of a single locus that affects more than one 

trait. To understand the genetic basis of covariances we need a much more precise view of 

pleiotropy—one that focuses at the level of the allele rather than the locus as a whole. In 

particular, some alleles at a given locus might have 

pleiotropic effects, while others do not. More subtly, the 

direction and magnitude of the pleiotropic effects on a 

suite of traits might vary from allele to allele. This requires 

that every locus be represented by the range of pleiotropic 

effects generated by each allele, as in the figure above. 

The array of all possible allelic effects at a given 

locus will generate a distribution of effects, as shown to 

the right. Each locus might have its own distribution, and, 

in general, we do not really know what these distributions 

tend to look like. Popular possibilities are fairly “normal” 

symmetrical distributions (left) and “L”-shaped, highly 

skewed distributions (right). To assess the pleiotropic 

contributions of each allele, these distributions must be 

combined in a bivariate (and ultimately multivariate) view. 

Alleles at a given locus can potentially have any pattern of 

pleiotropic effects, including no pleiotropy at all. The 

effect of correlational selection (Fig. 1) might have on the 

pattern of pleiotropic effects of the underlying alleles can 

be visualized by laying a fitness contour on top of the 

distribution of allelic effects. Correlational selection occurs 

when fitness depends on a combination of trait values 

rather than on the individual traits themselves (e.g., on how 

the upper and lower mandibles fit together to make a single 

fruit-cake-cracking jaw). Given unconstrained effects, the 

distribution of allelic effects should evolve to match the 

pattern of selection. The actual translation between the 

alleles is mediated through the mapping of the allelic effects onto the traits under selection 

(Lande 1980). Mutational input can disturb the pattern of pleiotropy in each generation, so 
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if there is bias in the pattern of mutational input, the distribution of effects will evolve to 

match that bias to some degree. The equilibrium distribution of effects will therefore 

depend on a balance between selection and mutation, as well as other factors (Box 3). 
 

Box 3: Evolution of the G matrix 

 

This is a composite equation that shows how different evolutionary forces influence 

the evolution of the genetic variance-covariance (G) matrix (mostly based on Lande 1980). 

The first term describes the influence of natural selection, where "  is the average curvature 

and orientation of the individual selection surface and !  is the average slope of the 

individual selection surface (Lande and Arnold 1983). Taken together, these two elements 

describe the local curvature and orientation of the adaptive landscape (Phillips and Arnold 

1989). The response to selection is generated through a balance between the tendency of 

directional selection to erode genetic variation and the ability of stabilizing and 

correlational selection to reorient the pattern of among-trait correlation. In this term, the 

influence of selection is reflected back on change in G through the lens of the existing 

pattern of genetic covariance. The second term describes the role that new mutations play 

in structuring G. This is summarized by the mutational covariance matrix M, where M = 

#iMi is the sum of the mutational covariances generated by the pattern of pleiotropic 

mutation at each locus. In the absence of other evolutionary forces, G will tend to match 

any biases induced through mutational effects guided by, say, developmental processes. 

Finally, the third term describes the rate of degradation of linkage-induced genetic 

covariance generated by recombination, where  rij is the recombination rate between loci i 

and j (rii = 0). Additional terms are needed when the distribution of allelic effects is not 

normal (e.g., Barton and Turelli 1987). 
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Figure Legends. 

Figure 1. The response of two genetically correlated traits to correlational selection. 

The orientation and size of G is described by the white ellipse, with the narrow oval shape 

indicating most of the genetic variance is common to both traits, rather than independent 

(i.e., covariance). The cross-hairs of the ellipse indicate the current population mean for 

the two traits; the position of the population on the fitness surface. The darker the region of 

the fitness landscape, the higher the fitness, with black areas indicating local adaptive 

peaks; regions shaded the same colour have equal fitness. !  (white line) describes the most 

direct approach of the population to the nearest fitness peak. A) Traits are negatively 

genetically correlated, but there is selection for an increase in both traits; the initial 

direction of evolution will be away from the fitness peak. The population will eventually 

assend the fitness peak, but this will take longer than if G was oriented in the same 

direction as the fitness surface (i.e., along !). B) Traits are positively correlated and the 

population is in the neighbourhood of two fitness peaks, both of which generate selection 

for an increase in both traits. However, because of the genetic covariance among traits, the 

population will evolve toward peak 2 rather than peak 1. 
 

Figure 2. Variation in dorsal eyespots of Nymphalid butterflies. A) Junonia coenia 

(Nymphalinae); B) J. evarete (Nymphalinae); C) Stichophthalma camadeva (Morphinae); 

D) Faunis menado (Morphinae) and; E) Taenaris macropus (Morphinae). Note the 

difference in size between the two hindwing eyespots in J. coenia, but not J. evarete. 

Pictures kindly provided by F. Nihout based on those originally presented in Nijhout 

(1991) (c.f. Figure 2.2 and Figure 5.18A and C). 
 

Figure 3. Effects of genetic drift on the genetic covariance between two wing 

characteristics in Drosophila melanogaster. A) A graphical representation of the genetic 

covariance between two wing-vein angles. The outer ellipse shows the orientation of 

covariance in the outbred population whereas the grey ellipse shows the average 

covariance of 52 inbred lines created by brother-sister mating. Note that the ellipse for the 

inbred lines has shrunk proportionally relative to the outbred population as predicted by 

theory. B) Estimates of genetic covariance for these two traits for each of the 52 inbred 

lines. Note that there is a great deal of variation around the average shown in (A) (center 

box). After Phillips et al. (2001). 
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Table 1. Relative attributes of comparative and manipulative experiments to investigate the evolution of G. 
 Natural Comparative Manipulative Laboratory 
Utility in determining which 
evolutionary processes act on 
G and what patterns they 
generate 

 Can infer which processes operate in natural 
populations, and how processes interact 

 But, difficult to estimate parameters of selection, drift, 
migration or mutation  

 Cannot infer which processes operate in natural populations, 
nor how they interact 

 But, can estimate and/or control the strength of selection, 
mutation, migration and drift, and therefore determine the cause 
of observed patterns 

Limitations on choice of taxa  Quantitative genetic parameters frequently estimated 
in the laboratory due to difficulties in estimating 
relationships in wild populations (although the latter is 
greatly preferable). Thus, usually limited to organisms 
with easy husbandry and ability to conduct controlled 
matings/crosses 

 Generation time less critical because evolution has 
already occurred 

 Relationships between the populations should be 
known from well-supported phylogenies or historical 
data 

 Differences (or lack thereof) in selection pressure 
between populations should be known or infered 

 Population parameters that affect drift or response to 
selection (e.g., population size and generation time) 
should be estimated 

 Need to house in laboratory restricts choice to taxa with easy 
husbandry and limited space requirements 

 Generally conducted on taxa with short generation times to 
keep experimental duration short when populations need to be 
taken through multiple generations of evolution 

 Generally begin with a single stock, generate several 
populations (lines) which are subject to known evolutionary 
process 

 Population parameters known and controlled 

Replication/sample sizes  Replication limited by time/space of researcher, but 
also by the availability of wild populations/individuals 

 Require high replication of populations due to the 
multitude of evolutionary processes acting (e.g., many 
selective forces) 

 Require high replication within populations due to 
variability in natural habitats 

 Replication/sample size usually limited by space and manpower 
rather than availability 

 Control the evolutionary processes acting on the population, so 
do not need sample multiple populations to have the power to 
estimate processes 

 Frequently, lower environmental variance, so more accurate 
estimates of G for a given sample size 

Genetic tools  Need to develop genomic resources for interesting 
natural systems 

 Often, molecular genetic and developmental tools are also 
available for taxa that are tractable for laboratory quantitative 
genetic analyses 

 




