Frobenius' Theorem

Richard Koch

February 6, 2015

Theorem 1 (Frobenius) If a finite dimensional vector space over \(R \) has a product making it a (possibly noncommutative) field, then the resulting field is isomorphic to \(R, C, \) or \(H \).

Proof: We give a proof by R. S. Palais, published in the American Mathematical Monthly for April, 1968.

Call the object \(D \). Since \(1 \in D, R \subset D \). If this is all of \(D \), we are done. Otherwise let \(d \notin R \) be in \(D \). Since \(\dim(R) < \infty \), the elements \(1, d, d^2, \ldots \) are eventually linearly dependent. Hence there is a polynomial \(P(x) \) over \(R \) such that \(P(d) = 0 \). By the fundamental theorem of algebra, \(P \) can be factored into linear and quadratic terms, so \(P_1(d)P_2(d) \ldots P_k(d) = 0 \). By field axioms, one of these terms is zero. If \(d \) satisfies a linear equation, then \(d \in R \), so assume \(ad^2 + bd + c = 0 \). Then

\[
d = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

It follows that \(\sqrt{b^2 - 4ac} \in D \). If this is real, then \(d \) would be real. So \(b^2 - 4ac < 0 \) and \(\sqrt{b^2 - 4ac} = \sqrt{4ac - b^2}i \) where \(i \in D \) satisfies \(i^2 = -1 \).

We will use this argument again, so just for the record, notice that if \(d \) is some other element not in \(R \), we can still write \(d = r_1 + r_2j \) for an element \(j \) satisfying \(j^2 = -1 \).

Return to the specific \(y \) used originally, and the \(i \) we produced satisfying \(i^2 = -1 \). It follows that \(C \subset D \). If \(C = D \), we are done. So suppose \(C \) is not all of \(D \).

If we ignore the general multiplication in \(D \) and only notice that elements in \(D \) can be scalar multiplied by elements in \(C \) on the left, we see that \(D \) is a vector space over \(C \).

Define \(T : D \to D \) by \(T(x) = xi \). This is a \(C \)-linear transformation. Let

\[
D_+ = \{ x | T(x) = ix \} = \{ x | xi = ix \}
\]

\[
D_- = \{ x | T(x) = -ix \} = \{ x | xi = -ix \}
\]
Each is a subspace of D. The intersection of these subspaces is \{0\} because an element in both satisfies $ix = -ix$, so $2ix = 0$ and $x = 0$. The sum of the two subspaces is everything, because for any $x \in D$ we have $i\frac{x - ixi}{2} = \frac{x - ixi}{2}$ and $i\frac{x + ixi}{2} = -\frac{x + ixi}{2}$, so

$$x = \frac{x - ixi}{2} + \frac{x + ixi}{2}$$

Every element of C is in D_+. Conversely, if $e \in D_+$ then e commutes with all complex numbers. The elements $1, e, e^2, \ldots$ are eventually linearly dependent over C, so e satisfies a polynomial $P(x)$. Factor $P = P_1(X) \ldots P_k(X)$, noting that over C, every irreducible factor is linear. So for some i, $P_i(X) = 0$ and $e \in C$.

Notice the the product of any two elements of D_- is in D_+, for $ix = -xi$ and $iy = -iy$ implies $ixy = -xyi = xyi$.

Let y be a nonzero element of D_-. Then the previous paragraph shows that right multiplication by y gives a complex linear map $D_- \rightarrow D_+$ which is one-to-one. Consequently, D_- must be one-dimensional over C. We conclude that the dimension of D over R is 4.

Suppose again that y is a nonzero element of D_-. By the argument at the start of the proof, we can write $y = r_1 + r_2j$ for j some element satisfying $j^2 = -1$.

Then $y^2 = D_+$ and $y^2 = r_1^2 + 2r_1r_2j - r_2^2$. This element is in C, so either $r_1r_2 = 0$ or else $j \in C$ and consequently $y \in C$, which is impossible. So $r_1 = 0$ or $r_2 = 0$. If $r_2 = 0$, $y \in R$, which is impossible. So $r_1 = 0$ and $j \in D_-.$

We conclude that $1, i, j, ij$ is a basic of D, since j generates D_- over C. Note that $ij = -ji$ by definition of D_-. It follows that $(ij)^2 = ijij = -ijji = -1$. Define $k = ij$. Then

$$i^2 = j^2 = k^2 = -1.$$ Also $ij = k = -ji$. Also $jk = jij = -ijj = i$ and $kj = ijj = -i$.

Finally $ki = iji = -jii = j$ and $ik = ii = -j$. QED.