10.7b The first part of this proof is exactly the first part of the proof in the book. The line \(L_x \) divides \(A \) into two pieces of equal area and divides \(B \) into pieces of area \(b_1(x) \) and \(b_2(x) \), where \(b_1 \) is the area of the piece furthest from \(x \) and \(b_2 \) is the area of the piece closest to \(x \). Consider the continuous function \(f(x) = b_1(x) - b_2(x) \). Notice that \(f(-x) = -f(x) \) because the piece furthest from \(x \) is the piece closest to \(-x \) and the piece closest to \(x \) is the piece furthest from \(-x \). So as we move around the circle from \(x \) to \(-x \) the function \(f \) changes sign, and thus it must be zero at an intermediate point. At this point, the line which divides \(A \) into two equal pieces also divides \(B \) into two equal pieces.

11.2 a Let \(\mathcal{W} \subseteq M \) be open and suppose \(M \) is an \(n \)-manifold. Let \(p \in \mathcal{W} \). Since \(M \) is a manifold, there is an open set \(p \in U \subseteq M \) and an open \(V \subseteq \mathbb{R}^n \) and a homeomorphism \(\varphi : U \to V \). Then \(\varphi|_{U \cap \mathcal{W}} : U \cap \mathcal{W} \to V \cap \mathcal{W} \) is a homeomorphism, and thus each point in \(\mathcal{W} \) has an open neighborhood in \(\mathcal{W} \) homeomorphic to an open set in \(\mathbb{R}^n \).

11.2 b Suppose \((z_1, z_2, \ldots, z_{n+1})\) represents a point in \(CP^n \). Then
\[
|z_1|^2 + |z_2|^2 + \ldots + |z_{n+1}|^2 = 1
\]
and therefore some \(z_i \neq 0 \). Suppose, for example, that \(z_{n+1} \neq 0 \). In that case, \(z_{n+1} \) can be written in “polar coordinates” as \(e^{i\theta}r \) where \(r \) is real and positive. Multiplying all the coordinates by \(e^{-i\theta} \) gives another representative of the same point; the new representative has the form \((w_1, w_2, \ldots, w_n, r)\) for complex numbers \(w_1, w_2, \ldots, w_n \). This new representative still lives in \(S^{2n+1} \), so
\[
|w_1|^2 + |w_2|^2 + \ldots + |w_n|^2 + r^2 = 1
\]
and therefore
\[
r = \sqrt{1 - |w_1|^2 - |w_2|^2 - \ldots - |w_n|^2}
\]
The conclusion is that points in \(CP^n \) with \(z_{n+1} \neq 0 \) have unique representatives of the form
\[
(w_1, w_2, \ldots, w_n, \sqrt{1 - |w_1|^2 - |w_2|^2 - \ldots - |w_n|^2})
\]
where \(|w_1|^2 + |w_2|^2 + \ldots + |w_n|^2 < 1 \) and thus
\[
(w_1, w_2, \ldots, w_n) \in D^{2n}
\]
where \(D^{2n} \) is the open disk of radius one.

Now I’d like to show formally that these provide local coordinates, i.e., that each point in \(CP^n \) has an open neighborhood homeomorphic to an open set in \(R^{2n} \). I’ll assume that my point has \(z_{n+1} \neq 0 \); analogous arguments work if some other \(z_i \neq 0 \).
Let U be the set of all points in CP^n whose representatives satisfy $z_{n+1} \neq 0$ and let V be the open unit disk D^{2n}. Map $V \to U$ by

$$(w_1, w_2, \ldots, w_n) \to \left(w_1, w_2, \ldots, w_n, \sqrt{1 - |w_1|^2 - |w_2|^2 - \ldots - |w_n|^2}\right)$$

Map $U \to V$ by

$$(z_1, z_2, \ldots, z_n, z_{n+1}) \to \left(\frac{z_1}{z_{n+1}}|z_{n+1}|, \frac{z_2}{z_{n+1}}|z_{n+1}|, \ldots, \frac{z_n}{z_{n+1}}|z_{n+1}|\right)$$

These maps are inverse to each other, so each map is one-to-one and onto. We are done if U is open and if both of these maps are continuous. But U is open because its inverse image in S^{2n+1} is open, being $\{(z_1, z_2, \ldots, z_{n+1}) \in S^{2n+1} \mid z_{n+1} \neq 0\}$. The first map is a map $D^{2n} \to CP^n$ induced by a continuous map $D^{2n} \to S^{2n+1}$ and so continuous. The bottom map is a map $U \subseteq CP^n \to D^{2n}$ induced from a continuous map from a subset of S^{2n+1} to D^{2n} and thus continuous.

To complete the argument, we need only show that CP^n is Hausdorff. Since S^{2n+1} is compact Hausdorff, we can use theorem 8.11, so it suffices to show that $\pi : S^{2n+1} \to CP^n$ is a closed map. Thus we want to show that if $A \subseteq S^{2n+1}$ is closed, then $\pi^{-1}(A)$ is closed.

This set is the set of all points in S^{2n+1} which are equivalent to points in A. Equivalently, it is the image of $S^1 \times A$ under the map

$$S^1 \times A \to S^1 \times S^{2n+1} \to S^{2n+1}$$

where this last map is

$$\lambda \times (z_1, z_2, \ldots, z_{n+1}) \to (\lambda z_1, \lambda z_2, \ldots, \lambda z_{n+1})$$

But $A \subseteq S^{2n+1}$ is closed, so compact. Thus $S^1 \times A$ is compact, and so its image in S^{2n+1} is compact, and so closed.

11.2 Each point in M has an open neighborhood U homeomorphic to an open $V \subseteq R^n$. Shrinking V if necessary, we can suppose that V is a disk. Magnifying, we can suppose that V is the open disk of radius 1, and thus that U is homeomorphic to such a disk.

M is covered by the union of these U and so by finitely many of them, U_1, \ldots, U_k. By 8.14j, $X/(X - U_i)$ is homeomorphic to U_i^∞, and thus homeomorphic to $(\partial D)^\infty$, which is homeomorphic to S^n.

The map $M \to M/(M - U_i)$ is continuous, so $M \to M/(M - U_i) \to S^n$ is continuous. Putting these maps together for all i gives a map

$$M \to M/(M - U_1) \times \ldots \times M/(M - U_k) \to S^n \times \ldots \times S^n \subseteq R^{n+1} \times \ldots \times R^{n+1} = R^{k(n+1)}.$$
We now claim this map is one-to-one. If so, we are done, because M is compact Hausdorff, so a continuous one-to-one map onto its image is automatically a homeomorphism.

Suppose x and $y \in M$ and $x \neq y$. If $x \in U_i$ and $y \in U_i$, then $x \not\in M - U_i$ and $y \not\in M - U_i$, so x and y represent different elements in $M/(M - U_i)$ and thus map to different points in $\mathbb{R}^{k(n+1)}$. If $x \in U_i$ and $y \not\in U_i$, then $x \not\in X - U_i$ and $y \in M - U_i$ and so x and y represent different points in $M/(M - U_i)$. But x is certainly in some U_i.

Extra Problem 1

Notice that the two top b arrows are glued together, so their ends become the same point. But these ends are the two ends of a. So the ends of b and both ends of a are the same point.

On the right side, we see that the end of a is the start of b, so both ends of b and both ends of a all glue to the same point. The same reasoning applied to the bottom of the diagram shows that both ends of d and both ends of c glue to the same point.

But the a on the right goes from one end of d to an end of b, so all ends of a and b are glued to all ends of c and d.
Extra Problem 2

cut shaded region from here
and glue it here
Extra Problem 3

Reading from bottom to top counterclockwise, the end of a is glued to the start of b, which is glued to the end of b, which is glued to the start of c. Moreover, from the top left, the end of c is glued to the end of a. So the start and end of c are glued to the start and end of b which are glued to the end of a. But the start of c is glued to the start of a. So all vertices are glued together.
Extra Problem 4

now relabel and change some arrows!