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Scattering resonances in ballistic conduction across a quantum dot
in a weak magnetic field are investigated. Due to the special geometry
considered, the resonances grow narrower with decreasing B, until
at B = 0 they become bound states in the continuum. Whereas
previously treated geometries exhibit at most one bound state with
energy in the continuum, the number of such states in the present
case is limited only by the number of transverse modes that the wire
leads can sustain. Furthermore, the present model demonstrates the
possibility of quantum-mechanical bound states in the continuum
having a classical analog. The energy shifts of the resonances in a
magnetic field show paramagnetic as well as diamagnetic behavior,
which can be understood in terms of the dominant influence of a
particular subband and its distance from the cutoff threshold in the
dot region.

1 INTRODUCTION
Advances in nanofabrication technology have made it possible to build quantum
devices that expose the wave nature of the electron in various ways. This is
achieved because at low temperatures the electrons propagate coherently through
the sample, the size of which is comparable to the de Broglie wavelength in one
or more directions. When two degrees of freedom are quantized by the device
geometry, the electronic motion is quas-ione-dimensional due to the formation
of subbands. In such a structure, a two-terminal conductance experiment at
vanishing bias and temperature reduces to an elastic scattering problem whose
solution can be related to the conductance by the Landauer formula, [1–3]

G = e2

h

∑
m,n

|Tmn|2 (1)

where Tmn is the current transmission amplitude from subband n to m, and
electron spin is not considered. Being a characteristic manifestation of wave
∗Current address: Department of Physics, University of Oregon. http://uoregon.edu/

~noeckel

1

http://uoregon.edu/~noeckel
http://uoregon.edu/~noeckel


phenomena in a scattering experiment, resonances have received considerable
attention in recent nanostructure transport calculations. In particular, physical
insight has been gained by establishing a connection between resonances of the
open system on the one hand, and bound states on the other, typically belonging
to some closely related isolated system. A well-known case in point is the inter-
pretation by Reed et al. [4] of the fine structure in finite-bias resonant tunneling
through vertical quantum dots in terms of a zero-dimensional density of states.
The following list shows that this point of view has also been adopted in zero-bias
calculations where Eq. (1) applies. According to Sivan, Imry, and Hartzstein[5]
the Aharonov-Bohm (AB) effect in a singly connected geometry can be viewed
as consecutive scattering resonances caused by the single-particle levels of the
isolated dot shifting through the Fermi energy as a function of magnetic iield.
A similar relationship between conductance Q oscillations and resonances due
to the discrete spectrum of an isolated loop in a magnetic field is mentioned
by Ravenhall, Shult, and Wyld.[6] Resonances that occur in transport through
a cavity connected to wire leads have been related by Peeters[7] to the spec-
trum of the isolated box without leads. As an example for resonances caused
by an isolated impurity in a quantum wire, Bagwell[8] shows that an attractive
δ-function scatterer causes exactly one quasibound state to split off below each
wire subband; in analogy with a donor level in the band gap, the state splitting
off from the lowest subband is truly bound, but the others lie above the contin-
uum threshold of the wire and thus give rise to resonances. Other possibilities
for resonant behavior occur clue to the finite length of the leads connected to
realistic devices, when a state that would be truly bound only under the assump-
tion of infinite leads acquires a finite lifetime. This is noted by Exner[9] for the
curved quantum wire structure which has a bound state below the propagation
threshold of the straight wire segments; if the leads terminate into reservoirs at a
finite distance, electrons may resonantly tunnel from one contact to the other via
the bound state and through the effective barriers in the wires. The multiprobe
generalization[10, 11] of Eq. (1) is applied in Ref. [12] to the symmetric four-
terminal cross junction. It exhibits resonances which stem from Landau orbits
that get pinned at the junction at high magnetic fields (Kirczenow[13] points
out that one can view the resonances as having split off from a higher-lying sub-
band, which resembles the argument of Ref. [8]), but there is also a resonance
originating from a bound state in the continuum (which we will refer to as BIC)
at B = 0; consequently, the latter resonance becomes wider with increasing
magnetic field whereas the others grow narrower. Assuming that a resonance is
detected in an experiment, the question is how to determine its precise physical
origin. For the loop geometry[6] it is noted that the resonances are shifted so far
away from the corresponding bound states of the isolated loop that a one-to-one
identification is impossible. The cross junction treated in Ref. [12], on the other
hand, offers a continuous and experimentally controllable parameter, namely,
the magnetic field, that allows to trace the evolution of the resonances into the
corresponding bound states. The same is true for the two-terminal geometry to
be introduced here, which consists of an attractive dot coupled to the reservoirs
by quantum wires: it exhibits bound states in the continuum at B = 0 that be-
come resonances when a magnetic field is turned on. The BIC can be located by
elementary means because they occur in a very systematic fashion. The mecha-
nism that causes a BIC is analogous to the quasibound states in Ref. [8]: the dot
potential causes one or more bound states to split off from each wire subband;
due to the special geometry considered, none of these states can couple to the
scattering states that exist at the same energy when B = 0. Only at B 6= 0
do they become quasibound states if they are above the continuum edge. To
elaborate on this phenomenon and show its implications, the paper is organized
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as follows. The nature of the BIC is explained in Sec. II, before we make the
discussion quantitative by specializing to a particular dot potential in Sec. III.
The transition from BIC to resonances upon application of a magnetic field is
treated in Sec. IV. Further insight into the physics of the resonant structure is
gained in Sec. V by investigating the current density patterns that illustrate the
electronic motion.

2 BOUND STATES IN THE CONTINUUM
The time-independent single-particle Schrödinger equation without magnetic
field allows for square-integrable solutions that are degenerate with non-norm-
alizable stationary states. von Neumann and Wigner proposed an explicit con-
struction that yields such a BIC with a potential that is localized, i.e., vanishes
at infinity[14]. This possibility is of particular interest in the spectroscopy of
autoionizing atomic or molecular states, but also for tunneling phenomena such
as nuclear decay[15, 16], and its physical origin is the destructive interference
of alternative decay paths for the bound state. When one investigates nanos-
tructures connected to infinite wire leads, new possibilities for the formation of
localized orbits in the continuum of extended states arise[17]. These exotic solu-
tions have been discovered in two of the model structures described above. Shult
et al.[12] find that the symmetric cross junction exhibits exactly one bound state
above the zero-point energy of the leads. Peeters[7] reports one such state for
the symmetric cavity, but only for a single ratio between cavity length and wire
width. In both cases, the physical reason that prevents the electron from escap-
ing to infinity is parity conservation. The continuum is made up of the lowest
subband in the wires, which has even parity while the embedded bound state
is odd with respect to reflection at the wire axes. It is the infinite wire length
that gives rise to a discrete energy spacing between even parity ground state
and odd-parity first excited subband in the asymptotic region, between which
the bound state occurs. Its odd parity effectively decouples the bound state
from the continuum, but it acquires a finite lifetime when parity conservation is
broken, e.g., by imperfections or a magnetic field.
Comparing the potentials that go to zero at infinity and those that do not,

there is one thing they have in common despite the different mechanisms that
inhibit the decay of a BIC: In all cases, the bound state is unstable under an
arbitrarily small deviation of the potential from the shape or symmetry required
by the respective mechanism.
This observation also applies to the continuum bound states to be discussed

here, which differ from the previously cited cases in that they have a classical
analog. Being of classical origin, it will be especially interesting to see these
bound states evolve into quantum-mechanical scattering resonances when the
instability mentioned above is induced.
Bound orbits that are degenerate with unbound ones are common in classical

mechanics, a simple example being the one-dimensional double barrier potential:
a particle confined between the potential barriers can have the same energy as
a free particle on the outside. However, there is generally no quantum analog
because barrier penetration permits the classically bound particle to escape to
infinity.
Now consider the Hamiltonian

H = p2
x

2m +
p2
y

2m + V (x) + V ′(y), (2)

where both V (x) and V ′(y) are everywhere attractive, and V (x) has an upper
limit. Since the Hamilton-Jacobi differential equation is separable, the total en-
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ergies of the x and y degrees of freedom, E(x) and E(y), are both constants of the
motion. The classical motion thus reduces to two independent one-dimensional
problems.
Since the total energy E can be distributed arbitrarily among longitudinal and

transverse motion, it is possible to have E(x) above or below the binding thresh-
old of V (x) for one and the same value of E, depending only on the magnitude of
E(y).

Figure 1: Example for bound classical orbit de-
generate with unbound solution in two
dimensions. The potentials V (x) and
V ′(y) in the Hamiltonian (2) are every-
where attractive. In (a), the total en-
ergy E is shared between longitudinal
(x) and transverse (y) motion in such
a way that E(x) lies in the range of
free motion under the potential V (x).
In (b), the same total energy is redis-
tributed, bringing E(x) below the bind-
ing threshold of V (x) and thus resulting
in a bound motion at the same value of
E as in (a). This classical example has a
quantum analog because tunneling can-
not take place. The discrete quantum-
mechanical bound states are indicated
by the solid horizontal lines.

As is illustrated in Fig. 1, bound and
free solutions coexist at that E as long
as E(y) stays in the range of bound or-
bits of the transverse potential V ′(y).
This condition can be satisfied for a
large range of energies if we assume
V ′(y) to be much deeper than V (x) (if
the reverse holds, the roles of x and y
motion simply interchange).
When the transition is made to

quantum mechanics, the same con-
servation of E(x) and E(y) results
since Eq. (2) leads to a separable
Schrödinger equation. The bound-
state energies are now discrete, but
the classical argument above can still
be applied because neither V (x) nor
V ′(y) allow tunneling as they are
purely attractive. The discreteness of
the spectra for x and y bound orbits
leads to the consequence that a BIC
does not exist at arbitrary values of
the total energy E as for the classical
analog, since E(x) as well as E(y) must
coincide with an allowed energy level,
as shown in Fig. 1.
Since parity conservation is not in-

volved, this mechanism for obtaining
bound states in the continuum also
works with an asymmetric V ′(y). In
summary, we distinguish BIC that are
due to destructive interference, parity-
induced decoupling, and classical de-
coupling.

3 QUANTUM DOT AT ZERO MAGNETIC FIELD
The separable geometry just introduced, with a V ′(y) that always yields a con-
fined y motion, represents a special case of a quantum dot connected to infinite
quantum wire leads. As is common practice in modeling narrow quantum wires,
the transverse potential is taken to have the form

V ′(y) = 1
2mω

2
0y

2 (3)

For the additional attractive potential V (x) which defines our quantum dot,
there always exists at least one bound solution, which is the only property of
the x potential we need in order to obtain bound states in the continuum. To
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introduce dimensionless variables, we measure frequencies in units of ω0, energies
in E0 ≡ ~ω0, and lengths in L0 ≡

√
~/mω0. If the separation of the Schrödinger

equation is carried out using

Ψ(x, y) = φ(x)χ(y) (4)

the result is (
−1

2
∂2

∂x2 + V (x)
)
φ(x) = E(x)φ(x) (5)

and (
−1

2
∂2

∂y2 + 1
2y

2
)
χ(y) =

(
E − E(x)

)
χ(y) (6)

The latter is a harmonic-oscillator equation so that

E(y) ≡ E − E(x) = n+ 1
2 (n = 0, 1 . . .) (7)

Obviously, conservation of transverse energy E(y) is equivalent to the conserva-
tion of subband index n. To make quantitative predictions about the continuum
bound states of this geometry, the quantum-dot potential V (x) is now specified
as a finite-depth square well of the form

V (x) =

−V0
(
|x| > L

2

)
0

(
|x| < L

2

) (8)

For a given V0 and length L, the discrete spectrum of Eq. (5) contains a finite
set of discrete eigenvalues E(x)

a < 0 (a = 1, 2, . . . , N) that can be found by
elementary methods [18]. Their number is N = int

(
V0L2

π

)
+ 1 where int()

denotes the integer part, which confirms that there is at least one bound state.
This same set of N bound solutions exists for each n, so that we obtain infinitely
many bound states at energies Ena = E

(x)
a +n+ 1

2 . Also, if the E
(x)
a are numbered

in ascending order, the first eigenvalue satisfies E(x)
1 → 0 as V0L

2 → 0, and
E

(x)
1 → −V0 in the limit V0L

2 → ∞. Therefore, the N bound states that have
split off from subband n are constrained to lie in the interval

n+ 1
2 − V0 < Ena < n+ 1

2 . (9)

Since an extended state must have E(x) > 0, Eq. (7) implies that the continuum
edge is E = 1

2 corresponding to the n = 0 subband threshold in the leads. In
view of the discussion in Secs. IV and V, attention is restricted to the case of a
single continuum in the leads, i.e., to the range of energies where only the lowest
subband is populated in the wire connected to the dot. Since the propagation
threshold for n = 1 in the leads is E = 3

2 , the energy interval to be considered is
thus

1
2 < E <

3
2 . (10)

Obviously, Eq. (9) implies that all bound states with n = 0 are below the contin-
uum edge. However, there will be other bound states for n ≥ 1 that are in the
energy range (10). This is illustrated by the solid lines in Fig. 2 for V0 = 2. For
a dot of this depth, bound states in the continuum interval (10) can be obtained
with n = 1, 2, corresponding to the two distinct groups of curves in Fig. 2. The
higher subbands n ≥ 3 do not yield states in the range (10) because Eq. (9) leads
to 3

2 < Ena in that case. The lower bound in Eq. (9) is approached asymptoti-
cally for L → ∞. For the levels belonging to n = 1, this asymptote is E = −1

2
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Figure 2: Solid lines: level diagram of the bound states in the continuum occurring at ωc = 0 as a
function of dot length L, for a fixed dot depth of V0 = 2E0. Bound states with transverse
quantum number n = 1 give rise to the curves that extend below E = 0.5E0, whereas all
n = 2 levels lie above that energy and approach it asymptotically for L → ∞. Squares:
points of zero transmission, indicating the presence of a resonance. A magnetic field of
ωc = 0.1ω0 is applied to transform the bound states into metastable states.

and thus lies outside the boundary of Fig. 2, while the L → ∞ asymptote of
the n = 2 curves at E = 1

2 is clearly discernible in the figure. At a fixed energy,
the appearance of a new bound state with index n is approximately periodic in
L because it occurs close to a value of L that permits the addition of another
half wavelength to the dot. This L periodicity is different for n = 1, 2 since by
virtue of Eqs. (5) and (6) each subband has its own specific wavelength in the
potential well. It is given at energy E by

λn(E) = 2π√
2 (E + V0 − n)− 1

, (11)

which compares well to the values of 1
2λn(E) obtained from the spacings in Fig.

2. In particular, λn(E) diverges at the energy of the L → ∞ asymptote, cf.
Eq. (9). These observations will prove helpful in understanding the effect of a
magnetic field on the position of the resonances in Sec. IV.
To complete the discussion of the B = 0 case, the result for positive E(x)

in Eq. (5) can be used to find the transmission probability per unit time for
electrons incident from infinity in the nth subband:[18]

|Tnn|2 = 4k2κ2

|(k2 + κ2) sin κL+ 2iκk cosκL|2
, (12)

with k =
√

2 (E − n)− 1 and κ =
√

2 (E + V0 − n)− 1.

4 QUANTUM DOT IN A MAGNETIC FIELD
As has been mentioned in Sec. II, one way to destabilize the parity-induced
bound states in the continuum of Refs. [12] and [7] is to apply a magnetic field.
This is done in Ref. [12] to the effect that a resonance appears which grows
broader with increasing magnetic field B. The same happens to the classically
decoupled bound states of the geometry considered here, because subband index
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is not conserved atB 6= 0. Classically, this results from the fact that the magnetic
field couples x and y motion so that transverse energy E(y) is no longer a con-
stant in the parabolic wire. If E(y) gets small enough just as the originally bound
particle approaches a wall of the potential V (x) defining the dot, it may possess
sufficient longitudinal energy E(x) to escape to infinity. Quantum mechanically,
the explanation is somewhat different because transverse energy remains a con-
served quantity for the perfect quantum wire in Landau gauge. If the additional
potential V (x) varies rapidly on the scale of the magnetic length, this subband
conservation breaks down because the assumption of adiabatic transport is then
invalid.[19, 20] Since the magnetic length diverges at B → 0, the abrupt rectan-
gular well V (x) of Eq. (8) becomes an increasingly realistic model for transport
across a quantum dot at weak magnetic fields. This is precisely the regime of
interest as far as the transition from continuum bound states to resonances is
concerned. In Sec. V we will return to the question of where the resonances go
at high magnetic fields.
The way in which a weak magnetic field causes subband mixing can be easily

understood with the idealized potential of Eq. (8). In the Landau gauge A =
−By ex, the Hamiltonian is

H = 1
2m

[
(px −mωcy)2 + p2

y

]
+ 1

2mω
2
0y

2 + V (x), (13)

where ωc = eB
mc is the cyclotron frequency. The Schrödinger equation can be

solved separately in the wire and dot regions where V (x) is constant. There, the
eigenfuntions of Eq. (13) have the product form (4) with a transverse part that
is given in the reduced units of Sec. II by

χ(y) = un

([
1 + ω2

c

] 1
4
[
y − ωc

1 + ω2
c

k

])
. (14)

The un are harmonic-oscillator wave functions, and the wave number is different
in the respective x intervals of Eq. (8):

k =
√

1 + ω2
c

√
2 [E − V (x)]−

√
1 + ω2

c (2n+ 1). (15)

The latter implies a different shift of the transverse wave functions in the interval
x ∈

[
−L

2 ,
L
2

]
and outside. This mismatch necessitates the presence of other

subbands, including evanescent states, to obtain a continuously differentiable
wave function at the interfaces between dot and wire leads. Consequently, the
B = 0 bound states in the continuum become metastable due to their coupling
to the subbands which propagate in the leads. There are two ways to observe
the finite lifetime at B 6= 0: if an electron is optically excited from a bound state
below the propagation threshold to one of the metastable states, the absorption
spectrum will exhibit a characteristically asymmetric Fano resonance[21]. Here,
we want to focus on the transport properties of the dot structure: if electrons
are scattered elastically by the dot, a resonance will appear whenever the energy
approaches that of a metastable state[22].
To solve the scattering problem in a magnetic field, the wave-function match-

ing of Ref. [23] will be employed. The calculation yields the current transmission
and reflection probabilities |Tmn|2 and |Rmn|2 between subbands n and m, sat-
isfying the conservation law[24]∑

m

{
|Rmn|2 + |Tmn|2

}
= 1 (16)

for all n.
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Figure 3: Current transmission as a function of energy, for dot length L = 3.5L0 and potential V0 =
2E0, exhibiting asymmetric resonances that broaden and shift with increasing magnetic
field. Comparison between the solid curve and Fig. 2 at L = 3.5L0 identifies the transverse
modes from which the resonances originate. The resonance which shifts to the left as ωc is
increased to 0.2 wo is seen to originate from an n = 1 bound state, while the others belong
to n = 2. Additional effects arise for E & 1.5E0 because a second subband is populated in
the leads, cf. Fig. 4.

The resonant behavior will be most pronounced if the only propagating sub-
band in the leads is n = 0, because the presence of more than one populated
subband can lead to cooperative effects that mask or smooth the resonant struc-
ture (see also Ref. [23]). This is the reason why we focus on the energy window
(10). However, a magnetic field shifts the propagation thresholds upward and
thus modifies the relevant interval to

1
2

√
1 + ω2

c ≤ E <
3
2

√
1 + ω2

c . (17)

In this energy range, only the n = 0 subband propagates in the wire, which
means that only m = n = 0 survives in Eq. (16), and the resonances will appear
as rapid variations in |T00|2 as a function of E. In Fig. 3, the transmission at
two values of the
magnetic field is shown for the parameters V0 = 2E0 and L = 3.5L0. A

remarkable feature that holds for all the observed resonances as long as they
are well-separated in energy is that in the neighborhood of the resonance, both
|T00|2 = 0 and |T00|2 = 1 occur, leading to an asymmetric shape[25]. As ex-
pected, the resonance width decreases as B → 0, since it is the magnetic field
that causes the coupling between continuum and bound state. Our main task is
to explain the shifts in position that these resonances obviously undergo.
But first, the effects of exceeding the upper limit of the interval (17) deserve

comment. The rightmost resonance in Fig. 3 crosses the n = 1 subband thresh-
old when ωc is raised from 0.1ω0 to 0.2ω0 wo and promptly loses its points of
zero and unit transmission. In Fig. 4, a cusp in |T00|2 and an infinite slope in the
conductance G are resolved exactly at the onset of subband n = 1 for the param-
eters of the ωc = 0.1ω0 curve in Fig. 3. A singularity of the same type occurs for
ωc = 0.2ω0, where it coincides with the depressed transmission maximum. The
shape of this threshold singularity has been discussed by Baranger[26]. To illus-
trate the one-to-one relationship between the resonances at ωc 6= 0 and bound
states at ωc = 0, the resonance energies at a small but nonzero magnetic field of
ωc = 0.1ω0 have been superimposed on the bound-state curves in Fig. 2. Here,
we have identified the resonance energy with the position of |T00|2 = 0, which is
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Figure 4: Enlarged plot of the threshold singularity occurring in Fig. 3 for ωc = 0.1ω0 at EF =
1.507E0. Not shown is the similar behavior for ωc = 0.2ω0 at EF = 1.530E0. As in Fig. 3,
the parameters are L = 3.5L0 and V0 = 2E0. The curves for |T00|2 and the dimensionless
conductance G in units of e

2
h coincide to the left of the singularity.

accurate for the rather sharp resonances at small ωc. Still, there are systematic
deviations between resonance and bound-state curves in Fig. 2 which are due
to the fact that the resonances do not only change in width as we is varied, but
also in position.
The resonances in Fig. 3 are characteristic of the different types of magnetic-

field dependence seen in Fig. 2: resonances originating from n = 2 bound
states are always shifted to higher energies when ωc increases, i.e., they behave
diamagnetically. Resonances belonging to
n = 1 show diamagnetic behavior near the bottom of the energy window,

but have a paramagnetic character at higher energies. We will now give an
explanation for these different tendencies.
Consider first the diamagnetic resonances originating from the n = 2 bound

states. In spite of the admixture of different subbands by the magnetic field,
the dominant contribution to the metastable states will continue to be n = 2.
The effect of ωc 6= 0 is to raise the n = 2 subband bottom in the dot above the
original value of E = 1

2 , lifting with it the L → ∞ asymptote in Fig. 2, and
thus raising the n = 2 curves. This can be seen clearly in the divergence of the
subband-specific wavelength, which is given for ωc 6= 0 by

λn(E) = 2π√
1 + ω2

c

√
2 (E + V0)−

√
1 + ω2

c (2n+ 1)
(18)

instead of Eq. (11). Obviously, the wavelength of the dominant subband n in a
metastable state diverges at E =

√
1 + ω2

c

(
n+ 1

2

)
− V0; hence the diamagnetic

shifts of the n = 2 resonances. We cannot predict the exact resonance energies
with this simple argument because anticrossings between the n = 1 and 2 res-
onances lead to additional complications. In Fig. 2, a conspicuous example for
an avoided crossing can be seen for the first n = 2 level and the second n = 1
level. Other anticrossings are not as clear because our method of identifying the
resonance position with |T00|2 = 0 fails when two of them occur close together.
In that case, energies of zero and unit transmission no longer occur in pairs that
can be attributed uniquely to one resonance.
The resonances belonging to n = 1 show paramagnetic behavior toward the top

of the energy window of Fig. 2, i.e., they shift in the direction opposite to that
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Figure 5: Subband-specific wavelength λn. from Eq. (18), plotted as a function of magnetic field at
EF + V0 = 3.5E0 which corresponds to EF = 1.5E0 in Fig. 2. To raise the n = 1 subband
bottom to this energy and thus force λ1 to diverge, a magnetic field of ωc ≈ 2.1ω0 is
required.

of the n = 2 resonances. The exact shifts are influenced by avoided crossings,
but the paramagnetic tendency can again be understood under the assumption
that the metastable state consists mainly of the original n = 1 bound state. To
show this, λn from Eq. (18) is plotted in Fig. 5 as a function of magnetic field
for V0 = 2 and E = 3

2 , i.e., E+V0 = 3.5. If we choose a fixed energy near E = 3
2

and increase the dot length L, we can expect the average spacing between new
resonances to be roughly 1

2λ1, in analogy with the bound states of Sec. II. Since
λ1 decreases with ωc, resonances shift to lower L at fixed E. The correct overall
behavior in Fig. 2 is thereby obtained. In the same way, the fact that λ2 grows
with ωc because of the proximity to the subband bottom in the dot region is
found to be in accordance with the diamagnetic behavior of the n = 2 resonances
discussed above. Unlike for n = 2, the bottom of the n = 1 subband in the dot is
still far enough below E to allow a decrease in wavelength λ1 as we is increased
from zero. The possibility of a decreasing λn as a function of ωc, or equivalently
an increasing wave number k, can be identified as purely quantum mechanical
by noting that the group velocity always decreases monotonically with growing
ωc. The physical reason for the increasing k at fixed E is a flattening of the
dispersion relation E vs. k as its parabolic branches evolve into degenerate
Landau levels with growing ωc. When E is close to subband cutoff in the dot, as
for n = 2 in Fig. 5, this effect is outweighed by the simultaneous depopulation
of the respective level.

5 CURRENT DENSITY PATTERNS
In the preceding section, we have succeeded in understanding how the magnetic-
field dependence of the resonances follows from the influence of the “parent”
subband. But other subbands, including evanescent states, are also present in
the metastable state. In fact, they are indispensable for obtaining the coupling
between the n = 0 subband in the wire and the transverse wave function of the
continuum bound state which has n ≥ 1. The electronic motion is therefore
no longer genuinely one dimensional as in the cases B = 0 or V0 = 0. This
dimensionality crossover is evident in the current density. For one-dimensional
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propagation, the wave function has the product form of Eq. (4) which leads to a
current density j = j(x, y) ex because χ is real. Flux conservation then requires
j(x, y) to be independent of x, i.e.,

j = j(y) ex. (19)

When subband mixing is present, it is clear that such a simple expression cannot
hold since interference terms and evanescent states give rise to nonzero jy. A
special case exists at a resonance minimum where |T00|2 = 0. The probability
flux must vanish at any cross section through the wire because n = 0 is the only
subband propagating to infinity. To the right of the dot, the wave function has
the asymptotic form (4) where the transverse part is now the shifted harmonic-
oscillator ground-state function from Eq. (14),

χk0(y) = u0

([
1 + ω2

c

] 1
4
[
y − ωc

1 + ω2
c

k

])
. (20)

This implies that j must vanish identically for x→∞. To the left, the asymptotic
wave function contains a reflected wave whose transverse part is shifted by the
same amount as that of the incident wave, but in the opposite direction:

Ψ(x, y) ∝ eikxχk0(y) + e−i(kx+δ)χ−k0(y). (21)

The transverse shift being due to the Lorentz force, we can achieve χk0(y) −
χ−k0(y)→ 0 by choosing ωc sufficiently small. In that limit, Ψ(x, y) in Eq. (21)
attains the product form (4) and j must hence vanish for x→ −∞. We are then
left with a current density that vanishes everywhere except for the vicinity of
the dot. This reflects the motion of an electron captured in the metastable state
for the limiting case of small coupling to the continuum. The current density
patterns shown in Fig. 6 were calculated at ωc = 0.1ω0 close to the energies of
zero transmission in Fig. 3. These plots shed new light on the magnetic-field
dependence of the resonances which we termed paramagnetic and diamagnetic
in Sec. IV: the metastable electronic orbits take on the shape of vortices with
a dominant sense of rotation that corresponds to a positive or negative mag-
netic dipole moment. Comparison with Fig. 3 shows that diamagnetic behavior
is matched by a counterclockwise rotation, while paramagnetism comes with
clockwise vorticity. This can be called a normal Zeeman effect of the metastable
state.
At first sight, one might expect that the area covered by individual vortices is

determined by the requirement of an integer multiple of flux quanta per vortex,
as in Landau diamagnetism. But we are dealing with the limit ωc → 0, where
the cyclotron radius is much larger than the dot dimensions. Consequently, the
electronic motion is dominated by the dot geometry, which means the vortices
are simply the result of interferences between the subbands that make up the
quasibound state. The primary effect of the magnetic field is to trigger vortex
formation by causing the subband mixing in the first place. Flux quantization
is not obeyed by the vortices because they, like the whole system, are not com-
pletely closed as long as we ωc 6= 0.
It seems contradictory that the current density pattern of a resonance should

simply be due to geometry-related interferences and thus be constant in shape
for small ωc, whereas none of the vortices can exist at all in the absence of a
magnetic field. This unphysical singularity of the current density pattern for
ωc → 0 results from the failure of the independent electron approximation when
the resonance width goes to zero. As the lifetime of the metastable state diverges,
so does the number of electrons in the dot region, because in the absence of inter-
particle scattering each injected electron stays in the quasibound orbit for an
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arbitrarily long time. An increase of the charge in a metastable state is predicted
in Ref. [27] for the rectangular cavity at B = 0, but the importance of the
effect is described as secondary. The situation is different here because only the
inclusion of electron-electron scattering will render the dimensionality crossover
continuous. Both the positions and shapes of the resonances will thus start to
deviate from our predictions when the independent-particle model, on which all
the literature cited in the Introduction is based, breaks down in the vicinity of
ωc = 0. To create V ′(y) and V (x), respectively, we suggest the combined use of
in-plane and surface gating[28]. Exact separability of the Schrödinger equation
at B = 0, just like the conservation of parity required for the BIC in Refs. [7] and
[12], will be impossible to realize experimentally, due to inaccurate alignment of
the gates and the presence of disorder[29]. These deviations from separability
were not considered here because the magnetic field serves the same purpose,
namely, to destabilize the BIC and thus create resonances. If, therefore, the
resonances retain a finite width at B = 0, the B → 0 singularity in current
density and charge does not occur.
Summarizing the independent-particle results of this and the preceding sec-

tion, we obtain the following picture: even at arbitrarily small magnetic fields,
the electrons captured in the metastable state move in vortices that have a net
magnetic moment. Since a resonance originating from subband n behaves dia-
magnetically or paramagnetically depending on the energetic distance to the
bottom of subband n in the dot region, it can be concluded that the sense of
rotation is clockwise when subband n is still far from being cut off in the dot at
the resonance energy, and counterclockwise if that is not the case.
This relationship is not obvious from analogies with transport at higher mag-

netic fields. It must be kept in mind that the vortices form only near the res-
onances, whereas the current density is more or less of the laminar form (19)
otherwise. This distinguishes our resonances from the AB effect in a singly con-
nected geometry as reported in Ref. [30]. There, the formation of edge channels
at high magnetic fields is essential. Our paramagnetic resonances have a current
density profile reminiscent of such edge channels, but they are not involved in
the high-field AB effect. This can be seen by following the upward shift of the
subband thresholds in the dot as ωc grows. Generalizing Eq. (9) to we ωc 6= 0,
we note that resonances splitting off from subbands n ≥ 1 cannot occur below
the energy E1 = 3

2
√

1 + ω2
c − V0, which is the n = 1 subband bottom in the

dot region. This approaches the n = 1 subband bottom of the wire leads in the
limit ωc →∞. As a result, the resonances are pushed out of the energy window
(17) and thus cannot affect transmission in the single-subband regime. This is
consistent with the high-field formula

|T00|2 = TATB

1 +RARB − 2
√
RARB cos eΦ~c

, (22)

where RA/B , TA/B are phenomenologically or experimentally determined re-
flection and transmission probabilities of left and right interfaces between dot
and wire leads, and Φ is the magnetic flux enclosed by the one-dimensional
edge channels encircling the dot. The AB oscillations described by Eq. (22) as
a function of Φ do not go through zero because the resonant structure due to
interferences within the n = 0 level itself is weaker than that caused by the BIC.
Another expression for the high-Held limit of |T00|2 has been given in Ref. [31]
for our model potential, but it is of very limited validity.[32] Still it agrees with
the above argument because it is precisely of the one-dimensional form (12),
with k and κ given by Eq. (15), which means that |T00|2 has no zeros above the
continuum threshold.
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Figure 6: Current density profiles at ωc = 0.1ω0 for the three transmission minima of Fig. 3 in order
of increasing energy. The boundaries of the dot region of length L = 3.5L0 are indicated by
solid vertical lines. The current density rotates clockwise for the paramagnetic metastable
state of (b), whereas (a) and (c) show counterclockwise vorticity in agreement with their
diamagnetic energy shifts observed in Fig. 3.
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6 CONCLUSION
We have investigated transport in a model geometry consisting of straight wire
and dot potential, which is separable in the absence of a magnetic field and ex-
hibits bound states in the continuum that split off from each wire subband. Their
existence can be understood classically, which is due to the fact that quantum-
mechanical tunneling does not make the classically bound states metastable, as
is usually the case. Upon application of a weak magnetic field, sharp and asym-
metric resonances develop out of the bound states. Their energy shift can be
upward or downward with increasing magnetic field, depending on the change
in wavelength of the “parent” subband from which they split off. The different
magnetic-field dependences are clearly reflected in the current densities associ-
ated with the respective metastable states. This allows us to conclude that the
electronic orbit of a metastable state possesses a paramagnetic dipole moment
when the “parent” subband is far from cutoff, whereas the quasibound state has
a diamagnetic vorticity if it has split off from a subband close to threshold. The
highly systematic behavior of the resonances, which is insensitive to deviations
of V (x) or V ′(y) from the shape assumed in this paper, leads to the expectation
that the present geometry is suitable for an experimental study.
The author thanks R.R. Gerhards for stimulating this work, and H. Heyszenau

for accompanying its progress with helpful discussions.
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