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The transmission behaviour of a quantum point contact in a magnetic
field is calculated, exhibiting in detail the influence of intersubband scat-
tering. In contrast to the commonly known reduction of backscattering
by a magnetic field, it is shown here that a weak field can cause increased
backscattering. Nevertheless, the present results serve to illustrate that
backscattering can occur without any effect on the conductance quanti-
zation, which is explained by an indirect compensation mechanism.

1 Introduction
It was recently discovered by van Wees et al. [17] and Wharam et al. [18] that
the conductance of a nanostructured constriction in a two-dimensional electron gas
(referred to as quantum point contact, QPC) exhibits steps of magnitude 2 e2h if the
constriction width is varied. In the modulation-doped GaAs-AlGaAs heterostruc-
tures used to perform the experiments, the spatial extension of the depletion regions
defining the QPC can be varied by changing a gate voltage Vg. At the origin of the
quantized conductance is the formation of one-dimensional channels in the device:
When B = 0, one-dimensional modes are formed because the confining potential

quantizes electronic motion perpendicular to the device walls. At moderate magnetic
fields, these modes become hybrid channels, or magneto-electric subbands, due to
the simultaneous presence of spatial and Landau quantization. In a high magnetic
field, the one-dimensional subbands take the form of edge channels in which an
electron propagates coherently along spatially separated equipotential lines [12].
At any point in the constriction, these subbands appear as discrete branches of

the dispersion relation E versus k, where k is the wavenumber associated with the
direction of free motion (choosing Landau gauge at B 6= 0).
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As the height and width of the saddle shaped depletion potential are varied,
a subband will cease to contribute to the current when it is pushed above the
Fermi energy at the narrowest point of the constriction. Since each of the one-
dimensional subbands contributes 2 e2h to the conductance G due to a cancellation
between density of states and average velocity [2], there will be a step in G whenever
the width W reaches the cutoff-value for the the highest subband. Experimentally
observed departures from such accurate steps in the conductance can be attributed
to the presence of barrier penetration, above-barrier reflection and intersubband
scattering.
The effects of these complications on the accuracy of the conductance steps have

been investigated theoretically by several authors, using various model potentials
[14, 19–25].
To translate scattering properties of the QPC into the conductance measured

between the 2D reservoirs, one can make use of the two-terminal Landauer-type
conductance formula derived in [5]. The conductance is given in units of e2h by

g =
∑
a,b

|Tba|2, (1)

where Tba is the current transmission amplitude from subband a to b, and electron
spin is not considered, as in [5]. The simplest way to obtain well-defined steps in
the conductance versus constriction width is to assume T diagonal and the diagonal
elements either of magnitude one, for channels propagating through the constric-
tion, or zero for channels that are not. This means if W is the constriction width,
|Taa(W )|2 must be step functions in W , a condition that is met whenever the sim-
ple introductory explanation above holds where resonances, tunneling and subband
mixing are not considered. For intersubband scattering to be absent, the transport
is required to be adiabatic, this being well satisfied in the edge channel regime. At
B = 0, the electronic motion is generally not one-dimensional, because scattering
between subbands can easily be caused by the device geometry [22] as well as by
disorder [24].
T is indeed diagonal for the model potential treated by Büttiker [23]. However,

as is also stated in [23], conductance steps can still be expected if T is not diagonal.
Büttiker’s argument is that any diagonal T that yields steps in (1) can be sub-
jected to an arbitrary unitary transformation which creates a non-diagonal T ′ while
leaving the result of (1) unaffected. A physical interpretation for this can be given
by pointing out with Beenakker, van Houten [2] that conductance quantization
may persist as long as intersubband scattering does not alter the net transmission
behaviour of a QPC, which is all that is left after the summation in (1).
A special case of a non-diagonal T has been discussed by Laughton et al. [24]:

They find quantized transmission in the presence of impurities, povided that only
forward scattering takes place. The reason for this was given by Payne [19], who
pointed out that intersubband scattering has no effect on the conductance steps
as long as scattering from subband a to subband b is exactly compensated by the
opposite process from b to a. In that case, channel a carries the same current before
and after the obstacle until the subband cutoff threshold is reached, at which time
the conductance has a step. For B = 0, it is argued in [19] that this cancellation
of scattering events occurs if both channels are fully populated up to the Fermi
energy. The latter can be satisfied for all except the reflecting channels, so that the
conductance remains quantized when the scattering is purely forward.
Writing the above compensation argument in terms of transmission coefficients,

the absence of significant backscattering means that the net current each channel
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sustains only depends on whether or not the channel is conducting at all, so that
for all b ∑

a

|Tba(W )|2 = Θ(W −Wb), (2)

where Wb in the step function Θ is the cutoff width below which no current can
emerge on the far side of the constriction in final state b. Since |Tab|2 = |Tba|2, we
can exchange the indices in (2) and thus obtain as an equivalent statement∑

b

|Tba(W )|2 = Θ(W −Wa) (3)

for all a. This formula means that the incoming current in each individual subband
a only branches into the available outgoing channels, so that the net transmission
is unity as long as subband a is not cut off.
As was to be expected from the reasoning of Payne, a lowering of the conduc-

tance plateaux due to backscattering is also found in [24], as well as in [21]. In
the presence of a magnetic field, conductance quantization generally becomes more
accurate due to the reduction of backscattering from impurities [8] as well as from
the constriction geometry [2, 14], and the conductance plateaux broaden because
the subband separation increases.
Guided by the very general, but abstract argument of Büttiker, we now ask

whether a more general T than the one in (2) could also be physically realized.
Put differently, can there be quantization of the conductance if backscattering is
important so that (2) does not hold? The present calculation proves that this
question can be answered affirmatively.
Very recently, a recursive Green’s function calculation has been performed by

Ando [25], yielding results very similar to ours in spite of the completely different
computational method employed here. However, we show that the action of a weak
magnetic field in the non-adiabatic regime cannot be interpreted in terms of the
commonly known reduction of backscattering. To the contrary, backscattering can
actually be increased by the magnetic field while conductance quantization improves
at the same time. The reason for this is a modified current compensation process
that allows for backscattering. This is in contrast to the results quoted above,
which seem to suggest that backscattering is invariably detrimental to the accuracy
of conductance quantization.
The reason why this effect of a magnetic field cannot be seen in the work done by

Ando will be explained in the next section.

2 Model
At B = 0, one can use the fact that the time independent Schrödinger equation
for the ballistic electron motion is formally identical to the Helmholtz equation of
waveguide optics. One characteristic of this “electron optics” is that in the constric-
tion, any potential barrier that depends on the longitudinal (x) coordinate alone can
cause no scattering between different channels [22], since a Schrödinger equation of
the type {

p2
x

2m +
p2
y

2m + V ′(x) + V (y)
}

Ψ(x, y) = EΨ(x, y) (4)

is separable.
However, an additional vector potential destroys the formal analolgy to optical

waveguides. This becomes significant in weak magnetic fields, where the magnetic
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length is comparable to a characteristic length of the potential variation, so that
neither the waveguide nor the semiclassical skipping orbit pictures are valid. Under
these circumstances, the magnetic field itself becomes a third independent source of
subband mixing besides device geometry and impurities, as will now be illustrated by
introducing a vector potential in equation (4): If the barrier Vx is abrupt, subband
conservation will only hold in B = 0, but not in B 6= 0, because there is no choice
of gauge or coordinate system for which the Schrödinger equation{

1
2m

(
~p+ e

c
~A(x, y)

)2
+ V ′(x) + V (y)

}
Ψ(x, y) = EΨ(x, y) (5)

separates for a rectangular barrier V ′(x). Such magnetic-field induced subband
mixing will be investigated here.
Following Büttiker [23], we approximate the transverse confinement by a quadratic

potential
V (y) = 1

2mω
2
0 y

2 (6)

Here, ω0 does not vary with x because we do not consider scattering at the interfaces
between reservoirs and QPC (see [2, 4, 22]). Into this quantum wire which represents
the constriction region, we now introduce an additional barrier in the form of a multi-
step function Vb(x) in the longitudinal direction. Thus we obtain the saddle-shaped
potential landscape of a realistic QPC by piecing together several identical parabolic
wire segments with a bottom offset of Vb.
In our model, to increase Vb is to change two things at the same time in the

classical potential landscape seen by an electron at the fermy energy: rising barrier
height is accompanied by a narrowing of the constriction at EF . The advantage
of this geometry is that it guarantees subband conservation for B = 0, irrespective
of how abrupt the potential variations are, cf. (4). In Ando’s treatment [25] a
magnetic field is never the sole cause of intersubband scattering since subbands are
mixed even at B = 0. Due to its simplicity, the present model allows to separate
the effects of a magnetic field on subband conservation from the effects of the device
geometry. The amount of intersubband scattering can be determined solely by the
magnetic field strength, without having to change the scattering potential. This
feature cannot be exploited if the saddle potential is continuous and slowly varying
since such a Vb(x) entails adiabatic transport independently of B. Therefore, it is
appropriate to consider not a smooth, but an abrupt potential.

3 Calculations
The electronic motion in our model potential will be found by performing a wave
function matching similar to that in [20, 26] but generalized to the case B 6= 0.
Expressing the magnetic field in terms of the cyclotron frequency ωc = eB

mc , and
choosing the Landau gauge ~A = −By~ex, our starting point is the Hamiltonian

H = 1
2m

{
(px −mωcy)2 + p2

y

}
+ 1

2mω
2
0y

2 + Vx (7)

with a constant potential Vx and an oscillator frequency ω0 independent of x. To
introduce dimensionless variables, we define a hybrid frequency , ω :=

√
ω2

0 + ω2
c ,

and measure frequencies in units of ω, energies in ~ω, and lengths in
√

~
mω . In these

units one has ω2
0 + ω2

c = 1.
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The eigenfunctions, normalized to unit 2D current, have the form

Ψ(x, y) =
√

1
|k|

eikx ua(y − ωck) (8)

where

ua(y − ωck) := 1√√
π a! 2a

e−
1
2 (y−ωck)2

Ha(y − ωck) (a = 0, 1, . . .), (9)

are the harmonic oscillator wavefunctions displaced from the origin by ωck.
For fixed energy E the wave numbers corresponding to a possible solution are

ka = ±
√

2(E − Vx − a)− 1
ω0

. (10)

This means that the index of the highest propagating subband is

amax = int
[
E − Vx −

1
2

]
. (11)

We now relax the assumption Vx = const, allowing N discrete discontinuities along
the x-direction at positions x1, x2, . . . , xN . Let the constant potential in the N + 1
resulting regions have values V0, V1, . . . , VN . Then in region α = 0 . . . N , the wave
number belonging to channel a is

kαa = ±
√

2(E − Vα − a)− 1
ω0

. (12)

We see from (12) and (8) that unless B = 0, the wavefunction is shifted by unequal
amounts in intervals with different Vα. This mismatch means that an electron
incident in subband a from the left will have to evolve into a linear combination of
all possible subbands when it crosses x1. Likewise, the reflected wave is shifted in
the direction opposite to that of the electron incident in a, so that the reflection, too,
violates subband conservation due to the mismatch of the transverse wavefunctions.
To perform the wave function matching at the discontinuities of Vx, the displaced

transverse functions are expanded in the complete set of the unshifted oscillator
eigenfunctions:

ua(y −∆) =
∑
b

cba(∆)ub(y), (13)

the coefficients being [16]

cba(∆) =
∞̂

−∞

ub(y)ua(y −∆) dy

= 1√
a! b! 2a+b

e−( ∆
2 )2 ×

{
2a b! (−∆

2 )a−b La−bb (∆2

2 ) (a ≥ b)
2b a! (∆

2 )b−a Lb−aa (∆2

2 ) (a ≤ b)

where both cases coincide for a = b, and Lb−aa (z) denote associated Laguerre poly-
nomials (normalized to Ln0 (z) = 1).
Using the linear independence of the set ua(y) and requiring the continuous dif-

ferentiability of the matched wavefunction, one obtains a system of linear equations,
the unknowns being the amplitudes Aα±ba with which subbands b are present in the
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Figure 1: Sketch of the dispersion relation in the regions without barrier potential, for three values of the
magnetic field. EF (indicated by the broken line) is chosen so that the second subband becomes
depopulated just below ωc = ω0. The effect of a potential Vb is to rigidly shift all the parabolas
upward by an amount Vb. When a subband gets pushed above EF due to Vb, it no longer
propagates in the barrier region.

right- (+) and left-going (−) wave in region α when the electron is incident from
the left in subband a. This linear system is infinite dimensional because imaginary
wavenumbers have to be retained, but it can be well approximated by a system of
finite dimension as long as the Lorentz displacement ωck0

a of the incoming wave is
sufficiently small. To arrive at a solution, a standard linear equation solver was
used. The system of equations becomes numerically singular if the barrier potential
is so high or broad as to decouple the left and right sides. These restrictions were
taken into consideration in our choice of parameters.
The quantities of interest are the current transmission and reflection probabilities
|Tba|2 and |Rba|2, satisfying [27]∑

b

{
|Rba|2 + |Tba|2

}
= 1. (14)

for all a. Using arguments similar to those in [5, 6], it follows that for our choice of
normalisation Tba = AN+

ba and Rba = A0−
ba . The sum rule (14) is used to check the

numerical accuracy of the results below.

4 Results
We turn now to the simplest case of a rectangular barrier of length l and height
Vb, i.e. N = 2 and V0 = V2 = 0, V1 = Vb. In a real device, the distance between
the inversion layer and the patterned electrodes defining the wire and barrier will
determine whether or not such an abrupt conduction band variation can be created.
The assumption of an abrupt potential will be unjustified at high magnetic fields
because variations in V ′(x) will always be smooth on the scale of the small magnetic
length. Therefore, weak magnetic fields will be investigated here, as in [25]. This
means that the edge channel picture is invalid, which is why the magnetic field
should no longer be expected to reduce backscattering in the way it is described in
[2, 8, 14].
In zero magnetic field, transverse mode indices a are conserved and transmission

probabilities for mode a are [28]

|Taa|2 = 4k2 |κ|2

|(k2 + κ2) sin κl + 2iκk cosκl|2
, (15)
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Figure 2: Conductance g as a function of normalized barrier height Vb
EF

for four values of the magnetic
field.

with k =
√

2(E − a)− 1 and κ =
√

2(E − Vb − a)− 1 in reduced units. Our cal-
culation is an extension of this to the case B 6= 0. Up to now, the calculations
were most compactly written in units that depend on the magnetic field through ω.
To be able to compare the results at different values of B, all quantities are now
expressed in terms of ω0 instead. After converting to these units, expression (11)
for the highest propagating subband at a given energy must be modified to

amax = int
[
E − Vb√
1 + ω2

c

− 1
2

]
. (16)

The dispersion relation in the regions where Vb = 0 is shown in Fig. 1 for three
values of ωc that will now be investigated more closely.
We fix the Fermi energy at E = 2.1 ~ω0 and the barrier length at l = 3.0

√
~

mω0
.

Consider first the case ωc = 0 where, according to Fig. 1(a), the two channels
a = 0, 1 propagate outside the barrier. As Vb is increased, the conductance exhibits
a step which is only approximately at the quantized value g = 1 of the dimensionless
conductance, cf. Fig. 2.This is due to transmission resonances and tunneling, as
discussed in [2]. The plateau in conductance vs. Vb deviates less from g = 1 when
a magnetic field is applied, and it broadens with increasing field, as the plots for
ωc = 0.5ω0 to ωc = 0.9ω0 in Fig. 2 show.
At a magnetic field such that ωc = ω0, Fig. 1(c) tells us that only the a = 0

subband is still below the Fermi energy, which means the electron is forced to obey
subband conservation as in zero field. If we now look at Fig. 3, it is clear that
compared to ωc = 0, the transmission characteristic |T00|2 has been improved in
two ways at ωc = ω0: The resonance in the plateau region is damped due to the
dephasing action of the magnetic field. Also, tunneling is reduced because some of
the longitudinal energy has been drained away into the transverse motion by the
magnetic field. This is also the reason why the drop in transmission occurs at a
slightly lower potential height when ωc = ω0.
Having recognized the beneficial effects of a magnetic field on the transmission

step in the absence of intersubband scattering, we now introduce a second subband
by decreasing the field to ωc = 0.5ω0. If subband mixing remained absent, no
significant change in |T00|2 would be expected. However, Fig. 3 shows that |T00|2
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Figure 3: Diagonal current transmission |T00|2 as a function of normalized barrier height Vb
EF

for three
values of the magnetic field. Effects of intersubband scattering are seen at ωc = 0.5ω0.

Figure 4: Off-diagonal current reflection |R10|2 and transmission |T10|2 = |T01|2 as a function of normalized
barrier height Vb

EF
at ωc = 0.5ω0. Reflection occurs before the cutoff potential is reached; for

Vb →∞, an asymptotic value is quickly approached.

loses its step shape at ωc = 0.5ω0, indicating that a qualitative change has taken
place with respect to the purely one-subband cases.
The most striking observation can be made in Fig. 4 which shows that significant

off-diagonal reflection occurs in the range of Vb where the conductance plateau exists.
In addition, a plot of the off-diagonal transmission |T10|2 in the same figure shows
that intersubband mixing occurs in the forward direction, too.
Recalling Fig. 2, we can conclude that the conductance quantization is unaffected

by intersubband scattering in the forward and backward direction.
A more detailed statement can be made if we inspect |T1a|2 + |T0a|2 for a = 0, 1,

shown in Fig. 5. The plot for a = 0 shows that a step shape is not fully recovered
due to the substantial backscattering, so that (2) and (3) do not hold.
It follows that the mechanism for conductance quantization must be such that

the loss in net transmission of incoming channel a = 0 is compensated for by an
increase in net transmission of channel a = 1 in the same range of Vb. This is exactly
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Figure 5: Net current transmission |T0a|2+|T1a|2 as a function of normalized barrier height Vb
EF

for a = 0, 1
at ωc = 0.5ω0. In the plateau region, the a = 1 subband contributes to the current even though
it is cut off.

what we see in the net transmission from channel a = 1, Fig. 5: A transmission
shoulder appears in a range of Vb where no transmission could occur if channel
number was conserved, since the a = 1 subband is cut off by the barrier. The
physical reason why this compensating transmission enhancement can take place
is that an incoming electron in channel a = 1 will be forced to “turn the corner”
at the barrier if Vb exceeds the cutoff value. While being thus localized near the
interface, a transition to a = 0 can take place, allowing the electron to propagate
forward across the barrier before it reaches the reflecting edge. Consequently, the
transmission shoulder is essentially |T01|2 since |T11|2 is small when only barrier
penetration makes a contribution.
One question that has to be answered to make contact with the compensation

argument of [19] is whether all forward scattering events continue to be cancelled
by the reverse processes even in the absence of time-reversal symmetry caused by
the magnetic field. This can indeed be verified by defining an antiunitary operation
W := KU , whereK denotes complex conjugation and U is a reflection at the y-axis,
i.e. x→ −x. The Hamiltonian commutes with W , provided the barrier potential is
chosen to be symmetric, Vb(x) = Vb(−x). This fact is sufficient to prove

|Tmn|2 = |Tnm|2. (17)

Analogously, one can deduce |Rmn|2 = |Rnm|2 from the symmetry V (y) = V (−y).
However, this property alone does not explain the quantized conductance, because
we have to take backscattering into account. In fact, an asymmetric barrier, Vb(x) 6=
Vb(−x), continues to yield a conductance similar to Fig. 2, so that the compensation
mechanism (17) is not a relevant explanation at all.
The increased reflection that causes |T10|2 + |T00|2 to deviate from step shape in

Fig. 5 is balanced in magnitude by |T01|2. This is due to the peculiar fact that in
the range of Vb where channel a = 1 is cut off while a = 0 propagates in the barrier
region, one has

|R10|2 ≈ |T01|2. (18)

This can be called an indirect compensation mechanism, and it is not based on a
rigorous symmetry argument like that leading to (17). The numerical result reflected
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in Fig. 4 and Eq. (18) can be given a qualitative physical interpretation in the
following way: When the magnetic field causes intersubband transitions, it tends to
do so with roughly the same strength for both directions of propagation. Thus, the
appearance of extra reflection |R10|2 is accompanied by the opening up of an equally
effective transmission channel |T01|2. This cooperative effect is suppressed when Vb
exceeds the cutoff height for the last propagating subband, a = 0, because in that
case |R10|2 grows further while |T01|2 must go to zero. With this result, we have
extended the concept of compensation [19] to include cases where backscattering is
significant in one channel but masked by enhanced transmission in another.
Finally, a remark must be made on the parameters chosen in this example. The

compensation mechanism described here for ωc = 0.5ω0 works analogously at all
magnetic fields for which two subbands are below EF outside the barrier, i.e. be-
tween ωc = 0 and ωc = 0.98ω0 (cf. Eq. 16, Fig. 1). This is why all graphs in Fig.
2 exhibit a conductance plateau. The parameter ωc = 0.5ω0 treated in the detailed
analysis corresponds roughly to the magnetic field at which intersubband scattering
is at a maximum, because subband index must again be conserved in the limiting
cases ωc → 0 and ωc → 0.98ω0.
In the example of [25], the ratio ~ωc

EF
= 0.25 is almost the same as in this work, but

for a Fermi energy at which a third subband just propagates at the narrowest point
of the QPC when the barrier has zero height. It can be inferred from [25] and my
calculations that the indirect compensation mechanism continues to function when
more than two subbands are below EF .

5 Conclusion
The wave-function matching applied in [20] has been generalized to allow for the
presence of a magnetic field, resulting in quantitative data on the transmission
properties of a QPC in weak magnetic fields. Since the model geometry considered
here is separable in the absence of a magnetic field, all intersubband reflection is
B-induced.
The fact that conductance quantizaton in a nanostructured constriction persists

in the presence of intersubband scattering cannot always be interpreted in terms of a
mere redistribution in the forward direction of the net current each incoming channel
carries. The net transmission behaviour of our barrier for individual channels does
change in a magnetic field, as is seen in particular in the occurence of significant
intersubband reflection for a subband that is not cut off by the barrier. In spite of
this backscattering, well-defined conductance steps are observed, which is in contrast
to the negative role backscattering plays in previous calculations. The mechanism
that leads to conductance quantization has been identified as an indirect current
compensation process, in which two incoming channels cooperate to form a step-
like conductance despite the presence of backscattering. When plateaux in the
conductance of a QPC are observed, it is therefore not justified a priori to assume
that backscattering is absent in all propagating subbands.

Note added in proof. After submission of this paper, a Rapid Communication
by Castaño and Kirczenow appeared [29], giving another convincing example that
intersubband scattering can be a decisive factor in the formation of quantized con-
ductance steps.

10



References
[1] D.G. Ravenhall et al., Superlatt. Microstr. 11, 69 (1992)

[2] C.W.J. Beenakker, H. van Houten, Solid State Phys. 44(1991)

[3] J.J. Harris et al., Rep. Prog. Phys. 52, 1217 (1989)

[4] R. Landauer, Z.Phys. 68, 217 (1987)

[5] D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

[6] A.D. Stone, A. Szafer, IBM J. Res. Develop. 32, 384 (1988)

[7] A. Messiah, Quantenmechanik Band 1, Walter de Gruyter (1976)

[8] M. Büttiker, Phys. Rev. B 38, 9375 (1988)

[9] J.R. Taylor, Scattering Theory, Wiley (1972)

[10] H.U. Baranger, Phys. Rev. B 42, 11479 (1990)

[11] K.F. Berggren, G. Roos, H. van Houten, Phys. Rev. B 37, 10118 (1988)

[12] B.J. van Wees et al., Phys. Rev. Lett. 62, 2523 (1989)

[13] U. Sivan, Y. Imry, C. Hartzstein, Phys. Rev. B 39, 1242 (1989)

[14] L.I. Glazman, M. Jonson, J. Phys. Condens.Matter 1, 5547 (1989)

[15] J.K. Jain, S.A. Kivelson, Phys. Rev. Lett. 60, 1542 (1988)

[16] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, Academic
Press, New York (1980)

[17] B.J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988)

[18] D.A. Wharam et al., J.Phys.C 21, L209 (1988)

[19] M.C. Payne, J. Phys.: Condens. Matter 1, 4943 (1989)

[20] A. Szafer, A.D. Stone, Phys. Rev. Lett. 62, 300 (1989)

[21] E.G. Haanappel, D. van der Marel, Phys. Rev. B 39, 5484 (1989)

[22] A. Yacoby, Y. Imry, Phys. Rev. B 41, 5341 (1990)

[23] M. Büttiker, Phys. Rev. B 41, 7906 (1990)

[24] M.J. Laughton et al., Phys. Rev. B 44, 1150 (1991)

[25] T. Ando, Phys. Rev. B 44, 8017 (1991)

[26] J.A. Brum, G. Bastard, in: S.P. Beaumont, C.M. Sotomajor Torres (eds.),
Science and Engineering of One- and Zero-Dim. Semicond., Plenum Press,
N.Y. (1990)

[27] P. Streda, J. Kucera, A.H. MacDonald, Phys. Rev. Lett. 59, 1973 (1987)

[28] L.I. Schiff, Quantum Mechanics, McGraw-Hill Book Company (1968)

[29] E. Castaño, G. Kirczenow, Phys.Rev.B 45, 1514 (1992)

11


	Introduction
	Model
	Calculations
	Results
	Conclusion

