Basic Homotopy Lemmas Introduction

Huaxin Lin

June 8th, 2015, RMMC/CBMS University of Wyoming

Basic Homotopy Lemma, Introduction

We begin with the following question:

Basic Homotopy Lemma, Introduction

We begin with the following question:
Q1: For any $\epsilon>0$,

Basic Homotopy Lemma, Introduction

We begin with the following question:
Q1: For any $\epsilon>0$, is there a positive number $\delta>0$ satisfying the following:

Basic Homotopy Lemma, Introduction

We begin with the following question:
Q1: For any $\epsilon>0$, is there a positive number $\delta>0$ satisfying the following: Suppose that u and v are two unitaries in a unital C^{*}-algebra A such that

$$
\|u v-v u\|<\delta
$$

Basic Homotopy Lemma, Introduction

We begin with the following question:
Q1: For any $\epsilon>0$, is there a positive number $\delta>0$ satisfying the following: Suppose that u and v are two unitaries in a unital C^{*}-algebra A such that

$$
\|u v-v u\|<\delta
$$

then there exists a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset A$ such that

Basic Homotopy Lemma, Introduction

We begin with the following question:
Q1: For any $\epsilon>0$, is there a positive number $\delta>0$ satisfying the following: Suppose that u and v are two unitaries in a unital C^{*}-algebra A such that

$$
\|u v-v u\|<\delta
$$

then there exists a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset A$ such that

$$
\|v(t) u-u v(t)\|<\epsilon \text { for all } t \in[0,1]
$$

$v(0)=v$ and $v(1)=1_{A}$?

Basic Homotopy Lemma, Introduction

We begin with the following question:
Q1: For any $\epsilon>0$, is there a positive number $\delta>0$ satisfying the following: Suppose that u and v are two unitaries in a unital C^{*}-algebra A such that

$$
\|u v-v u\|<\delta
$$

then there exists a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset A$ such that

$$
\|v(t) u-u v(t)\|<\epsilon \text { for all } t \in[0,1]
$$

$v(0)=v$ and $v(1)=1_{A}$?

Basic Homotopy Lemma, Introduction

We begin with the following question:
Q1: For any $\epsilon>0$, is there a positive number $\delta>0$ satisfying the following: Suppose that u and v are two unitaries in a unital C^{*}-algebra A such that

$$
\|u v-v u\|<\delta
$$

then there exists a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset A$ such that

$$
\|v(t) u-u v(t)\|<\epsilon \text { for all } t \in[0,1]
$$

$v(0)=v$ and $v(1)=1_{A}$?

We need to assume that $v \in U_{0}(A)$, the connected component of unitary group $U(A)$ containing 1_{A}.

Basic Homotopy Lemma, Introduction

We begin with the following question:
Q1: For any $\epsilon>0$, is there a positive number $\delta>0$ satisfying the following: Suppose that u and v are two unitaries in a unital C^{*}-algebra A such that

$$
\|u v-v u\|<\delta
$$

then there exists a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset A$ such that

$$
\|v(t) u-u v(t)\|<\epsilon \text { for all } t \in[0,1]
$$

$v(0)=v$ and $v(1)=1_{A}$?

We need to assume that $v \in U_{0}(A)$, the connected component of unitary group $U(A)$ containing 1_{A}. If the answer is yes,

Basic Homotopy Lemma, Introduction

We begin with the following question:
Q1: For any $\epsilon>0$, is there a positive number $\delta>0$ satisfying the following: Suppose that u and v are two unitaries in a unital C^{*}-algebra A such that

$$
\|u v-v u\|<\delta
$$

then there exists a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset A$ such that

$$
\|v(t) u-u v(t)\|<\epsilon \text { for all } t \in[0,1]
$$

$v(0)=v$ and $v(1)=1_{A}$?

We need to assume that $v \in U_{0}(A)$, the connected component of unitary group $U(A)$ containing 1_{A}. If the answer is yes, how long is the length of the path?

Theorem (The Basic Homotopy Lemma—Bratteli, Elliott, Evans and Kishimoto-1998)

Theorem (The Basic Homotopy Lemma-Bratteli, Elliott, Evans and Kishimoto-1998) Let $\epsilon>0$.

Theorem (The Basic Homotopy Lemma—Bratteli, Elliott, Evans and Kishimoto-1998)
Let $\epsilon>0$. There exists $\delta>0$ satisfying the following:

Theorem (The Basic Homotopy Lemma—Bratteli, Elliott, Evans and Kishimoto-1998)
Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any unital simple C^{*}-algebra A of stable rank one and real rank zero

Theorem (The Basic Homotopy Lemma—Bratteli, Elliott, Evans and Kishimoto-1998)
Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any unital simple C^{*}-algebra A of stable rank one and real rank zero and any pair of unitaries $u, v \in A$ with $u \in U_{0}(A)$ such that

Theorem (The Basic Homotopy Lemma—Bratteli, Elliott, Evans and Kishimoto-1998)
Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any unital simple C^{*}-algebra A of stable rank one and real rank zero and any pair of unitaries $u, v \in A$ with $u \in U_{0}(A)$ such that

$$
\begin{equation*}
\|u v-v u\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0 \tag{e0.1}
\end{equation*}
$$

Theorem (The Basic Homotopy Lemma—Bratteli, Elliott, Evans and Kishimoto-1998)
Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any unital simple C^{*}-algebra A of stable rank one and real rank zero and any pair of unitaries $u, v \in A$ with $u \in U_{0}(A)$ such that

$$
\begin{equation*}
\|u v-v u\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0 \tag{e0.1}
\end{equation*}
$$

there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that $u(0)=u, u(1)=1_{A}$ and

Theorem (The Basic Homotopy Lemma—Bratteli, Elliott, Evans and Kishimoto-1998)
Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any unital simple C^{*}-algebra A of stable rank one and real rank zero and any pair of unitaries $u, v \in A$ with $u \in U_{0}(A)$ such that

$$
\begin{equation*}
\|u v-v u\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0 \tag{e0.1}
\end{equation*}
$$

there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that $u(0)=u, u(1)=1_{A}$ and

$$
\begin{equation*}
\|u(t) v-v u(t)\|<\epsilon \text { for all } t \in[0,1] \text { and } \tag{e0.2}
\end{equation*}
$$

(e 0.3)

Theorem (The Basic Homotopy Lemma—Bratteli, Elliott, Evans and Kishimoto-1998)
Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any unital simple C^{*}-algebra A of stable rank one and real rank zero and any pair of unitaries $u, v \in A$ with $u \in U_{0}(A)$ such that

$$
\begin{equation*}
\|u v-v u\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0 \tag{e0.1}
\end{equation*}
$$

there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that $u(0)=u, u(1)=1_{A}$ and

$$
\begin{equation*}
\|u(t) v-v u(t)\|<\epsilon \text { for all } t \in[0,1] \text { and } \tag{e0.2}
\end{equation*}
$$

length $(\{u(t)\}) \leq 4 \pi+1$.

Lemma 1.1.

Let $\epsilon>0$ and let $d>0$,

Lemma 1.1.

Let $\epsilon>0$ and let $d>0$, there exists $\delta>0$ satisfying the following:

Lemma 1.1.

Let $\epsilon>0$ and let $d>0$, there exists $\delta>0$ satisfying the following: Suppose that A is a unital C^{*}-algebra and $u \in A$ is a unitary

Lemma 1.1.

Let $\epsilon>0$ and let $d>0$, there exists $\delta>0$ satisfying the following: Suppose that A is a unital C^{*}-algebra and $u \in A$ is a unitary such that $\mathbb{T} \backslash s p(u)$ contains an arc with length d.

Lemma 1.1.

Let $\epsilon>0$ and let $d>0$, there exists $\delta>0$ satisfying the following: Suppose that A is a unital C^{*}-algebra and $u \in A$ is a unitary such that $\mathbb{T} \backslash s p(u)$ contains an arc with length d. Suppose that $a \in A$ with $\|a\| \leq 1$

Lemma 1.1.

Let $\epsilon>0$ and let $d>0$, there exists $\delta>0$ satisfying the following: Suppose that A is a unital C^{*}-algebra and $u \in A$ is a unitary such that $\mathbb{T} \backslash \operatorname{sp}(u)$ contains an arc with length d. Suppose that $a \in A$ with $\|a\| \leq 1$ such that

$$
\begin{equation*}
\|u a-a u\|<\delta \tag{e0.4}
\end{equation*}
$$

Lemma 1.1.

Let $\epsilon>0$ and let $d>0$, there exists $\delta>0$ satisfying the following: Suppose that A is a unital C^{*}-algebra and $u \in A$ is a unitary such that $\mathbb{T} \backslash \operatorname{sp}(u)$ contains an arc with length d. Suppose that $a \in A$ with $\|a\| \leq 1$ such that

$$
\begin{equation*}
\|u a-a u\|<\delta \tag{e0.4}
\end{equation*}
$$

Then there exists a self-adjoint element $h \in A$ with $\|h\| \leq \pi$ such that $u=\exp (i h)$,

Lemma 1.1.

Let $\epsilon>0$ and let $d>0$, there exists $\delta>0$ satisfying the following: Suppose that A is a unital C^{*}-algebra and $u \in A$ is a unitary such that $\mathbb{T} \backslash s p(u)$ contains an arc with length d. Suppose that $a \in A$ with $\|a\| \leq 1$ such that

$$
\begin{equation*}
\|u a-a u\|<\delta . \tag{e0.4}
\end{equation*}
$$

Then there exists a self-adjoint element $h \in A$ with $\|h\| \leq \pi$ such that $u=\exp (i h)$,

$$
\begin{equation*}
\|h a-a h\|<\epsilon \text { and }\|\exp (i t h) a-a \exp (i t h)\|<\epsilon \tag{e0.5}
\end{equation*}
$$

Lemma 1.1.

Let $\epsilon>0$ and let $d>0$, there exists $\delta>0$ satisfying the following: Suppose that A is a unital C^{*}-algebra and $u \in A$ is a unitary such that $\mathbb{T} \backslash s p(u)$ contains an arc with length d. Suppose that $a \in A$ with $\|a\| \leq 1$ such that

$$
\begin{equation*}
\|u a-a u\|<\delta . \tag{e0.4}
\end{equation*}
$$

Then there exists a self-adjoint element $h \in A$ with $\|h\| \leq \pi$ such that $u=\exp (i h)$,

$$
\begin{equation*}
\|h a-a h\|<\epsilon \text { and }\|\exp (i t h) a-a \exp (i t h)\|<\epsilon \tag{e0.5}
\end{equation*}
$$

for all $t \in[0,1]$.

Proof : By replacing u by $e^{i \theta} \cdot u$ for some $\theta \in(-\pi, \pi)$,

Proof : By replacing u by $e^{i \theta} \cdot u$ for some $\theta \in(-\pi, \pi)$, without loss of generality, we may assume

Proof : By replacing u by $e^{i \theta} \cdot u$ for some $\theta \in(-\pi, \pi)$, without loss of generality, we may assume that

$$
\begin{equation*}
s p(u) \subset \Omega_{d}=\left\{e^{i \pi t}:-1+d / 2 \leq t \leq 1-d / 2\right\} \subset \mathbb{T} \tag{e0.6}
\end{equation*}
$$

Proof : By replacing u by $e^{i \theta} \cdot u$ for some $\theta \in(-\pi, \pi)$, without loss of generality, we may assume that

$$
\begin{equation*}
s p(u) \subset \Omega_{d}=\left\{e^{i \pi t}:-1+d / 2 \leq t \leq 1-d / 2\right\} \subset \mathbb{T} \tag{e0.6}
\end{equation*}
$$

There is a continuous function $g: \Omega_{d} \rightarrow[-1,1]$ such that $u=\exp (i g(u))$.

Proof : By replacing u by $e^{i \theta} \cdot u$ for some $\theta \in(-\pi, \pi)$, without loss of generality, we may assume that

$$
\begin{equation*}
s p(u) \subset \Omega_{d}=\left\{e^{i \pi t}:-1+d / 2 \leq t \leq 1-d / 2\right\} \subset \mathbb{T} \tag{e0.6}
\end{equation*}
$$

There is a continuous function $g: \Omega_{d} \rightarrow[-1,1]$ such that $u=\exp (i g(u))$. Let $h=g(u)$.

Proof : By replacing u by $e^{i \theta} \cdot u$ for some $\theta \in(-\pi, \pi)$, without loss of generality, we may assume that

$$
\begin{equation*}
s p(u) \subset \Omega_{d}=\left\{e^{i \pi t}:-1+d / 2 \leq t \leq 1-d / 2\right\} \subset \mathbb{T} \tag{e0.6}
\end{equation*}
$$

There is a continuous function $g: \Omega_{d} \rightarrow[-1,1]$ such that $u=\exp (i g(u))$. Let $h=g(u)$. Choose an integer $N \geq 1$ such that

$$
\begin{equation*}
\sum_{i=N+1}^{\infty} 1 / n!<\epsilon / 6 \tag{e0.7}
\end{equation*}
$$

Proof : By replacing u by $e^{i \theta} \cdot u$ for some $\theta \in(-\pi, \pi)$, without loss of generality, we may assume that

$$
\begin{equation*}
s p(u) \subset \Omega_{d}=\left\{e^{i \pi t}:-1+d / 2 \leq t \leq 1-d / 2\right\} \subset \mathbb{T} \tag{e0.6}
\end{equation*}
$$

There is a continuous function $g: \Omega_{d} \rightarrow[-1,1]$ such that $u=\exp (i g(u))$. Let $h=g(u)$. Choose an integer $N \geq 1$ such that

$$
\begin{equation*}
\sum_{i=N+1}^{\infty} 1 / n!<\epsilon / 6 \tag{e0.7}
\end{equation*}
$$

There is $\delta>0$ such that

Proof : By replacing u by $e^{i \theta} \cdot u$ for some $\theta \in(-\pi, \pi)$, without loss of generality, we may assume that

$$
\begin{equation*}
s p(u) \subset \Omega_{d}=\left\{e^{i \pi t}:-1+d / 2 \leq t \leq 1-d / 2\right\} \subset \mathbb{T} \tag{e0.6}
\end{equation*}
$$

There is a continuous function $g: \Omega_{d} \rightarrow[-1,1]$ such that $u=\exp (i g(u))$. Let $h=g(u)$. Choose an integer $N \geq 1$ such that

$$
\begin{equation*}
\sum_{i=N+1}^{\infty} 1 / n!<\epsilon / 6 \tag{e0.7}
\end{equation*}
$$

There is $\delta>0$ such that

$$
\begin{equation*}
\|a u-u a\|<\delta \tag{e0.8}
\end{equation*}
$$

implies

Proof : By replacing u by $e^{i \theta} \cdot u$ for some $\theta \in(-\pi, \pi)$, without loss of generality, we may assume that

$$
\begin{equation*}
s p(u) \subset \Omega_{d}=\left\{e^{i \pi t}:-1+d / 2 \leq t \leq 1-d / 2\right\} \subset \mathbb{T} \tag{e0.6}
\end{equation*}
$$

There is a continuous function $g: \Omega_{d} \rightarrow[-1,1]$ such that $u=\exp (i g(u))$. Let $h=g(u)$. Choose an integer $N \geq 1$ such that

$$
\begin{equation*}
\sum_{i=N+1}^{\infty} 1 / n!<\epsilon / 6 \tag{e0.7}
\end{equation*}
$$

There is $\delta>0$ such that

$$
\begin{equation*}
\|a u-u a\|<\delta \tag{e0.8}
\end{equation*}
$$

implies that $\left\|h^{n} a-a h^{n}\right\|=\left\|g(u)^{n} a-a g(u)^{n}\right\|<\epsilon / 6$ for $n=1,2, \ldots, N$.

Then

Then

$$
\|\exp (i t h) a-a \exp (i t h)\|
$$

Then

$$
\begin{align*}
& \| \exp (\text { ith }) a-a \exp (i t h) \| \\
& \leq\left\|\left(\sum_{n=0}^{N} \frac{i t h)^{n}}{n!}\right) a-a\left(\sum_{n=0}^{N} \frac{i t h)^{n}}{n!}\right)\right\|+2\left(\sum_{n=N+1}^{\infty} \frac{1}{n!}\right) \tag{e0.10}
\end{align*}
$$

Then

$$
\begin{align*}
& \|\exp (i t h) a-a \exp (i t h)\| \tag{e0.9}\\
& \leq\left\|\left(\sum_{n=0}^{N} \frac{i t h)^{n}}{n!}\right) a-a\left(\sum_{n=0}^{N} \frac{i t h)^{n}}{n!}\right)\right\|+2\left(\sum_{n=N+1}^{\infty} \frac{1}{n!}\right) \tag{e0.10}\\
& \leq \sum_{n=1}^{N} \frac{\epsilon}{6 n!}+\epsilon / 3<\epsilon . \tag{e0.11}
\end{align*}
$$

for any $t \in[0,1]$.

Corollary 1.2.

Let $n \geq 1$ be an integer.

Corollary 1.2.

Let $n \geq 1$ be an integer. Let C be a unital C^{*}-algebra and let $\mathcal{F} \subset C$ be a finite subset.

Corollary 1.2.

Let $n \geq 1$ be an integer. Let C be a unital C^{*}-algebra and let $\mathcal{F} \subset C$ be a finite subset. For any $\epsilon>0$

Corollary 1.2.

Let $n \geq 1$ be an integer. Let C be a unital C^{*}-algebra and let $\mathcal{F} \subset C$ be a finite subset. For any $\epsilon>0$ there exists $\delta>0$ satisfying the following:

Corollary 1.2.

Let $n \geq 1$ be an integer. Let C be a unital C^{*}-algebra and let $\mathcal{F} \subset C$ be a finite subset. For any $\epsilon>0$ there exists $\delta>0$ satisfying the following: Suppose L: $C \rightarrow M_{n}$ is a contractive map

Corollary 1.2.

Let $n \geq 1$ be an integer. Let C be a unital C^{*}-algebra and let $\mathcal{F} \subset C$ be a finite subset. For any $\epsilon>0$ there exists $\delta>0$ satisfying the following: Suppose $L: C \rightarrow M_{n}$ is a contractive map and $u \in M_{n}$ is a unitary such that

$$
\begin{equation*}
\|L(c) u-u L(c)\|<\delta \text { for all } c \in \mathcal{F} . \tag{e0.12}
\end{equation*}
$$

Corollary 1.2.

Let $n \geq 1$ be an integer. Let C be a unital C^{*}-algebra and let $\mathcal{F} \subset C$ be a finite subset. For any $\epsilon>0$ there exists $\delta>0$ satisfying the following: Suppose $L: C \rightarrow M_{n}$ is a contractive map and $u \in M_{n}$ is a unitary such that

$$
\begin{equation*}
\|L(c) u-u L(c)\|<\delta \text { for all } c \in \mathcal{F} \tag{e0.12}
\end{equation*}
$$

Then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset M_{n}$ such that

Corollary 1.2.

Let $n \geq 1$ be an integer. Let C be a unital C^{*}-algebra and let $\mathcal{F} \subset C$ be a finite subset. For any $\epsilon>0$ there exists $\delta>0$ satisfying the following: Suppose $L: C \rightarrow M_{n}$ is a contractive map and $u \in M_{n}$ is a unitary such that

$$
\begin{equation*}
\|L(c) u-u L(c)\|<\delta \text { for all } c \in \mathcal{F} . \tag{e0.12}
\end{equation*}
$$

Then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset M_{n}$ such that $u(0)=u, u(1)=1_{M_{n}}$ and

$$
\begin{equation*}
\|L(c) u(t)-u(t) L(c)\|<\epsilon \text { for all } c \in \mathcal{F} . \tag{e0.13}
\end{equation*}
$$

Corollary 1.2.

Let $n \geq 1$ be an integer. Let C be a unital C^{*}-algebra and let $\mathcal{F} \subset C$ be a finite subset. For any $\epsilon>0$ there exists $\delta>0$ satisfying the following: Suppose $L: C \rightarrow M_{n}$ is a contractive map and $u \in M_{n}$ is a unitary such that

$$
\begin{equation*}
\|L(c) u-u L(c)\|<\delta \text { for all } c \in \mathcal{F} . \tag{e0.12}
\end{equation*}
$$

Then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset M_{n}$ such that $u(0)=u, u(1)=1_{M_{n}}$ and

$$
\begin{equation*}
\|L(c) u(t)-u(t) L(c)\|<\epsilon \text { for all } c \in \mathcal{F} . \tag{e0.13}
\end{equation*}
$$

Moreover, length $(u(t)) \leq \pi$.

Corollary 1.2.

Let $n \geq 1$ be an integer. Let C be a unital C^{*}-algebra and let $\mathcal{F} \subset C$ be a finite subset. For any $\epsilon>0$ there exists $\delta>0$ satisfying the following: Suppose $L: C \rightarrow M_{n}$ is a contractive map and $u \in M_{n}$ is a unitary such that

$$
\begin{equation*}
\|L(c) u-u L(c)\|<\delta \text { for all } c \in \mathcal{F} . \tag{e0.12}
\end{equation*}
$$

Then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset M_{n}$ such that $u(0)=u, u(1)=1_{M_{n}}$ and

$$
\begin{equation*}
\|L(c) u(t)-u(t) L(c)\|<\epsilon \text { for all } c \in \mathcal{F} . \tag{e0.13}
\end{equation*}
$$

Moreover, length $(u(t)) \leq \pi$.

Proof.

The spectrum of u has a gap with the length at least $d=2 \pi / n$.

Let $R \subset\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ be a subset and let $A \subset\{1,2, \ldots, m\}$.

Let $R \subset\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ be a subset and let $A \subset\{1,2, \ldots, m\}$. Define $R_{A} \subset\{1,2, \ldots, n\}$ to be the subset of those j^{\prime} s such that $(i, j) \in R$, for some $i \in A$.

Let $R \subset\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ be a subset and let $A \subset\{1,2, \ldots, m\}$. Define $R_{A} \subset\{1,2, \ldots, n\}$ to be the subset of those j^{\prime} s such that $(i, j) \in R$, for some $i \in A$. The following follows from Hall's Marriage lemma.

Let $R \subset\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ be a subset and let $A \subset\{1,2, \ldots, m\}$. Define $R_{A} \subset\{1,2, \ldots, n\}$ to be the subset of those j^{\prime} s such that $(i, j) \in R$, for some $i \in A$. The following follows from Hall's Marriage lemma.

Lemma 1.3.
If $\left\{a_{i}\right\}_{i=1}^{m},\left\{b_{i}\right\}_{j=1}^{n} \subset \mathbb{Z}_{+}^{k}$

Let $R \subset\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ be a subset and let $A \subset\{1,2, \ldots, m\}$. Define $R_{A} \subset\{1,2, \ldots, n\}$ to be the subset of those j^{\prime} s such that $(i, j) \in R$, for some $i \in A$. The following follows from Hall's Marriage lemma.

Lemma 1.3.

If $\left\{a_{i}\right\}_{i=1}^{m},\left\{b_{i}\right\}_{j=1}^{n} \subset \mathbb{Z}_{+}^{k}$ with $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$,

Let $R \subset\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ be a subset and let $A \subset\{1,2, \ldots, m\}$. Define $R_{A} \subset\{1,2, \ldots, n\}$ to be the subset of those j^{\prime} s such that $(i, j) \in R$, for some $i \in A$. The following follows from Hall's Marriage lemma.

Lemma 1.3.

If $\left\{a_{i}\right\}_{i=1}^{m},\left\{b_{i}\right\}_{j=1}^{n} \subset \mathbb{Z}_{+}^{k}$ with $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$, and $R \subset\{1, \ldots, m\} \times\{1, \ldots, n\}$ satisfying:

Let $R \subset\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ be a subset and let $A \subset\{1,2, \ldots, m\}$. Define $R_{A} \subset\{1,2, \ldots, n\}$ to be the subset of those j^{\prime} s such that $(i, j) \in R$, for some $i \in A$. The following follows from Hall's Marriage lemma.

Lemma 1.3.
If $\left\{a_{i}\right\}_{i=1}^{m},\left\{b_{i}\right\}_{j=1}^{n} \subset \mathbb{Z}_{+}^{k}$ with $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$, and
$R \subset\{1, \ldots, m\} \times\{1, \ldots, n\}$ satisfying: for any $A \subset\{1, \ldots, m\}$,

Let $R \subset\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ be a subset and let $A \subset\{1,2, \ldots, m\}$. Define $R_{A} \subset\{1,2, \ldots, n\}$ to be the subset of those j^{\prime} s such that $(i, j) \in R$, for some $i \in A$. The following follows from Hall's Marriage lemma.

Lemma 1.3.
If $\left\{a_{i}\right\}_{i=1}^{m},\left\{b_{i}\right\}_{j=1}^{n} \subset \mathbb{Z}_{+}^{k}$ with $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$, and
$R \subset\{1, \ldots, m\} \times\{1, \ldots, n\}$ satisfying: for any $A \subset\{1, \ldots, m\}$,

$$
\begin{equation*}
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j} \tag{e0.14}
\end{equation*}
$$

Let $R \subset\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ be a subset and let $A \subset\{1,2, \ldots, m\}$. Define $R_{A} \subset\{1,2, \ldots, n\}$ to be the subset of those j^{\prime} s such that $(i, j) \in R$, for some $i \in A$. The following follows from Hall's Marriage lemma.

Lemma 1.3.
If $\left\{a_{i}\right\}_{i=1}^{m},\left\{b_{i}\right\}_{j=1}^{n} \subset \mathbb{Z}_{+}^{k}$ with $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$, and
$R \subset\{1, \ldots, m\} \times\{1, \ldots, n\}$ satisfying: for any $A \subset\{1, \ldots, m\}$,

$$
\begin{equation*}
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j} \tag{e0.14}
\end{equation*}
$$

then there are $\left\{c_{i j}\right\} \subset \mathbb{Z}_{+}^{k}$ such that

Let $R \subset\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ be a subset and let $A \subset\{1,2, \ldots, m\}$. Define $R_{A} \subset\{1,2, \ldots, n\}$ to be the subset of those j^{\prime} s such that $(i, j) \in R$, for some $i \in A$. The following follows from Hall's Marriage lemma.

Lemma 1.3.
If $\left\{a_{i}\right\}_{i=1}^{m},\left\{b_{i}\right\}_{j=1}^{n} \subset \mathbb{Z}_{+}^{k}$ with $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$, and
$R \subset\{1, \ldots, m\} \times\{1, \ldots, n\}$ satisfying: for any $A \subset\{1, \ldots, m\}$,

$$
\begin{equation*}
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j} \tag{e0.14}
\end{equation*}
$$

then there are $\left\{c_{i j}\right\} \subset \mathbb{Z}_{+}^{k}$ such that

$$
\begin{equation*}
\sum_{j=1}^{n} c_{i j}=a_{i}, \sum_{i=1}^{m} c_{i j}=b_{j}, \text { for all } i, j \tag{e0.15}
\end{equation*}
$$

Let $R \subset\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ be a subset and let $A \subset\{1,2, \ldots, m\}$. Define $R_{A} \subset\{1,2, \ldots, n\}$ to be the subset of those j^{\prime} s such that $(i, j) \in R$, for some $i \in A$. The following follows from Hall's Marriage lemma.

Lemma 1.3.
If $\left\{a_{i}\right\}_{i=1}^{m},\left\{b_{i}\right\}_{j=1}^{n} \subset \mathbb{Z}_{+}^{k}$ with $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$, and
$R \subset\{1, \ldots, m\} \times\{1, \ldots, n\}$ satisfying: for any $A \subset\{1, \ldots, m\}$,

$$
\begin{equation*}
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j} \tag{e0.14}
\end{equation*}
$$

then there are $\left\{c_{i j}\right\} \subset \mathbb{Z}_{+}^{k}$ such that

$$
\begin{equation*}
\sum_{j=1}^{n} c_{i j}=a_{i}, \sum_{i=1}^{m} c_{i j}=b_{j}, \text { for all } i, j \tag{e0.15}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{i j}=0 \text { unless }(i, j) \in R . \tag{e0.16}
\end{equation*}
$$

Lemma 1.4.

Let X be a (connected) compact metric space,

Lemma 1.4.

Let X be a (connected) compact metric space, let $P \in M_{r}(C(X))$ be a projection

Lemma 1.4.

Let X be a (connected) compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $n \geq 1$ be an integer.

Lemma 1.4.

Let X be a (connected) compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $n \geq 1$ be an integer. Let $\epsilon>0$ and let $\mathcal{F} \subset C=P M_{r}(C(X)) P$ be a finite subset.

Lemma 1.4.

Let X be a (connected) compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $n \geq 1$ be an integer. Let $\epsilon>0$ and let $\mathcal{F} \subset C=P M_{r}(C(X)) P$ be a finite subset. There exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. satisfying the following. }}$.

Lemma 1.4.

Let X be a (connected) compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $n \geq 1$ be an integer. Let $\epsilon>0$ and let $\mathcal{F} \subset C=P M_{r}(C(X)) P$ be a finite subset. There exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following. Suppose that $\phi, \psi: C \rightarrow M_{n}$ are two unital homomorphisms such that

Lemma 1.4.

Let X be a (connected) compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $n \geq 1$ be an integer. Let $\epsilon>0$ and let $\mathcal{F} \subset C=P M_{r}(C(X)) P$ be a finite subset. There exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following. Suppose that $\phi, \psi: C \rightarrow M_{n}$ are two unital homomorphisms such that

$$
\begin{equation*}
|\tau \circ \phi(g)-\tau \circ \psi(g)|<\delta \text { for all } g \in \mathcal{H} \tag{e0.17}
\end{equation*}
$$

(τ is the tracial state on M_{n}). Then there exists a unitary $u \in U\left(M_{n}\right)$

Lemma 1.4.

Let X be a (connected) compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $n \geq 1$ be an integer. Let $\epsilon>0$ and let $\mathcal{F} \subset C=P M_{r}(C(X)) P$ be a finite subset. There exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following. Suppose that $\phi, \psi: C \rightarrow M_{n}$ are two unital homomorphisms such that

$$
\begin{equation*}
|\tau \circ \phi(g)-\tau \circ \psi(g)|<\delta \text { for all } g \in \mathcal{H} \tag{e0.17}
\end{equation*}
$$

(τ is the tracial state on M_{n}). Then there exists a unitary $u \in U\left(M_{n}\right)$ such that

$$
\begin{equation*}
\|\operatorname{Ad} u \circ \phi(a)-\psi(a)\|<\epsilon \text { for all } a \in \mathcal{F} . \tag{e0.18}
\end{equation*}
$$

Lemma 1.4.

Let X be a (connected) compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $n \geq 1$ be an integer. Let $\epsilon>0$ and let $\mathcal{F} \subset C=P M_{r}(C(X)) P$ be a finite subset. There exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following. Suppose that $\phi, \psi: C \rightarrow M_{n}$ are two unital homomorphisms such that

$$
\begin{equation*}
|\tau \circ \phi(g)-\tau \circ \psi(g)|<\delta \text { for all } g \in \mathcal{H} \tag{e0.17}
\end{equation*}
$$

(τ is the tracial state on M_{n}). Then there exists a unitary $u \in U\left(M_{n}\right)$ such that

$$
\begin{equation*}
\|\operatorname{Ad} u \circ \phi(a)-\psi(a)\|<\epsilon \text { for all } a \in \mathcal{F} . \tag{e0.18}
\end{equation*}
$$

Moreover, if $\phi(a)=\sum_{i=1}^{n} f\left(x_{i}\right) e_{i}$ and $\psi(a)=\sum_{j=1}^{n} f\left(y_{j}\right) e_{j}^{\prime}$ for all $f \in C$, where $x_{i}, y_{j} \in X,\left\{e_{i}, e_{2}, \ldots, e_{n}\right\}$ and $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ are two sets of mutually orthogonal projections,

Lemma 1.4.

Let X be a (connected) compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $n \geq 1$ be an integer. Let $\epsilon>0$ and let $\mathcal{F} \subset C=P M_{r}(C(X)) P$ be a finite subset. There exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following. Suppose that $\phi, \psi: C \rightarrow M_{n}$ are two unital homomorphisms such that

$$
\begin{equation*}
|\tau \circ \phi(g)-\tau \circ \psi(g)|<\delta \text { for all } g \in \mathcal{H} \tag{e0.17}
\end{equation*}
$$

(τ is the tracial state on M_{n}). Then there exists a unitary $u \in U\left(M_{n}\right)$ such that

$$
\begin{equation*}
\|\operatorname{Ad} u \circ \phi(a)-\psi(a)\|<\epsilon \text { for all } a \in \mathcal{F} . \tag{e0.18}
\end{equation*}
$$

Moreover, if $\phi(a)=\sum_{i=1}^{n} f\left(x_{i}\right) e_{i}$ and $\psi(a)=\sum_{j=1}^{n} f\left(y_{j}\right) e_{j}^{\prime}$ for all $f \in C$, where $x_{i}, y_{j} \in X,\left\{e_{i}, e_{2}, \ldots, e_{n}\right\}$ and $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ are two sets of mutually orthogonal projections, and if $d>0$ is given,

Lemma 1.4.

Let X be a (connected) compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $n \geq 1$ be an integer. Let $\epsilon>0$ and let $\mathcal{F} \subset C=P M_{r}(C(X)) P$ be a finite subset. There exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following. Suppose that $\phi, \psi: C \rightarrow M_{n}$ are two unital homomorphisms such that

$$
\begin{equation*}
|\tau \circ \phi(g)-\tau \circ \psi(g)|<\delta \text { for all } g \in \mathcal{H} \tag{e0.17}
\end{equation*}
$$

(τ is the tracial state on M_{n}). Then there exists a unitary $u \in U\left(M_{n}\right)$ such that

$$
\begin{equation*}
\|\operatorname{Ad} u \circ \phi(a)-\psi(a)\|<\epsilon \text { for all } a \in \mathcal{F} . \tag{e0.18}
\end{equation*}
$$

Moreover, if $\phi(a)=\sum_{i=1}^{n} f\left(x_{i}\right) e_{i}$ and $\psi(a)=\sum_{j=1}^{n} f\left(y_{j}\right) e_{j}^{\prime}$ for all $f \in C$, where $x_{i}, y_{j} \in X,\left\{e_{i}, e_{2}, \ldots, e_{n}\right\}$ and $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ are two sets of mutually orthogonal projections, and if $d>0$ is given, then we may assume that there is a permutation σ on $\{1,2, \ldots, n\}$ such that $u^{*} e_{i} u=e_{\sigma(i)}^{\prime}$,

Lemma 1.4.

Let X be a (connected) compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $n \geq 1$ be an integer. Let $\epsilon>0$ and let $\mathcal{F} \subset C=P M_{r}(C(X)) P$ be a finite subset. There exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following. Suppose that $\phi, \psi: C \rightarrow M_{n}$ are two unital homomorphisms such that

$$
\begin{equation*}
|\tau \circ \phi(g)-\tau \circ \psi(g)|<\delta \text { for all } g \in \mathcal{H} \tag{e0.17}
\end{equation*}
$$

(τ is the tracial state on M_{n}). Then there exists a unitary $u \in U\left(M_{n}\right)$ such that

$$
\begin{equation*}
\|\operatorname{Ad} u \circ \phi(a)-\psi(a)\|<\epsilon \text { for all } a \in \mathcal{F} \tag{e0.18}
\end{equation*}
$$

Moreover, if $\phi(a)=\sum_{i=1}^{n} f\left(x_{i}\right) e_{i}$ and $\psi(a)=\sum_{j=1}^{n} f\left(y_{j}\right) e_{j}^{\prime}$ for all $f \in C$, where $x_{i}, y_{j} \in X,\left\{e_{i}, e_{2}, \ldots, e_{n}\right\}$ and $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ are two sets of mutually orthogonal projections, and if $d>0$ is given, then we may assume that there is a permutation σ on $\{1,2, \ldots, n\}$ such that $u^{*} e_{i} u=e_{\sigma(i)}^{\prime}$, and $\operatorname{dist}\left(x_{i}, y_{\sigma(i)}\right)<d, i=1,2, \ldots, n$, where δ depends on

Proof:

We will prove the case that $C=C(X)$.

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

provided that $\operatorname{dist}(x, y)<\eta$. Let $O_{1}, O_{2}, \ldots, O_{m}$ be a finite open cover such that

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

provided that $\operatorname{dist}(x, y)<\eta$. Let $O_{1}, O_{2}, \ldots, O_{m}$ be a finite open cover such that each O_{i} has diameter $<\eta / 4$.

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

provided that $\operatorname{dist}(x, y)<\eta$. Let $O_{1}, O_{2}, \ldots, O_{m}$ be a finite open cover such that each O_{i} has diameter $<\eta / 4$. Let $J \subset\{1,2, \ldots, m\}$ be a subset.

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

provided that $\operatorname{dist}(x, y)<\eta$. Let $O_{1}, O_{2}, \ldots, O_{m}$ be a finite open cover such that each O_{i} has diameter $<\eta / 4$. Let $J \subset\{1,2, \ldots, m\}$ be a subset. Define $g_{J} \in C(X)_{+}$such that $0 \leq g_{J} \leq 1$,

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

provided that $\operatorname{dist}(x, y)<\eta$. Let $O_{1}, O_{2}, \ldots, O_{m}$ be a finite open cover such that each O_{i} has diameter $<\eta / 4$. Let $J \subset\{1,2, \ldots, m\}$ be a subset. Define $g_{J} \in C(X)_{+}$such that $0 \leq g_{J} \leq 1, g_{J}(x)=1$ if $x \in \cup_{i \in J} O_{i}$, $g_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right) \geq \eta / 4$.

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

provided that $\operatorname{dist}(x, y)<\eta$. Let $O_{1}, O_{2}, \ldots, O_{m}$ be a finite open cover such that each O_{i} has diameter $<\eta / 4$. Let $J \subset\{1,2, \ldots, m\}$ be a subset. Define $g_{J} \in C(X)_{+}$such that $0 \leq g_{J} \leq 1, g_{J}(x)=1$ if $x \in \cup_{i \in J} O_{i}$, $g_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right) \geq \eta / 4$. Let $h_{J} \in C(X)$ be such that $0 \leq h_{J} \leq 1$,

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

provided that $\operatorname{dist}(x, y)<\eta$. Let $O_{1}, O_{2}, \ldots, O_{m}$ be a finite open cover such that each O_{i} has diameter $<\eta / 4$. Let $J \subset\{1,2, \ldots, m\}$ be a subset. Define $g_{J} \in C(X)_{+}$such that $0 \leq g_{J} \leq 1, g_{J}(x)=1$ if $x \in \cup_{i \in J} O_{i}$, $g_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right) \geq \eta / 4$. Let $h_{J} \in C(X)$ be such that $0 \leq h_{J} \leq 1, \quad h_{J}(x)=1$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right)<\eta / 2$ and $h_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right)>\eta$.

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

provided that $\operatorname{dist}(x, y)<\eta$. Let $O_{1}, O_{2}, \ldots, O_{m}$ be a finite open cover such that each O_{i} has diameter $<\eta / 4$. Let $J \subset\{1,2, \ldots, m\}$ be a subset. Define $g_{J} \in C(X)_{+}$such that $0 \leq g_{J} \leq 1, g_{J}(x)=1$ if $x \in \cup_{i \in J} O_{i}$, $g_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right) \geq \eta / 4$. Let $h_{J} \in C(X)$ be such that $0 \leq h_{J} \leq 1, \quad h_{J}(x)=1$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right)<\eta / 2$ and $h_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right)>\eta$. Let $\delta=\min \{\eta / 16 n, 1 / 16 n\}$.

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

provided that $\operatorname{dist}(x, y)<\eta$. Let $O_{1}, O_{2}, \ldots, O_{m}$ be a finite open cover such that each O_{i} has diameter $<\eta / 4$. Let $J \subset\{1,2, \ldots, m\}$ be a subset. Define $g_{J} \in C(X)_{+}$such that $0 \leq g_{J} \leq 1, g_{J}(x)=1$ if $x \in \cup_{i \in J} O_{i}$, $g_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right) \geq \eta / 4$. Let $h_{J} \in C(X)$ be such that $0 \leq h_{J} \leq 1, \quad h_{J}(x)=1$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right)<\eta / 2$ and $h_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right)>\eta$. Let $\delta=\min \{\eta / 16 n, 1 / 16 n\}$. Set

$$
\begin{equation*}
\mathcal{H}=\left\{g_{I}, h_{J}: I, J \subset\{1,2, \ldots, m\}\right\} \tag{e0.20}
\end{equation*}
$$

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

provided that $\operatorname{dist}(x, y)<\eta$. Let $O_{1}, O_{2}, \ldots, O_{m}$ be a finite open cover such that each O_{i} has diameter $<\eta / 4$. Let $J \subset\{1,2, \ldots, m\}$ be a subset. Define $g_{J} \in C(X)_{+}$such that $0 \leq g_{J} \leq 1, g_{J}(x)=1$ if $x \in \cup_{i \in J} O_{i}$, $g_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right) \geq \eta / 4$. Let $h_{J} \in C(X)$ be such that $0 \leq h_{J} \leq 1, \quad h_{J}(x)=1$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right)<\eta / 2$ and $h_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right)>\eta$. Let $\delta=\min \{\eta / 16 n, 1 / 16 n\}$. Set

$$
\begin{equation*}
\mathcal{H}=\left\{g_{I}, h_{J}: I, J \subset\{1,2, \ldots, m\}\right\} \tag{e0.20}
\end{equation*}
$$

Now suppose that $\phi, \psi: C(X) \rightarrow M_{n}$ such that

$$
\begin{equation*}
|\tau \circ \phi(c)-\tau \circ \psi(c)|<\delta \text { for all } c \in \mathcal{H} \tag{e0.21}
\end{equation*}
$$

Proof:

We will prove the case that $C=C(X)$. There exists $\eta>0$ such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.19}
\end{equation*}
$$

provided that $\operatorname{dist}(x, y)<\eta$. Let $O_{1}, O_{2}, \ldots, O_{m}$ be a finite open cover such that each O_{i} has diameter $<\eta / 4$. Let $J \subset\{1,2, \ldots, m\}$ be a subset. Define $g_{J} \in C(X)_{+}$such that $0 \leq g_{J} \leq 1, g_{\jmath}(x)=1$ if $x \in \cup_{i \in J} O_{i}$, $g_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right) \geq \eta / 4$. Let $h_{J} \in C(X)$ be such that $0 \leq h_{J} \leq 1, \quad h_{J}(x)=1$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right)<\eta / 2$ and $h_{J}(x)=0$ if $\operatorname{dist}\left(x, \cup_{i \in J} O_{i}\right)>\eta$. Let $\delta=\min \{\eta / 16 n, 1 / 16 n\}$. Set

$$
\begin{equation*}
\mathcal{H}=\left\{g_{I}, h_{J}: I, J \subset\{1,2, \ldots, m\}\right\} \tag{e0.20}
\end{equation*}
$$

Now suppose that $\phi, \psi: C(X) \rightarrow M_{n}$ such that

$$
\begin{equation*}
|\tau \circ \phi(c)-\tau \circ \psi(c)|<\delta \text { for all } c \in \mathcal{H} \tag{e0.21}
\end{equation*}
$$

We have, for all $f \in C(X)$,

$$
\begin{equation*}
\phi(f)=\sum_{i=1}^{k_{1}} f\left(x_{i}\right) p_{i} \text { and } \psi(f)=\sum_{i=1}^{k_{2}} f\left(y_{i}\right) q_{i} \tag{e0.22}
\end{equation*}
$$

where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X,
where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X, and $\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{k_{2}}\right\}$ are two sets of mutually orthogonal projections such that $\sum_{i=1}^{k_{1}} p_{i}=\sum_{j=1}^{k_{2}} q_{j}=1_{M_{n}}$.
where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X, and $\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{k_{2}}\right\}$ are two sets of mutually orthogonal projections such that $\sum_{i=1}^{k_{1}} p_{i}=\sum_{j=1}^{k_{2}} q_{j}=1_{M_{n}}$. Define a subset $R \subset\left\{1,2, \ldots, k_{1}\right\} \times\left\{1,2, \ldots, k_{2}\right\}$ as follows:
where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X, and $\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{k_{2}}\right\}$ are two sets of mutually orthogonal projections such that $\sum_{i=1}^{k_{1}} p_{i}=\sum_{j=1}^{k_{2}} q_{j}=1_{M_{n}}$. Define a subset $R \subset\left\{1,2, \ldots, k_{1}\right\} \times\left\{1,2, \ldots, k_{2}\right\}$ as follows: $(i, j) \in R$ if and only if $\operatorname{dist}\left(x_{i}, y_{j}\right)<\eta$.
where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X, and $\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{k_{2}}\right\}$ are two sets of mutually orthogonal projections such that $\sum_{i=1}^{k_{1}} p_{i}=\sum_{j=1}^{k_{2}} q_{j}=1_{M_{n}}$. Define a subset $R \subset\left\{1,2, \ldots, k_{1}\right\} \times\left\{1,2, \ldots, k_{2}\right\}$ as follows: $(i, j) \in R$ if and only if $\operatorname{dist}\left(x_{i}, y_{j}\right)<\eta$. Let $a_{i}=\operatorname{rank} p_{i}$ and $b_{j}=\operatorname{rank} q_{j}$.
where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X, and $\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{k_{2}}\right\}$ are two sets of mutually orthogonal projections such that $\sum_{i=1}^{k_{1}} p_{i}=\sum_{j=1}^{k_{2}} q_{j}=1_{M_{n}}$. Define a subset $R \subset\left\{1,2, \ldots, k_{1}\right\} \times\left\{1,2, \ldots, k_{2}\right\}$ as follows: $(i, j) \in R$ if and only if $\operatorname{dist}\left(x_{i}, y_{j}\right)<\eta$. Let $a_{i}=\operatorname{rank} p_{i}$ and $b_{j}=\operatorname{rank} q_{j}$. Let $S \subset X_{0}$ be a subset.
where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X, and $\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{k_{2}}\right\}$ are two sets of mutually orthogonal projections such that $\sum_{i=1}^{k_{1}} p_{i}=\sum_{j=1}^{k_{2}} q_{j}=1_{M_{n}}$. Define a subset $R \subset\left\{1,2, \ldots, k_{1}\right\} \times\left\{1,2, \ldots, k_{2}\right\}$ as follows: $(i, j) \in R$ if and only if $\operatorname{dist}\left(x_{i}, y_{j}\right)<\eta$. Let $a_{i}=\operatorname{rank} p_{i}$ and $b_{j}=\operatorname{rank} q_{j}$. Let $S \subset X_{0}$ be a subset. Put $A=\left\{i \in\left\{1,2, \ldots, k_{1}\right\}: x_{i} \in S\right\}$.
where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X, and $\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{k_{2}}\right\}$ are two sets of mutually orthogonal projections such that $\sum_{i=1}^{k_{1}} p_{i}=\sum_{j=1}^{k_{2}} q_{j}=1_{M_{n}}$. Define a subset $R \subset\left\{1,2, \ldots, k_{1}\right\} \times\left\{1,2, \ldots, k_{2}\right\}$ as follows: $(i, j) \in R$ if and only if $\operatorname{dist}\left(x_{i}, y_{j}\right)<\eta$. Let $a_{i}=\operatorname{rank} p_{i}$ and $b_{j}=\operatorname{rank} q_{j}$. Let $S \subset X_{0}$ be a subset. Put $A=\left\{i \in\left\{1,2, \ldots, k_{1}\right\}: x_{i} \in S\right\}$. Then

$$
\begin{equation*}
\tau\left(\phi\left(g_{A}\right)\right) \geq \sum_{x_{i} \in S} a_{i} / n \tag{e0.23}
\end{equation*}
$$

where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X, and $\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{k_{2}}\right\}$ are two sets of mutually orthogonal projections such that $\sum_{i=1}^{k_{1}} p_{i}=\sum_{j=1}^{k_{2}} q_{j}=1_{M_{n}}$. Define a subset $R \subset\left\{1,2, \ldots, k_{1}\right\} \times\left\{1,2, \ldots, k_{2}\right\}$ as follows: $(i, j) \in R$ if and only if $\operatorname{dist}\left(x_{i}, y_{j}\right)<\eta$. Let $a_{i}=\operatorname{rank} p_{i}$ and $b_{j}=\operatorname{rank} q_{j}$. Let $S \subset X_{0}$ be a subset. Put $A=\left\{i \in\left\{1,2, \ldots, k_{1}\right\}: x_{i} \in S\right\}$. Then

$$
\begin{equation*}
\tau\left(\phi\left(g_{A}\right)\right) \geq \sum_{x_{i} \in S} a_{i} / n \tag{e0.23}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\tau\left(\psi\left(g_{A}\right)\right) \geq \sum_{x_{i} \in S} a_{i} / n-1 / 16 n \tag{e0.24}
\end{equation*}
$$

where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X, and $\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{k_{2}}\right\}$ are two sets of mutually orthogonal projections such that $\sum_{i=1}^{k_{1}} p_{i}=\sum_{j=1}^{k_{2}} q_{j}=1_{M_{n}}$. Define a subset $R \subset\left\{1,2, \ldots, k_{1}\right\} \times\left\{1,2, \ldots, k_{2}\right\}$ as follows: $(i, j) \in R$ if and only if $\operatorname{dist}\left(x_{i}, y_{j}\right)<\eta$. Let $a_{i}=\operatorname{rank} p_{i}$ and $b_{j}=\operatorname{rank} q_{j}$. Let $S \subset X_{0}$ be a subset. Put $A=\left\{i \in\left\{1,2, \ldots, k_{1}\right\}: x_{i} \in S\right\}$. Then

$$
\begin{equation*}
\tau\left(\phi\left(g_{A}\right)\right) \geq \sum_{x_{i} \in S} a_{i} / n \tag{e0.23}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\tau\left(\psi\left(g_{A}\right)\right) \geq \sum_{x_{i} \in S} a_{i} / n-1 / 16 n \tag{e0.24}
\end{equation*}
$$

Let P_{S} be the range projection of $\psi\left(g_{A}\right)$ in M_{n},
where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X, and $\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{k_{2}}\right\}$ are two sets of mutually orthogonal projections such that $\sum_{i=1}^{k_{1}} p_{i}=\sum_{j=1}^{k_{2}} q_{j}=1_{M_{n}}$. Define a subset $R \subset\left\{1,2, \ldots, k_{1}\right\} \times\left\{1,2, \ldots, k_{2}\right\}$ as follows: $(i, j) \in R$ if and only if $\operatorname{dist}\left(x_{i}, y_{j}\right)<\eta$. Let $a_{i}=\operatorname{rank} p_{i}$ and $b_{j}=\operatorname{rank} q_{j}$. Let $S \subset X_{0}$ be a subset. Put $A=\left\{i \in\left\{1,2, \ldots, k_{1}\right\}: x_{i} \in S\right\}$. Then

$$
\begin{equation*}
\tau\left(\phi\left(g_{A}\right)\right) \geq \sum_{x_{i} \in S} a_{i} / n \tag{e0.23}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\tau\left(\psi\left(g_{A}\right)\right) \geq \sum_{x_{i} \in S} a_{i} / n-1 / 16 n \tag{e0.24}
\end{equation*}
$$

Let P_{S} be the range projection of $\psi\left(g_{A}\right)$ in M_{n}, Then

$$
\begin{equation*}
\tau\left(P_{S}\right) \geq \sum_{x_{i} \in S} a_{i} / n=\sum_{i \in A} a_{i} / n \tag{e0.25}
\end{equation*}
$$

where $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{1}}\right\}$ and $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k_{2}}\right\}$ are finite subsets of X, and $\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{k_{2}}\right\}$ are two sets of mutually orthogonal projections such that $\sum_{i=1}^{k_{1}} p_{i}=\sum_{j=1}^{k_{2}} q_{j}=1_{M_{n}}$. Define a subset $R \subset\left\{1,2, \ldots, k_{1}\right\} \times\left\{1,2, \ldots, k_{2}\right\}$ as follows: $(i, j) \in R$ if and only if $\operatorname{dist}\left(x_{i}, y_{j}\right)<\eta$. Let $a_{i}=\operatorname{rank} p_{i}$ and $b_{j}=\operatorname{rank} q_{j}$. Let $S \subset X_{0}$ be a subset. Put $A=\left\{i \in\left\{1,2, \ldots, k_{1}\right\}: x_{i} \in S\right\}$. Then

$$
\begin{equation*}
\tau\left(\phi\left(g_{A}\right)\right) \geq \sum_{x_{i} \in S} a_{i} / n \tag{e0.23}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\tau\left(\psi\left(g_{A}\right)\right) \geq \sum_{x_{i} \in S} a_{i} / n-1 / 16 n \tag{e0.24}
\end{equation*}
$$

Let P_{S} be the range projection of $\psi\left(g_{A}\right)$ in M_{n}, Then

$$
\begin{equation*}
\tau\left(P_{S}\right) \geq \sum_{x_{i} \in S} a_{i} / n=\sum_{i \in A} a_{i} / n \tag{e0.25}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\tau\left(\psi\left(h_{i}\right)\right) \geq \sum_{i \in A} a_{i} / n \tag{e0.26}
\end{equation*}
$$

It follows that

$$
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j}
$$

(e 0.27)

It follows that

$$
\begin{equation*}
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j} \tag{e0.27}
\end{equation*}
$$

This holds, for any subset $A \subset\left\{1,2, \ldots, k_{1}\right\}$.

It follows that

$$
\begin{equation*}
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j} \tag{e0.27}
\end{equation*}
$$

This holds, for any subset $A \subset\left\{1,2, \ldots, k_{1}\right\}$. By the previous lemma 1.3, there are $\left\{c_{i, j}\right\} \subset \mathbb{Z}^{+}$such that

$$
\begin{equation*}
\sum_{j=1}^{k_{2}} c_{i j}=a_{i}, \quad \sum_{i=1}^{k_{1}} c_{i j}=b_{j} \tag{e0.28}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j} \tag{e0.27}
\end{equation*}
$$

This holds, for any subset $A \subset\left\{1,2, \ldots, k_{1}\right\}$. By the previous lemma 1.3, there are $\left\{c_{i, j}\right\} \subset \mathbb{Z}^{+}$such that

$$
\begin{equation*}
\sum_{j=1}^{k_{2}} c_{i j}=a_{i}, \quad \sum_{i=1}^{k_{1}} c_{i j}=b_{j} \tag{e0.28}
\end{equation*}
$$

and $c_{i j} \neq 0$ if and only $(i, j) \in R$.

It follows that

$$
\begin{equation*}
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j} \tag{e0.27}
\end{equation*}
$$

This holds, for any subset $A \subset\left\{1,2, \ldots, k_{1}\right\}$. By the previous lemma 1.3, there are $\left\{c_{i, j}\right\} \subset \mathbb{Z}^{+}$such that

$$
\begin{equation*}
\sum_{j=1}^{k_{2}} c_{i j}=a_{i}, \quad \sum_{i=1}^{k_{1}} c_{i j}=b_{j} \tag{e0.28}
\end{equation*}
$$

and $c_{i j} \neq 0$ if and only $(i, j) \in R$. Therefore there are mutually orthogonal projections $p_{i j}$ and $q_{i j}$ such that

$$
\begin{equation*}
\sum_{j=1}^{k_{2}} p_{i j}=p_{i}, \quad \sum_{i=1}^{k_{1}} q_{i j}=q_{j} \tag{e0.29}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j} \tag{e0.27}
\end{equation*}
$$

This holds, for any subset $A \subset\left\{1,2, \ldots, k_{1}\right\}$. By the previous lemma 1.3, there are $\left\{c_{i, j}\right\} \subset \mathbb{Z}^{+}$such that

$$
\begin{equation*}
\sum_{j=1}^{k_{2}} c_{i j}=a_{i}, \quad \sum_{i=1}^{k_{1}} c_{i j}=b_{j} \tag{e0.28}
\end{equation*}
$$

and $c_{i j} \neq 0$ if and only $(i, j) \in R$. Therefore there are mutually orthogonal projections $p_{i j}$ and $q_{i j}$ such that

$$
\begin{equation*}
\sum_{j=1}^{k_{2}} p_{i j}=p_{i}, \quad \sum_{i=1}^{k_{1}} q_{i j}=q_{j} \tag{e0.29}
\end{equation*}
$$

$\operatorname{rank} p_{i j}=\operatorname{rank} q_{i j}$

It follows that

$$
\begin{equation*}
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j} \tag{e0.27}
\end{equation*}
$$

This holds, for any subset $A \subset\left\{1,2, \ldots, k_{1}\right\}$. By the previous lemma 1.3, there are $\left\{c_{i, j}\right\} \subset \mathbb{Z}^{+}$such that

$$
\begin{equation*}
\sum_{j=1}^{k_{2}} c_{i j}=a_{i}, \quad \sum_{i=1}^{k_{1}} c_{i j}=b_{j} \tag{e0.28}
\end{equation*}
$$

and $c_{i j} \neq 0$ if and only $(i, j) \in R$. Therefore there are mutually orthogonal projections $p_{i j}$ and $q_{i j}$ such that

$$
\begin{equation*}
\sum_{j=1}^{k_{2}} p_{i j}=p_{i}, \quad \sum_{i=1}^{k_{1}} q_{i j}=q_{j} \tag{e0.29}
\end{equation*}
$$

$\operatorname{rank} p_{i j}=\operatorname{rank} q_{i j}$ and $p_{i j} \neq 0$ and $q_{i j} \neq 0$ if and only if $(i, j) \in R$.

It follows that

$$
\begin{equation*}
\sum_{i \in A} a_{i} \leq \sum_{j \in R_{A}} b_{j} \tag{e0.27}
\end{equation*}
$$

This holds, for any subset $A \subset\left\{1,2, \ldots, k_{1}\right\}$. By the previous lemma 1.3, there are $\left\{c_{i, j}\right\} \subset \mathbb{Z}^{+}$such that

$$
\begin{equation*}
\sum_{j=1}^{k_{2}} c_{i j}=a_{i}, \quad \sum_{i=1}^{k_{1}} c_{i j}=b_{j} \tag{e0.28}
\end{equation*}
$$

and $c_{i j} \neq 0$ if and only $(i, j) \in R$. Therefore there are mutually orthogonal projections $p_{i j}$ and $q_{i j}$ such that

$$
\begin{equation*}
\sum_{j=1}^{k_{2}} p_{i j}=p_{i}, \quad \sum_{i=1}^{k_{1}} q_{i j}=q_{j} \tag{e0.29}
\end{equation*}
$$

$\operatorname{rank} p_{i j}=\operatorname{rank} q_{i j}$ and $p_{i j} \neq 0$ and $q_{i j} \neq 0$ if and only if $(i, j) \in R$.

We may write

$$
\begin{equation*}
\phi(f)=\sum_{i, j} f\left(x_{i}\right) p_{i j} \text { and } \psi(f)=\sum_{i, j} f\left(y_{j}\right) q_{i j} \tag{e0.30}
\end{equation*}
$$

We may write

$$
\begin{equation*}
\phi(f)=\sum_{i, j} f\left(x_{i}\right) p_{i j} \text { and } \psi(f)=\sum_{i, j} f\left(y_{j}\right) q_{i j} \tag{e0.30}
\end{equation*}
$$

Moreover, $p_{i j} \neq 0$ and $q_{i j} \neq 0$ if and only if $\operatorname{dist}\left(x_{i}, y_{j}\right)<\eta$.

We may write

$$
\begin{equation*}
\phi(f)=\sum_{i, j} f\left(x_{i}\right) p_{i j} \text { and } \psi(f)=\sum_{i, j} f\left(y_{j}\right) q_{i j} \tag{e0.30}
\end{equation*}
$$

Moreover, $p_{i j} \neq 0$ and $q_{i j} \neq 0$ if and only if $\operatorname{dist}\left(x_{i}, y_{j}\right)<\eta$. Therefore there exists a unitary $u \in M_{n}$ such that

$$
\begin{equation*}
u^{*} p_{i j} u=q_{i j} \text { and }\|\operatorname{Ad} u \circ \phi(f)-\psi(f)\|<\epsilon \tag{e0.31}
\end{equation*}
$$

for all $f \in \mathcal{F}$. Lemma then follows easily.

Theorem 1.5.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection,

Theorem 1.5.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection, $C=P M_{r}(C(X)) P$ and let $n \geq 1$ be an integer.

Theorem 1.5.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection, $C=P M_{r}(C(X)) P$ and let $n \geq 1$ be an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$,

Theorem 1.5.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection, $C=P M_{r}(C(X)) P$ and let $n \geq 1$ be an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following:

Theorem 1.5.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection, $C=P M_{r}(C(X)) P$ and let $n \geq 1$ be an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following: Suppose that $\phi, \psi: C \rightarrow C\left([0,1], M_{n}\right)$ are two unital homomorphisms such that

Theorem 1.5.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection, $C=P M_{r}(C(X)) P$ and let $n \geq 1$ be an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following: Suppose that $\phi, \psi: C \rightarrow C\left([0,1], M_{n}\right)$ are two unital homomorphisms such that

$$
\begin{equation*}
\phi_{* 0}=\psi_{* 0},|\tau \circ \phi(g)-\tau \circ \psi(g)|<\delta \text { for all } g \in \mathcal{H} \tag{e0.32}
\end{equation*}
$$

and for all $\tau \in T\left(C\left([0,1], M_{n}\right)\right)$.

Theorem 1.5.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection, $C=P M_{r}(C(X)) P$ and let $n \geq 1$ be an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following: Suppose that $\phi, \psi: C \rightarrow C\left([0,1], M_{n}\right)$ are two unital homomorphisms such that

$$
\begin{equation*}
\phi_{* 0}=\psi_{* 0},|\tau \circ \phi(g)-\tau \circ \psi(g)|<\delta \text { for all } g \in \mathcal{H} \tag{e0.32}
\end{equation*}
$$

and for all $\tau \in T\left(C\left([0,1], M_{n}\right)\right)$. Then there exists a unitary $u \in C\left([0,1], M_{n}\right)$ such that

Theorem 1.5.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection, $C=P M_{r}(C(X)) P$ and let $n \geq 1$ be an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists $\delta>0$ and a finite subset $\mathcal{H} \subset C_{\text {s.a. }}$ satisfying the following: Suppose that $\phi, \psi: C \rightarrow C\left([0,1], M_{n}\right)$ are two unital homomorphisms such that

$$
\begin{equation*}
\phi_{* 0}=\psi_{* 0},|\tau \circ \phi(g)-\tau \circ \psi(g)|<\delta \text { for all } g \in \mathcal{H} \tag{e0.32}
\end{equation*}
$$

and for all $\tau \in T\left(C\left([0,1], M_{n}\right)\right)$. Then there exists a unitary $u \in C\left([0,1], M_{n}\right)$ such that

$$
\begin{equation*}
\left\|u^{*} \phi(f) u-\psi(f)\right\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.33}
\end{equation*}
$$

Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and

 n.Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and n. Let $\epsilon_{1}=\min \{\epsilon / 64, \delta / 16\}$.

Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and n. Let $\epsilon_{1}=\min \{\epsilon / 64, \delta / 16\}$. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C_{\text {s.a. }}$ be finite subset as required by Thm. 1.4. for given ϵ_{1} (in place of ϵ) and \mathcal{F} (as well as n).

Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and n. Let $\epsilon_{1}=\min \{\epsilon / 64, \delta / 16\}$. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C_{\text {s.a. }}$ be finite subset as required by Thm. 1.4. for given ϵ_{1} (in place of ϵ) and \mathcal{F} (as well as n). Choose $\eta>0$ such that

Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and n. Let $\epsilon_{1}=\min \{\epsilon / 64, \delta / 16\}$. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C_{\text {s.a. }}$ be finite subset as required by Thm. 1.4. for given ϵ_{1} (in place of ϵ) and \mathcal{F} (as well as n). Choose $\eta>0$ such that

$$
\left\|\phi(f)(t)-\phi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \text { and }\left\|\psi(f)(t)-\psi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \quad(\mathrm{e} 0.34)
$$

for all $f \in \mathcal{F}$,

Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and n. Let $\epsilon_{1}=\min \{\epsilon / 64, \delta / 16\}$. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C_{\text {s.a. }}$ be finite subset as required by Thm. 1.4. for given ϵ_{1} (in place of ϵ) and \mathcal{F} (as well as n). Choose $\eta>0$ such that

$$
\left\|\phi(f)(t)-\phi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \text { and }\left\|\psi(f)(t)-\psi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \quad(\mathrm{e} 0.34)
$$

for all $f \in \mathcal{F}$, whenever $\left|t-t^{\prime}\right|<\eta$.

Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and n. Let $\epsilon_{1}=\min \{\epsilon / 64, \delta / 16\}$. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C_{\text {s.a. }}$ be finite subset as required by Thm. 1.4. for given ϵ_{1} (in place of ϵ) and \mathcal{F} (as well as n). Choose $\eta>0$ such that

$$
\left\|\phi(f)(t)-\phi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \text { and }\left\|\psi(f)(t)-\psi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \quad(\mathrm{e} 0.34)
$$

for all $f \in \mathcal{F}$, whenever $\left|t-t^{\prime}\right|<\eta$. Let $0=t_{0}<t_{1}<\cdots<t_{m}=1$ be a partition of $[0,1]$ with $\left|t_{i}-t_{i-1}\right|<\eta$ for all i.

Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and n. Let $\epsilon_{1}=\min \{\epsilon / 64, \delta / 16\}$. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C_{\text {s.a. }}$ be finite subset as required by Thm. 1.4. for given ϵ_{1} (in place of ϵ) and \mathcal{F} (as well as n). Choose $\eta>0$ such that

$$
\left\|\phi(f)(t)-\phi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \text { and }\left\|\psi(f)(t)-\psi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \quad(\mathrm{e} 0.34)
$$

for all $f \in \mathcal{F}$, whenever $\left|t-t^{\prime}\right|<\eta$. Let $0=t_{0}<t_{1}<\cdots<t_{m}=1$ be a partition of $[0,1]$ with $\left|t_{i}-t_{i-1}\right|<\eta$ for all i. By the assumption and 1.4 , there is a unitary $u_{i} \in M_{n}$

Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and n. Let $\epsilon_{1}=\min \{\epsilon / 64, \delta / 16\}$. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C_{\text {s.a. }}$ be finite subset as required by Thm. 1.4. for given ϵ_{1} (in place of ϵ) and \mathcal{F} (as well as n). Choose $\eta>0$ such that

$$
\left\|\phi(f)(t)-\phi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \text { and }\left\|\psi(f)(t)-\psi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \quad(\mathrm{e} 0.34)
$$

for all $f \in \mathcal{F}$, whenever $\left|t-t^{\prime}\right|<\eta$. Let $0=t_{0}<t_{1}<\cdots<t_{m}=1$ be a partition of $[0,1]$ with $\left|t_{i}-t_{i-1}\right|<\eta$ for all i. By the assumption and 1.4, there is a unitary $u_{i} \in M_{n}$ such that

$$
\left\|u_{i}^{*} \phi(f)\left(t_{i}\right) u_{i}-\psi(f)\left(t_{i}\right)\right\|<\epsilon_{1} \text { for all } f \in \mathcal{F}, \quad i=0,1,2, \ldots, m . \quad(\mathrm{e} 0.35)
$$

Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and n. Let $\epsilon_{1}=\min \{\epsilon / 64, \delta / 16\}$. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C_{\text {s.a. }}$ be finite subset as required by Thm. 1.4. for given ϵ_{1} (in place of ϵ) and \mathcal{F} (as well as n). Choose $\eta>0$ such that

$$
\left\|\phi(f)(t)-\phi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \text { and }\left\|\psi(f)(t)-\psi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \quad(\mathrm{e} 0.34)
$$

for all $f \in \mathcal{F}$, whenever $\left|t-t^{\prime}\right|<\eta$. Let $0=t_{0}<t_{1}<\cdots<t_{m}=1$ be a partition of $[0,1]$ with $\left|t_{i}-t_{i-1}\right|<\eta$ for all i. By the assumption and 1.4, there is a unitary $u_{i} \in M_{n}$ such that
$\left\|u_{i}^{*} \phi(f)\left(t_{i}\right) u_{i}-\psi(f)\left(t_{i}\right)\right\|<\epsilon_{1}$ for all $f \in \mathcal{F}, \quad i=0,1,2, \ldots, m$. (e 0.35$)$
It follows that

$$
u_{i+1} u_{i}^{*} \phi(f)\left(t_{i}\right) u_{i} u_{i+1}^{*} \approx_{\epsilon_{1}} u_{i+1} \psi(f)\left(t_{i}\right) u_{i+1}^{*}
$$

Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and n. Let $\epsilon_{1}=\min \{\epsilon / 64, \delta / 16\}$. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C_{\text {s.a. }}$ be finite subset as required by Thm. 1.4. for given ϵ_{1} (in place of ϵ) and \mathcal{F} (as well as n). Choose $\eta>0$ such that

$$
\begin{equation*}
\left\|\phi(f)(t)-\phi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \text { and }\left\|\psi(f)(t)-\psi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \tag{e0.34}
\end{equation*}
$$

for all $f \in \mathcal{F}$, whenever $\left|t-t^{\prime}\right|<\eta$. Let $0=t_{0}<t_{1}<\cdots<t_{m}=1$ be a partition of $[0,1]$ with $\left|t_{i}-t_{i-1}\right|<\eta$ for all i. By the assumption and 1.4, there is a unitary $u_{i} \in M_{n}$ such that
$\left\|u_{i}^{*} \phi(f)\left(t_{i}\right) u_{i}-\psi(f)\left(t_{i}\right)\right\|<\epsilon_{1}$ for all $f \in \mathcal{F}, \quad i=0,1,2, \ldots, m$. (e 0.35$)$
It follows that

$$
\begin{aligned}
& u_{i+1} u_{i}^{*} \phi(f)\left(t_{i}\right) u_{i} u_{i+1}^{*} \approx_{\epsilon_{1}} u_{i+1} \psi(f)\left(t_{i}\right) u_{i+1}^{*} \\
& \quad \approx_{\epsilon_{1}} u_{i+1} \psi(f)\left(t_{i+1}\right) u_{i+1}^{*} \approx_{\epsilon_{1}} \phi(f)\left(t_{i+1}\right) \approx_{\epsilon_{1}} \phi(f)\left(t_{i}\right)
\end{aligned}
$$

Proof : Let $\delta>0$ be required by Cor. 1.2. for the given $\epsilon / 16$ and \mathcal{F} and n. Let $\epsilon_{1}=\min \{\epsilon / 64, \delta / 16\}$. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C_{\text {s.a. }}$ be finite subset as required by Thm. 1.4. for given ϵ_{1} (in place of ϵ) and \mathcal{F} (as well as n). Choose $\eta>0$ such that

$$
\begin{equation*}
\left\|\phi(f)(t)-\phi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \text { and }\left\|\psi(f)(t)-\psi(f)\left(t^{\prime}\right)\right\|<\epsilon_{1} \tag{e0.34}
\end{equation*}
$$

for all $f \in \mathcal{F}$, whenever $\left|t-t^{\prime}\right|<\eta$. Let $0=t_{0}<t_{1}<\cdots<t_{m}=1$ be a partition of $[0,1]$ with $\left|t_{i}-t_{i-1}\right|<\eta$ for all i. By the assumption and 1.4, there is a unitary $u_{i} \in M_{n}$ such that
$\left\|u_{i}^{*} \phi(f)\left(t_{i}\right) u_{i}-\psi(f)\left(t_{i}\right)\right\|<\epsilon_{1}$ for all $f \in \mathcal{F}, \quad i=0,1,2, \ldots, m$. (e 0.35$)$
It follows that

$$
\begin{aligned}
& u_{i+1} u_{i}^{*} \phi(f)\left(t_{i}\right) u_{i} u_{i+1}^{*} \approx_{\epsilon_{1}} u_{i+1} \psi(f)\left(t_{i}\right) u_{i+1}^{*} \\
& \quad \approx_{\epsilon_{1}} u_{i+1} \psi(f)\left(t_{i+1}\right) u_{i+1}^{*} \approx_{\epsilon_{1}} \phi(f)\left(t_{i+1}\right) \approx_{\epsilon_{1}} \phi(f)\left(t_{i}\right)
\end{aligned}
$$

It follows that there exists a continuous path of unitaries $\left\{w_{i}(t): t \in\left[t_{i}, t_{i+1}\right]\right\} \subset M_{n}$

It follows that there exists a continuous path of unitaries $\left\{w_{i}(t): t \in\left[t_{i}, t_{i+1}\right]\right\} \subset M_{n}$ such that $w_{i}\left(t_{i}\right)=1_{M_{n}}$ and $w_{i}\left(t_{i+1}\right)=u_{i+1} u_{i}^{*}$

It follows that there exists a continuous path of unitaries $\left\{w_{i}(t): t \in\left[t_{i}, t_{i+1}\right]\right\} \subset M_{n}$ such that $w_{i}\left(t_{i}\right)=1_{M_{n}}$ and $w_{i}\left(t_{i+1}\right)=u_{i+1} u_{i}^{*} \quad$ and

$$
\begin{equation*}
\left\|w_{i}(t) \phi(f)\left(t_{i}\right)-\phi(f)\left(t_{i}\right) w_{i}(t)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F} \tag{e0.36}
\end{equation*}
$$

$i=0,1,2 \ldots, m$.

It follows that there exists a continuous path of unitaries $\left\{w_{i}(t): t \in\left[t_{i}, t_{i+1}\right]\right\} \subset M_{n}$ such that $w_{i}\left(t_{i}\right)=1_{M_{n}}$ and $w_{i}\left(t_{i+1}\right)=u_{i+1} u_{i}^{*} \quad$ and

$$
\begin{equation*}
\left\|w_{i}(t) \phi(f)\left(t_{i}\right)-\phi(f)\left(t_{i}\right) w_{i}(t)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F} \tag{e0.36}
\end{equation*}
$$

$i=0,1,2 \ldots, m$. Define $v(t)=w_{i}(t) u_{i}$ for $t \in\left[t_{i}, t_{i+1}\right], i=0,1,2 \ldots, m$.

It follows that there exists a continuous path of unitaries $\left\{w_{i}(t): t \in\left[t_{i}, t_{i+1}\right]\right\} \subset M_{n}$ such that $w_{i}\left(t_{i}\right)=1_{M_{n}}$ and $w_{i}\left(t_{i+1}\right)=u_{i+1} u_{i}^{*} \quad$ and

$$
\begin{equation*}
\left\|w_{i}(t) \phi(f)\left(t_{i}\right)-\phi(f)\left(t_{i}\right) w_{i}(t)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F} \tag{e0.36}
\end{equation*}
$$

$i=0,1,2 \ldots, m$. Define $v(t)=w_{i}(t) u_{i}$ for $t \in\left[t_{i}, t_{i+1}\right], i=0,1,2 \ldots, m$. Then $v\left(t_{i}\right)=u_{i}$ and $v\left(t_{i+1}\right)=u_{i+1}, i=0,1,2, \ldots, m$, and $v \in C\left([0,1], M_{n}\right)$.

It follows that there exists a continuous path of unitaries $\left\{w_{i}(t): t \in\left[t_{i}, t_{i+1}\right]\right\} \subset M_{n}$ such that $w_{i}\left(t_{i}\right)=1_{M_{n}}$ and $w_{i}\left(t_{i+1}\right)=u_{i+1} u_{i}^{*} \quad$ and

$$
\begin{equation*}
\left\|w_{i}(t) \phi(f)\left(t_{i}\right)-\phi(f)\left(t_{i}\right) w_{i}(t)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F} \tag{e0.36}
\end{equation*}
$$

$i=0,1,2 \ldots, m$. Define $v(t)=w_{i}(t) u_{i}$ for $t \in\left[t_{i}, t_{i+1}\right], i=0,1,2 \ldots, m$.
Then $v\left(t_{i}\right)=u_{i}$ and $v\left(t_{i+1}\right)=u_{i+1}, i=0,1,2, \ldots, m$, and $v \in C\left([0,1], M_{n}\right)$. Moreover, for $t \in\left[t_{i}, t_{i+1}\right]$,

It follows that there exists a continuous path of unitaries $\left\{w_{i}(t): t \in\left[t_{i}, t_{i+1}\right]\right\} \subset M_{n}$ such that $w_{i}\left(t_{i}\right)=1_{M_{n}}$ and $w_{i}\left(t_{i+1}\right)=u_{i+1} u_{i}^{*} \quad$ and

$$
\begin{equation*}
\left\|w_{i}(t) \phi(f)\left(t_{i}\right)-\phi(f)\left(t_{i}\right) w_{i}(t)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F} \tag{e0.36}
\end{equation*}
$$

$i=0,1,2 \ldots, m$. Define $v(t)=w_{i}(t) u_{i}$ for $t \in\left[t_{i}, t_{i+1}\right], i=0,1,2 \ldots, m$.
Then $v\left(t_{i}\right)=u_{i}$ and $v\left(t_{i+1}\right)=u_{i+1}, i=0,1,2, \ldots, m$, and $v \in C\left([0,1], M_{n}\right)$. Moreover, for $t \in\left[t_{i}, t_{i+1}\right]$,

$$
v(t)^{*} \phi(f)(t) v(t) \approx_{\epsilon_{1}} u_{i}^{*} w_{i}(t)^{*} \phi(f)\left(t_{i}\right) w_{i}(t) u_{i}
$$

It follows that there exists a continuous path of unitaries $\left\{w_{i}(t): t \in\left[t_{i}, t_{i+1}\right]\right\} \subset M_{n}$ such that $w_{i}\left(t_{i}\right)=1_{M_{n}}$ and $w_{i}\left(t_{i+1}\right)=u_{i+1} u_{i}^{*} \quad$ and

$$
\begin{equation*}
\left\|w_{i}(t) \phi(f)\left(t_{i}\right)-\phi(f)\left(t_{i}\right) w_{i}(t)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F} \tag{e0.36}
\end{equation*}
$$

$i=0,1,2 \ldots, m$. Define $v(t)=w_{i}(t) u_{i}$ for $t \in\left[t_{i}, t_{i+1}\right], i=0,1,2 \ldots, m$.
Then $v\left(t_{i}\right)=u_{i}$ and $v\left(t_{i+1}\right)=u_{i+1}, i=0,1,2, \ldots, m$, and $v \in C\left([0,1], M_{n}\right)$. Moreover, for $t \in\left[t_{i}, t_{i+1}\right]$,

$$
v(t)^{*} \phi(f)(t) v(t) \approx_{\epsilon_{1}} u_{i}^{*} w_{i}(t)^{*} \phi(f)\left(t_{i}\right) w_{i}(t) u_{i} \approx_{\epsilon / 16} u_{i}^{*} \phi(f)\left(t_{i}\right) u_{i}
$$

It follows that there exists a continuous path of unitaries $\left\{w_{i}(t): t \in\left[t_{i}, t_{i+1}\right]\right\} \subset M_{n}$ such that $w_{i}\left(t_{i}\right)=1_{M_{n}}$ and $w_{i}\left(t_{i+1}\right)=u_{i+1} u_{i}^{*} \quad$ and

$$
\begin{equation*}
\left\|w_{i}(t) \phi(f)\left(t_{i}\right)-\phi(f)\left(t_{i}\right) w_{i}(t)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F} \tag{e0.36}
\end{equation*}
$$

$i=0,1,2 \ldots, m$. Define $v(t)=w_{i}(t) u_{i}$ for $t \in\left[t_{i}, t_{i+1}\right], i=0,1,2 \ldots, m$.
Then $v\left(t_{i}\right)=u_{i}$ and $v\left(t_{i+1}\right)=u_{i+1}, i=0,1,2, \ldots, m$, and $v \in C\left([0,1], M_{n}\right)$. Moreover, for $t \in\left[t_{i}, t_{i+1}\right]$,

$$
\begin{aligned}
& v(t)^{*} \phi(f)(t) v(t) \approx_{\epsilon_{1}} u_{i}^{*} w_{i}(t)^{*} \phi(f)\left(t_{i}\right) w_{i}(t) u_{i} \approx_{\epsilon / 16} u_{i}^{*} \phi(f)\left(t_{i}\right) u_{i} \\
& \approx_{\epsilon_{1}} \psi(t)\left(t_{i}\right) \\
& \approx_{\epsilon_{1}} \psi(f)(t)
\end{aligned}
$$

for all $f \in \mathcal{F}$.

It follows that there exists a continuous path of unitaries $\left\{w_{i}(t): t \in\left[t_{i}, t_{i+1}\right]\right\} \subset M_{n}$ such that $w_{i}\left(t_{i}\right)=1_{M_{n}}$ and $w_{i}\left(t_{i+1}\right)=u_{i+1} u_{i}^{*} \quad$ and

$$
\begin{equation*}
\left\|w_{i}(t) \phi(f)\left(t_{i}\right)-\phi(f)\left(t_{i}\right) w_{i}(t)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F} \tag{e0.36}
\end{equation*}
$$

$i=0,1,2 \ldots, m$. Define $v(t)=w_{i}(t) u_{i}$ for $t \in\left[t_{i}, t_{i+1}\right], i=0,1,2 \ldots, m$.
Then $v\left(t_{i}\right)=u_{i}$ and $v\left(t_{i+1}\right)=u_{i+1}, i=0,1,2, \ldots, m$, and $v \in C\left([0,1], M_{n}\right)$. Moreover, for $t \in\left[t_{i}, t_{i+1}\right]$,

$$
\begin{aligned}
v(t)^{*} \phi(f)(t) v(t) & \approx_{\epsilon_{1}} u_{i}^{*} w_{i}(t)^{*} \phi(f)\left(t_{i}\right) w_{i}(t) u_{i} \approx_{\epsilon / 16} u_{i}^{*} \phi(f)\left(t_{i}\right) u_{i} \\
& \approx_{\epsilon_{1}} \psi(t)\left(t_{i}\right)
\end{aligned}
$$

for all $f \in \mathcal{F}$. In other words,

$$
\begin{equation*}
\left\|v^{*} \phi(f) v-\psi(f)\right\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.37}
\end{equation*}
$$

Theorem 1.6.
Let X be a compact metric space which is locally path connected, let $P \in M_{r}(C(X))$ be a projection and let $C=P M_{r}(C(X)) P$.

Theorem 1.6.
Let X be a compact metric space which is locally path connected, let $P \in M_{r}(C(X))$ be a projection and let $C=P M_{r}(C(X)) P$. Suppose that $\phi: C \rightarrow C\left([0,1], M_{n}\right)$, where $n \geq 1$ is an integer.

Theorem 1.6.

Let X be a compact metric space which is locally path connected, let $P \in M_{r}(C(X))$ be a projection and let $C=P M_{r}(C(X)) P$. Suppose that $\phi: C \rightarrow C\left([0,1], M_{n}\right)$, where $n \geq 1$ is an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists a set of mutually orthogonal rank projections $p_{1}, p_{2}, \ldots, p_{n} \in C\left([0,1], M_{n}\right)$ such that

Theorem 1.6.

Let X be a compact metric space which is locally path connected, let $P \in M_{r}(C(X))$ be a projection and let $C=P M_{r}(C(X)) P$. Suppose that $\phi: C \rightarrow C\left([0,1], M_{n}\right)$, where $n \geq 1$ is an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists a set of mutually orthogonal rank projections $p_{1}, p_{2}, \ldots, p_{n} \in C\left([0,1], M_{n}\right)$ such that

$$
\begin{equation*}
\left\|\phi(f)-\sum_{i=1}^{n} f\left(\alpha_{i}\right) p_{i}\right\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.38}
\end{equation*}
$$

Theorem 1.6.

Let X be a compact metric space which is locally path connected, let $P \in M_{r}(C(X))$ be a projection and let $C=P M_{r}(C(X)) P$. Suppose that $\phi: C \rightarrow C\left([0,1], M_{n}\right)$, where $n \geq 1$ is an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists a set of mutually orthogonal rank projections $p_{1}, p_{2}, \ldots, p_{n} \in C\left([0,1], M_{n}\right)$ such that

$$
\begin{equation*}
\left\|\phi(f)-\sum_{i=1}^{n} f\left(\alpha_{i}\right) p_{i}\right\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.38}
\end{equation*}
$$

where $\alpha_{i}:[0,1] \rightarrow X$ is a continuous map, $i=1,2, \ldots, n$.

Proof: We will only prove the case that $C=C(X)$.

Proof: We will only prove the case that $C=C(X)$. Let $\delta>0$ be required by Lemma 1.3. for the given integer n and $\epsilon / 4$ (in place of ϵ).

Proof : We will only prove the case that $C=C(X)$. Let $\delta>0$ be required by Lemma 1.3. for the given integer n and $\epsilon / 4$ (in place of ϵ). Let $d>0$ satisfying the following:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 4 \text { for all } f \in \mathcal{F}, \text { if } \operatorname{dist}\left(x, x^{\prime}\right)<2 d, \quad(\mathrm{e} 0.39)
$$

Proof: We will only prove the case that $C=C(X)$. Let $\delta>0$ be required by Lemma 1.3. for the given integer n and $\epsilon / 4$ (in place of ϵ). Let $d>0$ satisfying the following:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 4 \text { for all } f \in \mathcal{F}, \text { if } \operatorname{dist}\left(x, x^{\prime}\right)<2 d, \quad(\mathrm{e} 0.39)
$$

and if $\operatorname{dist}(x, y)<d / 2$, there exists an open ball B of radius $<d$

Proof: We will only prove the case that $C=C(X)$. Let $\delta>0$ be required by Lemma 1.3. for the given integer n and $\epsilon / 4$ (in place of ϵ). Let $d>0$ satisfying the following:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 4 \text { for all } f \in \mathcal{F}, \text { if } \operatorname{dist}\left(x, x^{\prime}\right)<2 d, \quad(\mathrm{e} 0.39)
$$

and if $\operatorname{dist}(x, y)<d / 2$, there exists an open ball B of radius $<d$ which contains a continuous path in B connecting x and y.

Proof: We will only prove the case that $C=C(X)$. Let $\delta>0$ be required by Lemma 1.3. for the given integer n and $\epsilon / 4$ (in place of ϵ). Let $d>0$ satisfying the following:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 4 \text { for all } f \in \mathcal{F}, \text { if } \operatorname{dist}\left(x, x^{\prime}\right)<2 d, \quad(\mathrm{e} 0.39)
$$

and if $\operatorname{dist}(x, y)<d / 2$, there exists an open ball B of radius $<d$ which contains a continuous path in B connecting x and y. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C$ be a finite subset required by Theorem 1.4 for the given $\min \{\epsilon / 4, \delta / 2\}$ (in place of ϵ), \mathcal{F}, n and $d / 2$.

Proof: We will only prove the case that $C=C(X)$. Let $\delta>0$ be required by Lemma 1.3. for the given integer n and $\epsilon / 4$ (in place of ϵ). Let $d>0$ satisfying the following:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 4 \text { for all } f \in \mathcal{F}, \text { if } \operatorname{dist}\left(x, x^{\prime}\right)<2 d, \quad(\mathrm{e} 0.39)
$$

and if $\operatorname{dist}(x, y)<d / 2$, there exists an open ball B of radius $<d$ which contains a continuous path in B connecting x and y. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C$ be a finite subset required by Theorem 1.4 for the given $\min \{\epsilon / 4, \delta / 2\}$ (in place of ϵ), \mathcal{F}, n and $d / 2$. There exists $\eta>0$ such that

$$
\| \phi(g)(t)-\phi(g)\left(t^{\prime}\right) \mid<\min \left\{\epsilon / 4, \delta_{1} / 2, \delta / 2\right\} \text { for all } f \in \mathcal{H} \quad(\mathrm{e} 0.40)
$$

whenever $\left|t-t^{\prime}\right|<\eta$.

Proof: We will only prove the case that $C=C(X)$. Let $\delta>0$ be required by Lemma 1.3. for the given integer n and $\epsilon / 4$ (in place of ϵ). Let $d>0$ satisfying the following:

$$
\begin{equation*}
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 4 \text { for all } f \in \mathcal{F}, \text { if } \operatorname{dist}\left(x, x^{\prime}\right)<2 d \tag{e0.39}
\end{equation*}
$$

and if $\operatorname{dist}(x, y)<d / 2$, there exists an open ball B of radius $<d$ which contains a continuous path in B connecting x and y. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C$ be a finite subset required by Theorem 1.4 for the given $\min \{\epsilon / 4, \delta / 2\}$ (in place of ϵ), \mathcal{F}, n and $d / 2$. There exists $\eta>0$ such that

$$
\| \phi(g)(t)-\phi(g)\left(t^{\prime}\right) \mid<\min \left\{\epsilon / 4, \delta_{1} / 2, \delta / 2\right\} \text { for all } f \in \mathcal{H} \quad(\mathrm{e} 0.40)
$$

whenever $\left|t-t^{\prime}\right|<\eta$. Let $0=t_{0}<t_{1}<t_{2}<\cdots<t_{m}=1$ be a partition with $\left|t_{i}-t_{i-1}\right|<\eta, i=1,2, \ldots, m$.

Proof: We will only prove the case that $C=C(X)$. Let $\delta>0$ be required by Lemma 1.3. for the given integer n and $\epsilon / 4$ (in place of ϵ). Let $d>0$ satisfying the following:

$$
\begin{equation*}
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 4 \text { for all } f \in \mathcal{F}, \text { if } \operatorname{dist}\left(x, x^{\prime}\right)<2 d \tag{e0.39}
\end{equation*}
$$

and if $\operatorname{dist}(x, y)<d / 2$, there exists an open ball B of radius $<d$ which contains a continuous path in B connecting x and y. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{H} \subset C$ be a finite subset required by Theorem 1.4 for the given $\min \{\epsilon / 4, \delta / 2\}$ (in place of ϵ), \mathcal{F}, n and $d / 2$. There exists $\eta>0$ such that

$$
\| \phi(g)(t)-\phi(g)\left(t^{\prime}\right) \mid<\min \left\{\epsilon / 4, \delta_{1} / 2, \delta / 2\right\} \text { for all } f \in \mathcal{H} \quad(\mathrm{e} 0.40)
$$

whenever $\left|t-t^{\prime}\right|<\eta$. Let $0=t_{0}<t_{1}<t_{2}<\cdots<t_{m}=1$ be a partition with $\left|t_{i}-t_{i-1}\right|<\eta, i=1,2, \ldots, m$. We have

$$
\begin{equation*}
\phi(f)\left(t_{i-1}\right)=\sum_{j=1}^{n} f\left(x_{i-1, j}\right) p_{i-1, j} \text { for all } f \in C(X) \tag{e0.41}
\end{equation*}
$$

where $x_{i-1, j} \in X$ and $\left\{p_{i-1,1}, p_{i-1,2}, \ldots, p_{i-1, n}\right\}$ is a set of mutually orthogonal rank one projections.

It follows from Thm. 1.4 and (e 0.40) that there are unitaries $u_{i} \in M_{n}$ such that

It follows from Thm. 1.4 and (e 0.40) that there are unitaries $u_{i} \in M_{n}$ such that

$$
\begin{aligned}
& \quad\left\|u_{i}^{*} \phi(f)\left(t_{i-1}\right) u_{i}-\phi(f)\left(t_{i}\right)\right\|<\min \{\delta / 2, \epsilon / 4\} \text { for all } f \in \mathcal{F}, \quad(\mathrm{e} 0.42) \\
& i=1,2, \ldots, m
\end{aligned}
$$

It follows from Thm. 1.4 and (e 0.40) that there are unitaries $u_{i} \in M_{n}$ such that

$$
\left\|u_{i}^{*} \phi(f)\left(t_{i-1}\right) u_{i}-\phi(f)\left(t_{i}\right)\right\|<\min \{\delta / 2, \epsilon / 4\} \text { for all } f \in \mathcal{F},(\mathrm{e} 0.42)
$$

$i=1,2, \ldots, m$. Moreover, we may assume, without loss of generality, that there is a permutation σ_{i} such that

$$
\begin{equation*}
u_{i}^{*} p_{i-1, j} u=p_{i, \sigma_{i}(j)} \text { and } \operatorname{dist}\left(x_{i-1, j}, x_{i, \sigma_{i}(j)}\right)<d / 2 \tag{e0.43}
\end{equation*}
$$

$j=1,2, \ldots, n, \quad i=1,2, \ldots, m$.

It follows from Thm. 1.4 and (e 0.40) that there are unitaries $u_{i} \in M_{n}$ such that

$$
\left\|u_{i}^{*} \phi(f)\left(t_{i-1}\right) u_{i}-\phi(f)\left(t_{i}\right)\right\|<\min \{\delta / 2, \epsilon / 4\} \text { for all } f \in \mathcal{F}, \quad(\mathrm{e} 0.42)
$$

$i=1,2, \ldots, m$. Moreover, we may assume, without loss of generality, that there is a permutation σ_{i} such that

$$
\begin{equation*}
u_{i}^{*} p_{i-1, j} u=p_{i, \sigma_{i}(j)} \text { and } \operatorname{dist}\left(x_{i-1, j}, x_{i, \sigma_{i}(j)}\right)<d / 2 \tag{e0.43}
\end{equation*}
$$

$j=1,2, \ldots, n, \quad i=1,2, \ldots, m$. By (e 0.42$)$ and (e 0.40),

$$
\begin{equation*}
\left\|\phi(f)\left(t_{i-1}\right) u_{i}-u_{i} \phi(f)\left(t_{i-1}\right)\right\|<\delta \text { for all } f \in \mathcal{F} \tag{e0.44}
\end{equation*}
$$

$i=1,2, \ldots, m$.

It follows from Thm. 1.4 and (e 0.40) that there are unitaries $u_{i} \in M_{n}$ such that

$$
\left\|u_{i}^{*} \phi(f)\left(t_{i-1}\right) u_{i}-\phi(f)\left(t_{i}\right)\right\|<\min \{\delta / 2, \epsilon / 4\} \text { for all } f \in \mathcal{F}, \quad(\mathrm{e} 0.42)
$$

$i=1,2, \ldots, m$. Moreover, we may assume, without loss of generality, that there is a permutation σ_{i} such that

$$
\begin{equation*}
u_{i}^{*} p_{i-1, j} u=p_{i, \sigma_{i}(j)} \text { and } \operatorname{dist}\left(x_{i-1, j}, x_{i, \sigma_{i}(j)}\right)<d / 2 \tag{e0.43}
\end{equation*}
$$

$j=1,2, \ldots, n, \quad i=1,2, \ldots, m$. By (e 0.42$)$ and (e 0.40),

$$
\begin{equation*}
\left\|\phi(f)\left(t_{i-1}\right) u_{i}-u_{i} \phi(f)\left(t_{i-1}\right)\right\|<\delta \text { for all } f \in \mathcal{F} \tag{e0.44}
\end{equation*}
$$

$i=1,2, \ldots, m$. It follows from 1.1 that there exists a continuous path of unitaries $\left\{v(t): t \in\left[t_{i-1}, t_{i}\right]\right\} \subset M_{n}$

It follows from Thm. 1.4 and (e 0.40) that there are unitaries $u_{i} \in M_{n}$ such that

$$
\left\|u_{i}^{*} \phi(f)\left(t_{i-1}\right) u_{i}-\phi(f)\left(t_{i}\right)\right\|<\min \{\delta / 2, \epsilon / 4\} \text { for all } f \in \mathcal{F},(\mathrm{e} 0.42)
$$

$i=1,2, \ldots, m$. Moreover, we may assume, without loss of generality, that there is a permutation σ_{i} such that

$$
\begin{equation*}
u_{i}^{*} p_{i-1, j} u=p_{i, \sigma_{i}(j)} \text { and } \operatorname{dist}\left(x_{i-1, j}, x_{i, \sigma_{i}(j)}\right)<d / 2 \tag{e0.43}
\end{equation*}
$$

$j=1,2, \ldots, n, \quad i=1,2, \ldots, m$. By (e 0.42$)$ and (e 0.40),

$$
\begin{equation*}
\left\|\phi(f)\left(t_{i-1}\right) u_{i}-u_{i} \phi(f)\left(t_{i-1}\right)\right\|<\delta \text { for all } f \in \mathcal{F} \tag{e0.44}
\end{equation*}
$$

$i=1,2, \ldots, m$. It follows from 1.1 that there exists a continuous path of unitaries $\left\{v(t): t \in\left[t_{i-1}, t_{i}\right]\right\} \subset M_{n}$ such that $v\left(t_{i-1}\right)=1$ and $v\left(t_{i}\right)=u_{i-1}$ and

It follows from Thm. 1.4 and (e 0.40) that there are unitaries $u_{i} \in M_{n}$ such that

$$
\left\|u_{i}^{*} \phi(f)\left(t_{i-1}\right) u_{i}-\phi(f)\left(t_{i}\right)\right\|<\min \{\delta / 2, \epsilon / 4\} \text { for all } f \in \mathcal{F},(\mathrm{e} 0.42)
$$

$i=1,2, \ldots, m$. Moreover, we may assume, without loss of generality, that there is a permutation σ_{i} such that

$$
\begin{equation*}
u_{i}^{*} p_{i-1, j} u=p_{i, \sigma_{i}(j)} \text { and } \operatorname{dist}\left(x_{i-1, j}, x_{i, \sigma_{i}(j)}\right)<d / 2 \tag{e0.43}
\end{equation*}
$$

$j=1,2, \ldots, n, \quad i=1,2, \ldots, m$. By (e 0.42$)$ and (e 0.40),

$$
\begin{equation*}
\left\|\phi(f)\left(t_{i-1}\right) u_{i}-u_{i} \phi(f)\left(t_{i-1}\right)\right\|<\delta \text { for all } f \in \mathcal{F} \tag{e0.44}
\end{equation*}
$$

$i=1,2, \ldots, m$. It follows from 1.1 that there exists a continuous path of unitaries $\left\{v(t): t \in\left[t_{i-1}, t_{i}\right]\right\} \subset M_{n}$ such that $v\left(t_{i-1}\right)=1$ and $v\left(t_{i}\right)=u_{i-1}$ and

$$
\begin{equation*}
\left\|v(t) \phi(f)\left(t_{i-1}\right)-\phi(f)\left(t_{i-1}\right) v(t)\right\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \tag{e0.45}
\end{equation*}
$$

$i=1,2, \ldots, m$.

Define $p_{j}(t)=v(t)^{*} p_{i-1, j} v(t)$ for $t \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, m$.

Define $p_{j}(t)=v(t)^{*} p_{i-1, j} v(t)$ for $t \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, m$. Then $p_{j}\left(t_{0}\right)=p_{0, j}, p_{j}\left(t_{i}\right)=p_{i, \sigma_{i}(j)}, i=1,2, \ldots, m$.

Define $p_{j}(t)=v(t)^{*} p_{i-1, j} v(t)$ for $t \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, m$. Then $p_{j}\left(t_{0}\right)=p_{0, j}, p_{j}\left(t_{i}\right)=p_{i, \sigma_{i}(j)}, i=1,2, \ldots, m$. Since $\operatorname{dist}\left(x_{i-1, j}, x_{i, \sigma_{i}(j)}\right)<d / 2$,

Define $p_{j}(t)=v(t)^{*} p_{i-1, j} v(t)$ for $t \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, m$. Then $p_{j}\left(t_{0}\right)=p_{0, j}, p_{j}\left(t_{i}\right)=p_{i, \sigma_{i}(j)}, i=1,2, \ldots, m$. Since $\operatorname{dist}\left(x_{i-1, j}, x_{i, \sigma_{i}(j)}\right)<d / 2$, there exists a continuous path $\alpha_{j, i-1}:\left[t_{i-1}, t_{i}\right] \rightarrow B_{i}$ such that

Define $p_{j}(t)=v(t)^{*} p_{i-1, j} v(t)$ for $t \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, m$. Then $p_{j}\left(t_{0}\right)=p_{0, j}, p_{j}\left(t_{i}\right)=p_{i, \sigma_{i}(j)}, i=1,2, \ldots, m$. Since $\operatorname{dist}\left(x_{i-1, j}, x_{i, \sigma_{i}(j)}\right)<d / 2$, there exists a continuous path $\alpha_{j, i-1}:\left[t_{i-1}, t_{i}\right] \rightarrow B_{i}$ such that $\alpha_{j, i-1}\left(t_{i-1}\right)=x_{i-1, j}$ and $\alpha_{j, i-1}\left(t_{i}\right)=x_{i, \sigma_{i}(j)}$,

Define $p_{j}(t)=v(t)^{*} p_{i-1, j} v(t)$ for $t \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, m$. Then $p_{j}\left(t_{0}\right)=p_{0, j}, p_{j}\left(t_{i}\right)=p_{i, \sigma_{i}(j)}, i=1,2, \ldots, m$. Since $\operatorname{dist}\left(x_{i-1, j}, x_{i, \sigma_{i}(j)}\right)<d / 2$, there exists a continuous path $\alpha_{j, i-1}:\left[t_{i-1}, t_{i}\right] \rightarrow B_{i}$ such that $\alpha_{j, i-1}\left(t_{i-1}\right)=x_{i-1, j}$ and $\alpha_{j, i-1}\left(t_{i}\right)=x_{i, \sigma_{i}(j)}$, where B_{i} is an open ball with radius d which contains both $x_{i-1, j}$ and $x_{i, \sigma_{i}(j)}$.

Define $p_{j}(t)=v(t)^{*} p_{i-1, j} v(t)$ for $t \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, m$. Then $p_{j}\left(t_{0}\right)=p_{0, j}, p_{j}\left(t_{i}\right)=p_{i, \sigma_{i}(j)}, i=1,2, \ldots, m$. Since $\operatorname{dist}\left(x_{i-1, j}, x_{i, \sigma_{i}(j)}\right)<d / 2$, there exists a continuous path $\alpha_{j, i-1}:\left[t_{i-1}, t_{i}\right] \rightarrow B_{i}$ such that $\alpha_{j, i-1}\left(t_{i-1}\right)=x_{i-1, j}$ and $\alpha_{j, i-1}\left(t_{i}\right)=x_{i, \sigma_{i}(j)}$, where B_{i} is an open ball with radius d which contains both $x_{i-1, j}$ and $x_{i, \sigma_{i}(j)}$. Define $\alpha_{j}:[0,1] \rightarrow X$ by $\alpha_{j}(t)=\alpha_{j, i-1}(t)$ if $t \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, m$.

Define $p_{j}(t)=v(t)^{*} p_{i-1, j} v(t)$ for $t \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, m$. Then $p_{j}\left(t_{0}\right)=p_{0, j}, p_{j}\left(t_{i}\right)=p_{i, \sigma_{i}(j)}, i=1,2, \ldots, m$. Since $\operatorname{dist}\left(x_{i-1, j}, x_{i, \sigma_{i}(j)}\right)<d / 2$, there exists a continuous path $\alpha_{j, i-1}:\left[t_{i-1}, t_{i}\right] \rightarrow B_{i}$ such that $\alpha_{j, i-1}\left(t_{i-1}\right)=x_{i-1, j}$ and $\alpha_{j, i-1}\left(t_{i}\right)=x_{i, \sigma_{i}(j)}$, where B_{i} is an open ball with radius d which contains both $x_{i-1, j}$ and $x_{i, \sigma_{i}(j)}$. Define $\alpha_{j}:[0,1] \rightarrow X$ by $\alpha_{j}(t)=\alpha_{j, i-1}(t)$ if $t \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, m$. Define

$$
\begin{equation*}
\psi(f)=\sum_{i=1}^{n} f\left(\alpha_{i}\right) p_{i} \text { for all } f \in C(X) \tag{e0.46}
\end{equation*}
$$

On $t \in\left[t_{i-1}, t_{i}\right]$,

On $t \in\left[t_{i-1}, t_{i}\right]$,

$$
\begin{array}{r}
\|\phi(f)(t)-\psi(f)(t)\|=\left\|\phi(f)(t)-\sum_{j=1}^{n} f\left(x_{i-1, j}\right) p_{i-1, j}\right\| \\
+\left\|\sum_{j=1}^{n} f\left(x_{i-1, j}\right) p_{i-1, j}-\sum_{j=1}^{n} f\left(\alpha_{j, i-1}(t)\right) p_{j}(t)\right\|
\end{array}
$$

On $t \in\left[t_{i-1}, t_{i}\right]$,

$$
\begin{aligned}
& \| \phi(f)(t)- \psi(f)(t)\|=\| \phi(f)(t)-\sum_{j=1}^{n} f\left(x_{i-1, j}\right) p_{i-1, j} \| \\
&+\left\|\sum_{j=1}^{n} f\left(x_{i-1, j}\right) p_{i-1, j}-\sum_{j=1}^{n} f\left(\alpha_{j, i-1}(t)\right) p_{j}(t)\right\| \\
&<\epsilon / 4+\left\|\sum_{j=1}^{n} f\left(x_{i-1, j}\right) p_{i-1, j}-\sum_{j=1}^{n} f\left(x_{i-1, j}\right) v^{*}(t) p_{i-1, j} v(t)\right\|+\epsilon / 4
\end{aligned}
$$

On $t \in\left[t_{i-1}, t_{i}\right]$,

$$
\begin{aligned}
& \| \phi(f)(t)- \psi(f)(t)\|=\| \phi(f)(t)-\sum_{j=1}^{n} f\left(x_{i-1, j}\right) p_{i-1, j} \| \\
&+\left\|\sum_{j=1}^{n} f\left(x_{i-1, j}\right) p_{i-1, j}-\sum_{j=1}^{n} f\left(\alpha_{j, i-1}(t)\right) p_{j}(t)\right\| \\
&< \epsilon / 4+\left\|\sum_{j=1}^{n} f\left(x_{i-1, j}\right) p_{i-1, j}-\sum_{j=1}^{n} f\left(x_{i-1, j}\right) v^{*}(t) p_{i-1, j} v(t)\right\|+\epsilon / 4 \\
&=\left\|\phi(f)\left(t_{i-1}\right)-v^{*}(t) \phi(f)\left(t_{i-1}\right) v(t)\right\|+\epsilon / 2<\epsilon / 2+\epsilon / 2
\end{aligned}
$$

for all $f \in \mathcal{F}$.

Corollary

Let X be a compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $C=P M_{r}(C(X)) P$.

Corollary

Let X be a compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $C=P M_{r}(C(X)) P$. Suppose that $\phi: C \rightarrow C\left([0,1], M_{n}\right)$, where $n \geq 1$ is an integer.

Corollary

Let X be a compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $C=P M_{r}(C(X)) P$. Suppose that $\phi: C \rightarrow C\left([0,1], M_{n}\right)$, where $n \geq 1$ is an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists a set of mutually orthogonal rank projections $p_{1}, p_{2}, \ldots, p_{n} \in C\left([0,1], M_{n}\right)$ such that

Corollary

Let X be a compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $C=P M_{r}(C(X)) P$. Suppose that $\phi: C \rightarrow C\left([0,1], M_{n}\right)$, where $n \geq 1$ is an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists a set of mutually orthogonal rank projections $p_{1}, p_{2}, \ldots, p_{n} \in C\left([0,1], M_{n}\right)$ such that

$$
\begin{equation*}
\left\|\phi(f)-\sum_{i=1}^{n} f\left(\alpha_{i}\right) p_{i}\right\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.47}
\end{equation*}
$$

Corollary

Let X be a compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $C=P M_{r}(C(X)) P$. Suppose that $\phi: C \rightarrow C\left([0,1], M_{n}\right)$, where $n \geq 1$ is an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists a set of mutually orthogonal rank projections $p_{1}, p_{2}, \ldots, p_{n} \in C\left([0,1], M_{n}\right)$ such that

$$
\begin{equation*}
\left\|\phi(f)-\sum_{i=1}^{n} f\left(\alpha_{i}\right) p_{i}\right\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.47}
\end{equation*}
$$

where $\alpha_{i}:[0,1] \rightarrow X$ is a continuous map, $i=1,2, \ldots, n$.

Corollary

Let X be a compact metric space, let $P \in M_{r}(C(X))$ be a projection and let $C=P M_{r}(C(X)) P$. Suppose that $\phi: C \rightarrow C\left([0,1], M_{n}\right)$, where $n \geq 1$ is an integer. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists a set of mutually orthogonal rank projections $p_{1}, p_{2}, \ldots, p_{n} \in C\left([0,1], M_{n}\right)$ such that

$$
\begin{equation*}
\left\|\phi(f)-\sum_{i=1}^{n} f\left(\alpha_{i}\right) p_{i}\right\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.47}
\end{equation*}
$$

where $\alpha_{i}:[0,1] \rightarrow X$ is a continuous map, $i=1,2, \ldots, n$.

Proof.

$C(X)=\lim _{n \rightarrow \infty}\left(C\left(X_{n}\right), \imath_{n}\right)$, where X_{n} is a polygon and \imath_{n} is an injective homomorphism.

Suppose that $u, v \in M_{n}$ are two unitaries such that $\|u v-v u\|<1$.

Suppose that $u, v \in M_{n}$ are two unitaries such that $\|u v-v u\|<1$. Then $\left\|v^{*} u v u^{*}-1\right\|<1$. One has

$$
(1 / 2 \pi i) \operatorname{Tr}\left(\log \left(v^{*} u v u^{*}\right)\right) \in \mathbb{Z}
$$

Suppose that $u, v \in M_{n}$ are two unitaries such that $\|u v-v u\|<1$. Then $\left\|v^{*} u v u^{*}-1\right\|<1$. One has

$$
(1 / 2 \pi i) \operatorname{Tr}\left(\log \left(v^{*} u v u^{*}\right)\right) \in \mathbb{Z}
$$

If there is a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset M_{n}$ such that $v(0)=v$ and $v(1)=1_{M_{n}}$ and

$$
\left\|v^{*}(t) u v(t) u^{*}-1\right\|<1
$$

Suppose that $u, v \in M_{n}$ are two unitaries such that $\|u v-v u\|<1$. Then $\left\|v^{*} u v u^{*}-1\right\|<1$. One has

$$
(1 / 2 \pi i) \operatorname{Tr}\left(\log \left(v^{*} u v u^{*}\right)\right) \in \mathbb{Z}
$$

If there is a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset M_{n}$ such that $v(0)=v$ and $v(1)=1_{M_{n}}$ and

$$
\left\|v^{*}(t) u v(t) u^{*}-1\right\|<1
$$

then $(1 / 2 \pi i) \operatorname{Tr}\left(\log \left(v^{*}(t) u v(t) u^{*}\right)\right.$ is continuous and is zero at $t=1$.

Suppose that $u, v \in M_{n}$ are two unitaries such that $\|u v-v u\|<1$. Then $\left\|v^{*} u v u^{*}-1\right\|<1$. One has

$$
(1 / 2 \pi i) \operatorname{Tr}\left(\log \left(v^{*} u v u^{*}\right)\right) \in \mathbb{Z}
$$

If there is a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset M_{n}$ such that $v(0)=v$ and $v(1)=1_{M_{n}}$ and

$$
\left\|v^{*}(t) u v(t) u^{*}-1\right\|<1
$$

then $(1 / 2 \pi i) \operatorname{Tr}\left(\log \left(v^{*}(t) u v(t) u^{*}\right)\right.$ is continuous and is zero at $t=1$.
Therefore

$$
(1 / 2 \pi i) \operatorname{Tr}\left(\log \left(v^{*}(t) u v(t) u^{*}\right)=0 \text { for all } t \in[0,1] .\right.
$$

$$
u_{n}=\left(\begin{array}{cccc}
e^{2 \pi i / n} & 0 & 0 \cdots & \\
0 & e^{4 \pi i / n} & 0 \cdots & \\
& & \ddots & \\
& & & e^{2 n \pi i / n}
\end{array}\right)
$$

Let

$$
u_{n}=\left(\begin{array}{cccc}
e^{2 \pi i / n} & 0 & 0 \cdots & \\
0 & e^{4 \pi i / n} & 0 \cdots & \\
& & \ddots & \\
& & & e^{2 n \pi i / n}
\end{array}\right)
$$

$$
v_{n}=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
& & \ddots & \ddots & \\
& & & 1 & 0
\end{array}\right)
$$

Let

$$
u_{n}=\left(\begin{array}{cccc}
e^{2 \pi i / n} & 0 & 0 \cdots & \\
0 & e^{4 \pi i / n} & 0 \cdots & \\
& & \ddots & \\
& & & e^{2 n \pi i / n}
\end{array}\right)
$$

$$
v_{n}=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
& & \ddots & \ddots & \\
& & & 1 & 0
\end{array}\right)
$$

This is the Voiculescu pair.

One computes that

$$
v_{n}^{*} u_{n} v_{n} u_{n}^{*}=\left(\begin{array}{cccc}
e^{2 \pi i / n} & 0 & 0 \cdots & \\
0 & e^{2 \pi i / n} & 0 \cdots & \\
& & \ddots & \\
& & & e^{2 \pi i / n}
\end{array}\right)
$$

One computes that

$$
v_{n}^{*} u_{n} v_{n} u_{n}^{*}=\left(\begin{array}{cccc}
e^{2 \pi i / n} & 0 & 0 \cdots & \\
0 & e^{2 \pi i / n} & 0 \cdots & \\
& & \ddots & \\
& & & e^{2 \pi i / n} .
\end{array}\right)
$$

In particular

$$
\lim _{n \rightarrow \infty}\left\|u_{n} v_{n}-v_{n} u_{n}\right\|=\lim _{n \rightarrow \infty}\left|e^{2 \pi i / n}-1\right|=0
$$

One computes that

$$
v_{n}^{*} u_{n} v_{n} u_{n}^{*}=\left(\begin{array}{cccc}
e^{2 \pi i / n} & 0 & 0 \cdots & \\
0 & e^{2 \pi i / n} & 0 \cdots & \\
& & \ddots & \\
& & & e^{2 \pi i / n}
\end{array}\right)
$$

In particular

$$
\lim _{n \rightarrow \infty}\left\|u_{n} v_{n}-v_{n} u_{n}\right\|=\lim _{n \rightarrow \infty}\left|e^{2 \pi i / n}-1\right|=0
$$

However,

$$
\operatorname{Tr}\left(\log \left(v_{n}^{*} u_{n} v_{n} u_{n}^{*}\right)\right)=2 \pi i
$$

One computes that

$$
v_{n}^{*} u_{n} v_{n} u_{n}^{*}=\left(\begin{array}{cccc}
e^{2 \pi i / n} & 0 & 0 \cdots & \\
0 & e^{2 \pi i / n} & 0 \cdots & \\
& & \ddots & \\
& & & e^{2 \pi i / n}
\end{array}\right)
$$

In particular

$$
\lim _{n \rightarrow \infty}\left\|u_{n} v_{n}-v_{n} u_{n}\right\|=\lim _{n \rightarrow \infty}\left|e^{2 \pi i / n}-1\right|=0
$$

However,

$$
\operatorname{Tr}\left(\log \left(v_{n}^{*} u_{n} v_{n} u_{n}^{*}\right)\right)=2 \pi i
$$

In other words, there is No $\delta>0$ satisfying the following:

One computes that

$$
v_{n}^{*} u_{n} v_{n} u_{n}^{*}=\left(\begin{array}{cccc}
e^{2 \pi i / n} & 0 & 0 \cdots & \\
0 & e^{2 \pi i / n} & 0 \cdots & \\
& & \ddots & \\
& & & e^{2 \pi i / n}
\end{array}\right)
$$

In particular

$$
\lim _{n \rightarrow \infty}\left\|u_{n} v_{n}-v_{n} u_{n}\right\|=\lim _{n \rightarrow \infty}\left|e^{2 \pi i / n}-1\right|=0
$$

However,

$$
\operatorname{Tr}\left(\log \left(v_{n}^{*} u_{n} v_{n} u_{n}^{*}\right)\right)=2 \pi i
$$

In other words, there is No $\delta>0$ satisfying the following:
For any integer $n \geq 1$, any pair of unitaries $u, v \in M_{n}$ with $\|u v-v u\|<\delta$,

One computes that

$$
v_{n}^{*} u_{n} v_{n} u_{n}^{*}=\left(\begin{array}{cccc}
e^{2 \pi i / n} & 0 & 0 \cdots & \\
0 & e^{2 \pi i / n} & 0 \cdots & \\
& & \ddots & \\
& & & e^{2 \pi i / n}
\end{array}\right)
$$

In particular

$$
\lim _{n \rightarrow \infty}\left\|u_{n} v_{n}-v_{n} u_{n}\right\|=\lim _{n \rightarrow \infty}\left|e^{2 \pi i / n}-1\right|=0
$$

However,

$$
\operatorname{Tr}\left(\log \left(v_{n}^{*} u_{n} v_{n} u_{n}^{*}\right)\right)=2 \pi i
$$

In other words, there is No $\delta>0$ satisfying the following:
For any integer $n \geq 1$, any pair of unitaries $u, v \in M_{n}$ with $\|u v-v u\|<\delta$, there is a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset M_{n}$ such that $v(0)=v$ and $v(1)=1_{M_{n}}$

One computes that

$$
v_{n}^{*} u_{n} v_{n} u_{n}^{*}=\left(\begin{array}{cccc}
e^{2 \pi i / n} & 0 & 0 \cdots & \\
0 & e^{2 \pi i / n} & 0 \cdots & \\
& & \ddots & \\
& & & e^{2 \pi i / n}
\end{array}\right)
$$

In particular

$$
\lim _{n \rightarrow \infty}\left\|u_{n} v_{n}-v_{n} u_{n}\right\|=\lim _{n \rightarrow \infty}\left|e^{2 \pi i / n}-1\right|=0
$$

However,

$$
\operatorname{Tr}\left(\log \left(v_{n}^{*} u_{n} v_{n} u_{n}^{*}\right)\right)=2 \pi i
$$

In other words, there is No $\delta>0$ satisfying the following:
For any integer $n \geq 1$, any pair of unitaries $u, v \in M_{n}$ with $\|u v-v u\|<\delta$, there is a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset M_{n}$ such that $v(0)=v$ and $v(1)=1_{M_{n}}$ and

$$
\|u v(t)-v(t) u\|<1 \text { for all } t \in[0,1] .
$$

Let

$$
f\left(e^{2 \pi i t}\right)= \begin{cases}1-2 t, & \text { if } 0 \leq t \leq 1 / 2 \\ -1+2 t, & \text { if } 1 / 2<t \leq 1\end{cases}
$$

$$
\begin{gathered}
f\left(e^{2 \pi i t}\right)= \begin{cases}1-2 t, & \text { if } 0 \leq t \leq 1 / 2 ; \\
-1+2 t, & \text { if } 1 / 2<t \leq 1,\end{cases} \\
g\left(e^{2 \pi i t}\right)= \begin{cases}\left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2}, & \text { if } 0 \leq t \leq 1 / 2 ; \\
0 & \text { if } 1 / 2<t \leq 1,\end{cases}
\end{gathered}
$$

Let

$$
\begin{gathered}
f\left(e^{2 \pi i t}\right)= \begin{cases}1-2 t, & \text { if } 0 \leq t \leq 1 / 2 ; \\
-1+2 t, & \text { if } 1 / 2<t \leq 1,\end{cases} \\
g\left(e^{2 \pi i t}\right)= \begin{cases}\left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2}, & \text { if } 0 \leq t \leq 1 / 2 ; \\
0 & \text { if } 1 / 2<t \leq 1,\end{cases}
\end{gathered}
$$

and

$$
h\left(e^{2 \pi i t}\right)= \begin{cases}0 . & \text { if } 0 \leq t \leq 1 / 2 \\ \left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2}, & \text { if } 1 / 2<t \leq 1\end{cases}
$$

Let

$$
\begin{gathered}
f\left(e^{2 \pi i t}\right)= \begin{cases}1-2 t, & \text { if } 0 \leq t \leq 1 / 2 ; \\
-1+2 t, & \text { if } 1 / 2<t \leq 1,\end{cases} \\
g\left(e^{2 \pi i t}\right)= \begin{cases}\left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2}, & \text { if } 0 \leq t \leq 1 / 2 ; \\
0 & \text { if } 1 / 2<t \leq 1,\end{cases}
\end{gathered}
$$

and

$$
h\left(e^{2 \pi i t}\right)= \begin{cases}0 . & \text { if } 0 \leq t \leq 1 / 2 \\ \left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2}, & \text { if } 1 / 2<t \leq 1\end{cases}
$$

These are non-negative continuous functions defined on \mathbb{T}.

Let

$$
\begin{gathered}
f\left(e^{2 \pi i t}\right)= \begin{cases}1-2 t, & \text { if } 0 \leq t \leq 1 / 2 ; \\
-1+2 t, & \text { if } 1 / 2<t \leq 1,\end{cases} \\
g\left(e^{2 \pi i t}\right)= \begin{cases}\left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2}, & \text { if } 0 \leq t \leq 1 / 2 ; \\
0 & \text { if } 1 / 2<t \leq 1,\end{cases}
\end{gathered}
$$

and

$$
h\left(e^{2 \pi i t}\right)= \begin{cases}0 . & \text { if } 0 \leq t \leq 1 / 2 \\ \left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2}, & \text { if } 1 / 2<t \leq 1\end{cases}
$$

These are non-negative continuous functions defined on \mathbb{T}. Suppose that u and v are unitaries with $u v=v u$.

Let

$$
\begin{gathered}
f\left(e^{2 \pi i t}\right)= \begin{cases}1-2 t, & \text { if } 0 \leq t \leq 1 / 2 ; \\
-1+2 t, & \text { if } 1 / 2<t \leq 1,\end{cases} \\
g\left(e^{2 \pi i t}\right)= \begin{cases}\left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2}, & \text { if } 0 \leq t \leq 1 / 2 ; \\
0 & \text { if } 1 / 2<t \leq 1,\end{cases}
\end{gathered}
$$

and

$$
h\left(e^{2 \pi i t}\right)= \begin{cases}0 . & \text { if } 0 \leq t \leq 1 / 2 \\ \left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2}, & \text { if } 1 / 2<t \leq 1\end{cases}
$$

These are non-negative continuous functions defined on \mathbb{T}. Suppose that u and v are unitaries with $u v=v u$. Define

$$
e(u, v)=\left(\begin{array}{cc}
f(v) & g(v)+h(v) u^{*} \\
g(v)+u h(v) & 1-f(v)
\end{array}\right) .
$$

Let

$$
\begin{gathered}
f\left(e^{2 \pi i t}\right)= \begin{cases}1-2 t, & \text { if } 0 \leq t \leq 1 / 2 ; \\
-1+2 t, & \text { if } 1 / 2<t \leq 1,\end{cases} \\
g\left(e^{2 \pi i t}\right)= \begin{cases}\left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2}, & \text { if } 0 \leq t \leq 1 / 2 ; \\
0 & \text { if } 1 / 2<t \leq 1,\end{cases}
\end{gathered}
$$

and

$$
h\left(e^{2 \pi i t}\right)= \begin{cases}0 . & \text { if } 0 \leq t \leq 1 / 2 \\ \left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2}, & \text { if } 1 / 2<t \leq 1\end{cases}
$$

These are non-negative continuous functions defined on \mathbb{T}. Suppose that u and v are unitaries with $u v=v u$. Define

$$
e(u, v)=\left(\begin{array}{cc}
f(v) & g(v)+h(v) u^{*} \\
g(v)+u h(v) & 1-f(v)
\end{array}\right) .
$$

Then $e(u, v)$ is a projection.

There exists a $\delta_{0}>0$

There exists a $\delta_{0}>0$ such that if $\|u v-v u\|<\delta_{0}$,

There exists a $\delta_{0}>0$ such that if $\|u v-v u\|<\delta_{0}$, then the spectrum of positive element $e(u, v)$ has a gap at $1 / 2$.

There exists a $\delta_{0}>0$ such that if $\|u v-v u\|<\delta_{0}$, then the spectrum of positive element $e(u, v)$ has a gap at $1 / 2$. The bott element $\operatorname{bott}_{1}(u, v)$ as defined by Exel and Loring is

There exists a $\delta_{0}>0$ such that if $\|u v-v u\|<\delta_{0}$, then the spectrum of positive element $e(u, v)$ has a gap at $1 / 2$. The bott element $\operatorname{bott}_{1}(u, v)$ as defined by Exel and Loring is

$$
\left[\chi_{[1 / 2, \infty]}(e(u, v))\right]-\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right] .
$$

Let C be a unital C^{*}-algebra C.

Let C be a unital C^{*}-algebra C. Denote by $T(C)$ the tracial state space of C.

Let C be a unital C^{*}-algebra C. Denote by $T(C)$ the tracial state space of C. Denote by $\operatorname{Aff}(T(C))$ the space of all real continuous affine functions on $T(C)$.

Let C be a unital C^{*}-algebra C. Denote by $T(C)$ the tracial state space of C. Denote by $\operatorname{Aff}(T(C))$ the space of all real continuous affine functions on $T(C)$. Suppose that $T(C) \neq \emptyset$.

Let C be a unital C^{*}-algebra C. Denote by $T(C)$ the tracial state space of C. Denote by $\operatorname{Aff}(T(C))$ the space of all real continuous affine functions on $T(C)$. Suppose that $T(C) \neq \emptyset$. There is a map $c \mapsto \hat{c}$ from $C_{\text {s.a. }} \rightarrow \operatorname{Aff}(T(C))$ defined by $\hat{c}(\tau)=\tau(c)$ for all $c \in C_{\text {s.a. }}$ and $\tau \in T(C)$.

Let C be a unital C^{*}-algebra C. Denote by $T(C)$ the tracial state space of C. Denote by $\operatorname{Aff}(T(C))$ the space of all real continuous affine functions on $T(C)$. Suppose that $T(C) \neq \emptyset$. There is a map $c \mapsto \hat{c}$ from $C_{\text {s.a. }} \rightarrow \operatorname{Aff}(T(C))$ defined by $\hat{c}(\tau)=\tau(c)$ for all $c \in C_{s . a \text {. and }} \tau \in T(C)$. Denote by C_{+}^{q} the image of C_{+}in $\operatorname{Aff}(T(C))$ and $C_{+}^{q, 1}$ the image of C_{+}in the unit ball of C.

Let C be a unital C^{*}-algebra C. Denote by $T(C)$ the tracial state space of C. Denote by $\operatorname{Aff}(T(C))$ the space of all real continuous affine functions on $T(C)$. Suppose that $T(C) \neq \emptyset$. There is a map $c \mapsto \hat{c}$ from $C_{\text {s.a. }} \rightarrow \operatorname{Aff}(T(C))$ defined by $\hat{c}(\tau)=\tau(c)$ for all $c \in C_{s . a \text {. and }} \tau \in T(C)$. Denote by C_{+}^{q} the image of C_{+}in $\operatorname{Aff}(T(C))$ and $C_{+}^{q, 1}$ the image of C_{+}in the unit ball of C.

Let A and B be two unital C^{*}-algebras and let $L: A \rightarrow B$ be a linear map.

Let C be a unital C^{*}-algebra C. Denote by $T(C)$ the tracial state space of C. Denote by $\operatorname{Aff}(T(C))$ the space of all real continuous affine functions on $T(C)$. Suppose that $T(C) \neq \emptyset$. There is a map $c \mapsto \hat{c}$ from $C_{\text {s.a. }} \rightarrow \operatorname{Aff}(T(C))$ defined by $\hat{c}(\tau)=\tau(c)$ for all $c \in C_{s . a \text {. and }} \tau \in T(C)$. Denote by C_{+}^{q} the image of C_{+}in $\operatorname{Aff}(T(C))$ and $C_{+}^{q, 1}$ the image of C_{+}in the unit ball of C.

Let A and B be two unital C^{*}-algebras and let $L: A \rightarrow B$ be a linear map. Let $\mathcal{G} \subset A$ be a subset and let $\delta>0$.

Let C be a unital C^{*}-algebra C. Denote by $T(C)$ the tracial state space of C. Denote by $\operatorname{Aff}(T(C))$ the space of all real continuous affine functions on $T(C)$. Suppose that $T(C) \neq \emptyset$. There is a map $c \mapsto \hat{c}$ from $C_{\text {s.a. }} \rightarrow \operatorname{Aff}(T(C))$ defined by $\hat{c}(\tau)=\tau(c)$ for all $c \in C_{\text {s.a. }}$ and $\tau \in T(C)$. Denote by C_{+}^{q} the image of C_{+}in $\operatorname{Aff}(T(C))$ and $C_{+}^{q, 1}$ the image of C_{+}in the unit ball of C.

Let A and B be two unital C^{*}-algebras and let $L: A \rightarrow B$ be a linear map. Let $\mathcal{G} \subset A$ be a subset and let $\delta>0$. We say L is \mathcal{G} - δ-multiplicative, if

Let C be a unital C^{*}-algebra C. Denote by $T(C)$ the tracial state space of C. Denote by $\operatorname{Aff}(T(C))$ the space of all real continuous affine functions on $T(C)$. Suppose that $T(C) \neq \emptyset$. There is a map $c \mapsto \hat{c}$ from $C_{\text {s.a. }} \rightarrow \operatorname{Aff}(T(C))$ defined by $\hat{c}(\tau)=\tau(c)$ for all $c \in C_{s . a}$ and $\tau \in T(C)$. Denote by C_{+}^{q} the image of C_{+}in $\operatorname{Aff}(T(C))$ and $C_{+}^{q, 1}$ the image of C_{+}in the unit ball of C.

Let A and B be two unital C^{*}-algebras and let $L: A \rightarrow B$ be a linear map. Let $\mathcal{G} \subset A$ be a subset and let $\delta>0$. We say L is \mathcal{G} - δ-multiplicative, if

$$
\|L(a) L(b)-L(a b)\|<\delta \text { for all } a, b \in \mathcal{G}
$$

Now we will present the following theorem:

Now we will present the following theorem:
Theorem 2.1.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection

Now we will present the following theorem:
Theorem 2.1.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$.

Now we will present the following theorem:
Theorem 2.1.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.

Now we will present the following theorem:
Theorem 2.1.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.

Now we will present the following theorem:
Theorem 2.1.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$,

Now we will present the following theorem:
Theorem 2.1.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A$,

Now we will present the following theorem:
Theorem 2.1.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$,

Now we will present the following theorem:
Theorem 2.1.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following:

Now we will present the following theorem:
Theorem 2.1.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps

Now we will present the following theorem:

Theorem 2.1.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps such that

$$
\left.\left[L_{1}\right]\right|_{\mathcal{P}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}}
$$

Now we will present the following theorem:

Theorem 2.1.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps such that

$$
\begin{aligned}
& {\left.\left[L_{1}\right]\right|_{\mathcal{P}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}},} \\
& \operatorname{tr} \circ L_{1}(h) \geq \Delta(\hat{h}), \quad \operatorname{tr} \circ L_{2}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1}
\end{aligned}
$$

Now we will present the following theorem:

Theorem 2.1.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps such that

$$
\begin{aligned}
& {\left.\left[L_{1}\right]\right|_{\mathcal{P}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}},} \\
& \operatorname{tr} \circ L_{1}(h) \geq \Delta(\hat{h}), \operatorname{tr} \circ L_{2}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \\
& \text { and }\left|\operatorname{tr} \circ L_{1}(h)-\operatorname{tr} \circ L_{2}(h)\right|<\sigma \text { for all } h \in \mathcal{H}_{2},
\end{aligned}
$$

Now we will present the following theorem:

Theorem 2.1.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps such that

$$
\begin{aligned}
& {\left.\left[L_{1}\right]\right|_{\mathcal{P}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}},} \\
& \operatorname{tr} \circ L_{1}(h) \geq \Delta(\hat{h}), \operatorname{tr} \circ L_{2}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \\
& \text { and }\left|\operatorname{tr} \circ L_{1}(h)-\operatorname{tr} \circ L_{2}(h)\right|<\sigma \text { for all } h \in \mathcal{H}_{2},
\end{aligned}
$$

then there exists a unitary $u \in M_{k}$ such that

Now we will present the following theorem:

Theorem 2.1.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps such that

$$
\begin{aligned}
& {\left.\left[L_{1}\right]\right|_{\mathcal{P}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}},} \\
& \operatorname{tr} \circ L_{1}(h) \geq \Delta(\hat{h}) \text {, } \operatorname{tr} \circ L_{2}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \\
& \text { and }\left|\operatorname{tr} \circ L_{1}(h)-\operatorname{tr} \circ L_{2}(h)\right|<\sigma \text { for all } h \in \mathcal{H}_{2},
\end{aligned}
$$

then there exists a unitary $u \in M_{k}$ such that

$$
\begin{equation*}
\| \operatorname{Ad} u \circ L_{1}(f)-L_{2}(f) \mid<\epsilon \text { for all } f \in \mathcal{F} \tag{e10.48}
\end{equation*}
$$

We begin with the following:
Theorem 2.2.
Let X be a connected compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$.

We begin with the following:

Theorem 2.2.

Let X be a connected compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$. Let $\mathcal{F} \subseteq C$ be a finite subset, and let $\epsilon>0$ be a constant.

We begin with the following:
Theorem 2.2.
Let X be a connected compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$. Let $\mathcal{F} \subseteq C$ be a finite subset, and let $\epsilon>0$ be a constant. There is a finite subset $\mathcal{H}_{1} \subseteq C^{+}$such that, for any $\sigma_{1}>0$,

We begin with the following:
Theorem 2.2.
Let X be a connected compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$. Let $\mathcal{F} \subseteq C$ be a finite subset, and let $\epsilon>0$ be a constant. There is a finite subset $\mathcal{H}_{1} \subseteq C^{+}$such that, for any $\sigma_{1}>0$, there is a finite subset $\mathcal{H}_{2} \subseteq C_{\text {s.a. }}$ and $\sigma_{2}>0$ such that

We begin with the following:
Theorem 2.2.
Let X be a connected compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$. Let $\mathcal{F} \subseteq C$ be a finite subset, and let $\epsilon>0$ be a constant. There is a finite subset $\mathcal{H}_{1} \subseteq C^{+}$such that, for any $\sigma_{1}>0$, there is a finite subset $\mathcal{H}_{2} \subseteq C_{\text {s.a. and }} \sigma_{2}>0$ such that for any unital homomorphisms $\phi, \psi: C \rightarrow M_{n}$

We begin with the following:
Theorem 2.2.
Let X be a connected compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$. Let $\mathcal{F} \subseteq C$ be a finite subset, and let $\epsilon>0$ be a constant. There is a finite subset $\mathcal{H}_{1} \subseteq C^{+}$such that, for any $\sigma_{1}>0$, there is a finite subset $\mathcal{H}_{2} \subseteq C_{\text {s.a. and }} \sigma_{2}>0$ such that for any unital homomorphisms $\phi, \psi: C \rightarrow M_{n}$ (for a matrix algebra M_{n}) satisfying

We begin with the following:
Theorem 2.2.
Let X be a connected compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$. Let $\mathcal{F} \subseteq C$ be a finite subset, and let $\epsilon>0$ be a constant. There is a finite subset $\mathcal{H}_{1} \subseteq C^{+}$such that, for any $\sigma_{1}>0$, there is a finite subset $\mathcal{H}_{2} \subseteq C_{\text {s.a. and }} \sigma_{2}>0$ such that for any unital homomorphisms $\phi, \psi: C \rightarrow M_{n}$ (for a matrix algebra M_{n}) satisfying
(1) $\phi(h)>\sigma_{1}$ and $\psi(h)>\sigma_{1}$ for any $h \in \mathcal{H}_{1}$,

We begin with the following:
Theorem 2.2.
Let X be a connected compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$. Let $\mathcal{F} \subseteq C$ be a finite subset, and let $\epsilon>0$ be a constant. There is a finite subset $\mathcal{H}_{1} \subseteq C^{+}$such that, for any $\sigma_{1}>0$, there is a finite subset $\mathcal{H}_{2} \subseteq C_{\text {s.a. and }} \sigma_{2}>0$ such that for any unital homomorphisms $\phi, \psi: C \rightarrow M_{n}$ (for a matrix algebra M_{n}) satisfying
(1) $\phi(h)>\sigma_{1}$ and $\psi(h)>\sigma_{1}$ for any $h \in \mathcal{H}_{1}$, and
(2) $|\operatorname{tr} \circ \phi(h)-\operatorname{tr} \circ \psi(h)|<\sigma_{2}$ for any $h \in \mathcal{H}_{2}$,

We begin with the following:
Theorem 2.2.
Let X be a connected compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$. Let $\mathcal{F} \subseteq C$ be a finite subset, and let $\epsilon>0$ be a constant. There is a finite subset $\mathcal{H}_{1} \subseteq C^{+}$such that, for any $\sigma_{1}>0$, there is a finite subset $\mathcal{H}_{2} \subseteq C_{\text {s.a. and }} \sigma_{2}>0$ such that for any unital homomorphisms $\phi, \psi: C \rightarrow M_{n}$ (for a matrix algebra M_{n}) satisfying
(1) $\phi(h)>\sigma_{1}$ and $\psi(h)>\sigma_{1}$ for any $h \in \mathcal{H}_{1}$, and
(2) $|\operatorname{tr} \circ \phi(h)-\operatorname{tr} \circ \psi(h)|<\sigma_{2}$ for any $h \in \mathcal{H}_{2}$,
then there is a unitary $u \in M_{n}$ such that

We begin with the following:

Theorem 2.2.

Let X be a connected compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$. Let $\mathcal{F} \subseteq C$ be a finite subset, and let $\epsilon>0$ be a constant. There is a finite subset $\mathcal{H}_{1} \subseteq C^{+}$such that, for any $\sigma_{1}>0$, there is a finite subset $\mathcal{H}_{2} \subseteq C_{\text {s.a. and }} \sigma_{2}>0$ such that for any unital homomorphisms $\phi, \psi: C \rightarrow M_{n}$ (for a matrix algebra M_{n}) satisfying
(1) $\phi(h)>\sigma_{1}$ and $\psi(h)>\sigma_{1}$ for any $h \in \mathcal{H}_{1}$, and
(2) $|\operatorname{tr} \circ \phi(h)-\operatorname{tr} \circ \psi(h)|<\sigma_{2}$ for any $h \in \mathcal{H}_{2}$,
then there is a unitary $u \in M_{n}$ such that

$$
\left\|\phi(f)-u^{*} \psi(f) u\right\|<\epsilon \quad \text { for any } f \in \mathcal{F}
$$

We begin with the following:

Theorem 2.2.

Let X be a connected compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$. Let $\mathcal{F} \subseteq C$ be a finite subset, and let $\epsilon>0$ be a constant. There is a finite subset $\mathcal{H}_{1} \subseteq C^{+}$such that, for any $\sigma_{1}>0$, there is a finite subset $\mathcal{H}_{2} \subseteq C_{\text {s.a. and }} \sigma_{2}>0$ such that for any unital homomorphisms $\phi, \psi: C \rightarrow M_{n}$ (for a matrix algebra M_{n}) satisfying
(1) $\phi(h)>\sigma_{1}$ and $\psi(h)>\sigma_{1}$ for any $h \in \mathcal{H}_{1}$, and
(2) $|\operatorname{tr} \circ \phi(h)-\operatorname{tr} \circ \psi(h)|<\sigma_{2}$ for any $h \in \mathcal{H}_{2}$,
then there is a unitary $u \in M_{n}$ such that

$$
\left\|\phi(f)-u^{*} \psi(f) u\right\|<\epsilon \quad \text { for any } f \in \mathcal{F}
$$

Proof.

The proof is just a modification of that of Theorem 1.4.

Theorem 2.3.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$

Theorem 2.3.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.

Theorem 2.3.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$,

Theorem 2.3.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, there exists a finite subset \mathcal{P} of projections in C,

Theorem 2.3.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, there exists a finite subset \mathcal{P} of projections in C, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$,

Theorem 2.3.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, there exists a finite subset \mathcal{P} of projections in C, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following:

Theorem 2.3.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, there exists a finite subset \mathcal{P} of projections in C, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

Theorem 2.3.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, there exists a finite subset \mathcal{P} of projections in C, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\left.\left[\phi_{1}\right]\right|_{\mathcal{P}}=\left.\left[\phi_{2}\right]\right|_{\mathcal{P}},
$$

Theorem 2.3.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, there exists a finite subset \mathcal{P} of projections in C, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\begin{aligned}
& {\left.\left[\phi_{1}\right]\right|_{\mathcal{P}}=\left.\left[\phi_{2}\right]\right|_{\mathcal{P}},} \\
& \tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and }
\end{aligned}
$$

Theorem 2.3.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, there exists a finite subset \mathcal{P} of projections in C, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\begin{aligned}
& {\left.\left[\phi_{1}\right]\right|_{\mathcal{P}}=\left.\left[\phi_{2}\right]\right|_{\mathcal{P}},} \\
& \tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and } \\
& \left|\tau \circ \phi_{1}(g)-\tau \circ \phi_{2}(g)\right|<\sigma \text { for all } g \in \mathcal{H}_{2}
\end{aligned}
$$

Theorem 2.3.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, there exists a finite subset \mathcal{P} of projections in C, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\begin{aligned}
& {\left.\left[\phi_{1}\right]\right|_{\mathcal{P}}=\left.\left[\phi_{2}\right]\right|_{\mathcal{P}},} \\
& \tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and } \\
& \left|\tau \circ \phi_{1}(g)-\tau \circ \phi_{2}(g)\right|<\sigma \text { for all } g \in \mathcal{H}_{2}
\end{aligned}
$$

then, there exist a unitary $u \in M_{n}$ such that

Theorem 2.3.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, there exists a finite subset \mathcal{P} of projections in C, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\begin{aligned}
& {\left.\left[\phi_{1}\right]\right|_{\mathcal{P}}=\left.\left[\phi_{2}\right]\right|_{\mathcal{P}},} \\
& \tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and } \\
& \left|\tau \circ \phi_{1}(g)-\tau \circ \phi_{2}(g)\right|<\sigma \text { for all } g \in \mathcal{H}_{2}
\end{aligned}
$$

then, there exist a unitary $u \in M_{n}$ such that

$$
\begin{equation*}
\left\|\operatorname{Ad} u \circ \phi_{1}(f)-\phi_{2}(f)\right\|<\epsilon \text { for all } f \in \mathcal{F} . \tag{e10.49}
\end{equation*}
$$

Proof.

In the case that X is connected, then it follows immediately from the previous theorem.

Proof.

In the case that X is connected, then it follows immediately from the previous theorem. Then it is clear that the case X has finitely many connected components follows.

Proof.

In the case that X is connected, then it follows immediately from the previous theorem. Then it is clear that the case X has finitely many connected components follows. The general case follows from the fact that $C(X)=\lim _{n \rightarrow \infty}\left(C\left(X_{n}\right), \imath_{n}\right)$,

Proof.

In the case that X is connected, then it follows immediately from the previous theorem. Then it is clear that the case X has finitely many connected components follows. The general case follows from the fact that $C(X)=\lim _{n \rightarrow \infty}\left(C\left(X_{n}\right), \imath_{n}\right)$, where X_{n} is a polygon and \imath_{n} is injective.

Proof.

In the case that X is connected, then it follows immediately from the previous theorem. Then it is clear that the case X has finitely many connected components follows. The general case follows from the fact that $C(X)=\lim _{n \rightarrow \infty}\left(C\left(X_{n}\right), \imath_{n}\right)$, where X_{n} is a polygon and \imath_{n} is injective.

Remark: \mathcal{P} can be chosen to be a set of mutually orthogonal projections which corresponds to a set of disjoint clopen subsets with union X.

Lemma 2.4.
Let X be a compact metric space

Lemma 2.4.
Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection.

Lemma 2.4.
Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.

Lemma 2.4.
Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.

Lemma 2.4.

Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$ and any $\sigma>0$,

Lemma 2.4.

Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$ and any $\sigma>0$, there exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$,

Lemma 2.4.

Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$ and any $\sigma>0$, there exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following:

Lemma 2.4.

Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$ and any $\sigma>0$, there exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms

Lemma 2.4.

Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$ and any $\sigma>0$, there exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and }
$$

Lemma 2.4.

Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$ and any $\sigma>0$, there exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\begin{array}{r}
\tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and } \\
\left|\tau \circ \phi_{1}(g)-\tau \circ \phi_{2}(g)\right|<\sigma \text { for all } g \in \mathcal{H}_{2},
\end{array}
$$

Lemma 2.4.

Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$ and any $\sigma>0$, there exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\begin{array}{r}
\tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and } \\
\left|\tau \circ \phi_{1}(g)-\tau \circ \phi_{2}(g)\right|<\sigma \text { for all } g \in \mathcal{H}_{2},
\end{array}
$$

then, there exist a projection $p \in M_{n}$, a unital homomorphism $H: A \rightarrow p M_{n} p$,

Lemma 2.4.

Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$ and any $\sigma>0$, there exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\begin{array}{r}
\tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and } \\
\left|\tau \circ \phi_{1}(g)-\tau \circ \phi_{2}(g)\right|<\sigma \text { for all } g \in \mathcal{H}_{2},
\end{array}
$$

then, there exist a projection $p \in M_{n}$, a unital homomorphism $H: A \rightarrow p M_{n} p$, unital homomorphisms $h_{1}, h_{2}: A \rightarrow(1-p) M_{n}(1-p)$ and a unitary $u \in M_{n}$ such that

Lemma 2.4.

Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$ and any $\sigma>0$, there exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\begin{array}{r}
\tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and } \\
\left|\tau \circ \phi_{1}(g)-\tau \circ \phi_{2}(g)\right|<\sigma \text { for all } g \in \mathcal{H}_{2},
\end{array}
$$

then, there exist a projection $p \in M_{n}$, a unital homomorphism $H: A \rightarrow p M_{n} p, \quad$ unital homomorphisms $h_{1}, h_{2}: A \rightarrow(1-p) M_{n}(1-p)$ and a unitary $u \in M_{n}$ such that

$$
\left\|\operatorname{Ad} u \circ \phi_{1}(f)-\left(h_{1}(f)+H(f)\right)\right\|<\epsilon,
$$

Lemma 2.4.

Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$ and any $\sigma>0$, there exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\begin{array}{r}
\tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and } \\
\left|\tau \circ \phi_{1}(g)-\tau \circ \phi_{2}(g)\right|<\sigma \text { for all } g \in \mathcal{H}_{2},
\end{array}
$$

then, there exist a projection $p \in M_{n}$, a unital homomorphism $H: A \rightarrow p M_{n} p, \quad$ unital homomorphisms $h_{1}, h_{2}: A \rightarrow(1-p) M_{n}(1-p)$ and a unitary $u \in M_{n}$ such that

$$
\begin{aligned}
& \left\|\operatorname{Ad} u \circ \phi_{1}(f)-\left(h_{1}(f)+H(f)\right)\right\|<\epsilon, \\
& \| \phi_{2}(f)-\left(h_{2}(f)+H(f) \|<\epsilon \text { for all } f \in \mathcal{F}\right.
\end{aligned}
$$

Lemma 2.4.

Let X be a compact metric space and let $A=P M_{r}(C(X)) P$, where $P \in C\left(X, M_{n}\right)$ is a projection. Let $\Delta: A_{1}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$ and any $\sigma>0$, there exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two unital homomorphisms such that

$$
\begin{array}{r}
\tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and } \\
\left|\tau \circ \phi_{1}(g)-\tau \circ \phi_{2}(g)\right|<\sigma \text { for all } g \in \mathcal{H}_{2},
\end{array}
$$

then, there exist a projection $p \in M_{n}$, a unital homomorphism $H: A \rightarrow p M_{n} p, \quad$ unital homomorphisms $h_{1}, h_{2}: A \rightarrow(1-p) M_{n}(1-p)$ and a unitary $u \in M_{n}$ such that

$$
\begin{aligned}
& \left\|\operatorname{Ad} u \circ \phi_{1}(f)-\left(h_{1}(f)+H(f)\right)\right\|<\epsilon, \\
& \| \phi_{2}(f)-\left(h_{2}(f)+H(f) \|<\epsilon \text { for all } f \in \mathcal{F}\right. \\
& \text { and } \tau(1-p)<\sigma,
\end{aligned}
$$

where τ is the tracial state of M_{n}.

Idea of the proof

Idea of the proof

We may write

$$
\phi_{i}(f)=\sum_{k=1}^{K} f\left(x_{k, i}\right) q_{k, i} \text { for all } f \in M_{r}(C(X))
$$

Idea of the proof

We may write

$$
\phi_{i}(f)=\sum_{k=1}^{K} f\left(x_{k, i}\right) q_{k, i} \text { for all } f \in M_{r}(C(X))
$$

where $\left\{q_{k, i}: 1 \leq k \leq K\right\}$ is a set of mutually orthogonal rank r projections.

Idea of the proof

We may write

$$
\phi_{i}(f)=\sum_{k=1}^{K} f\left(x_{k, i}\right) q_{k, i} \text { for all } f \in M_{r}(C(X))
$$

where $\left\{q_{k, i}: 1 \leq k \leq K\right\}$ is a set of mutually orthogonal rank r projections. Therefore we may write

$$
\phi_{i}=\phi_{i, 0} \oplus \phi_{i, 1} .
$$

where $\phi_{i .0}: A \rightarrow P_{i} M_{n} P_{i}$ and $\phi_{i, 1}: A \rightarrow\left(1-P_{i}\right) M_{n}\left(1-P_{i}\right), i=1,2$,

Idea of the proof

We may write

$$
\phi_{i}(f)=\sum_{k=1}^{K} f\left(x_{k, i}\right) q_{k, i} \text { for all } f \in M_{r}(C(X))
$$

where $\left\{q_{k, i}: 1 \leq k \leq K\right\}$ is a set of mutually orthogonal rank r projections. Therefore we may write

$$
\phi_{i}=\phi_{i, 0} \oplus \phi_{i, 1} .
$$

where $\phi_{i .0}: A \rightarrow P_{i} M_{n} P_{i}$ and $\phi_{i, 1}: A \rightarrow\left(1-P_{i}\right) M_{n}\left(1-P_{i}\right), i=1,2$, such that $\operatorname{tr}\left(P_{i}\right)<\sigma$ and $\left.\left[\phi_{1,1}\right]\right|_{\mathcal{P}}=\left.\left[\phi_{2,1}\right]\right|_{\mathcal{P}}$.

Idea of the proof

We may write

$$
\phi_{i}(f)=\sum_{k=1}^{K} f\left(x_{k, i}\right) q_{k, i} \text { for all } f \in M_{r}(C(X))
$$

where $\left\{q_{k, i}: 1 \leq k \leq K\right\}$ is a set of mutually orthogonal rank r projections. Therefore we may write

$$
\phi_{i}=\phi_{i, 0} \oplus \phi_{i, 1} .
$$

where $\phi_{i .0}: A \rightarrow P_{i} M_{n} P_{i}$ and $\phi_{i, 1}: A \rightarrow\left(1-P_{i}\right) M_{n}\left(1-P_{i}\right), i=1,2$, such that $\operatorname{tr}\left(P_{i}\right)<\sigma$ and $\left.\left[\phi_{1,1}\right]\right|_{\mathcal{P}}=\left.\left[\phi_{2,1}\right]\right|_{\mathcal{P}}$. We then have

$$
\operatorname{Ad} u \circ \phi_{1,1} \approx_{\epsilon / 2} \phi_{2,1}
$$

Let $H=\phi_{2,1}$.

Proof: We will only prove the case that $A=M_{r}(C(X))$.

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$.

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections,

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset,

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}.

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}. Without loss of generality, we may assume that $1_{A} \in \mathcal{F}, 1_{A} \in \mathcal{H}_{1}^{\prime} \subset \mathcal{H}_{2}^{\prime}$ and $\mathcal{H}_{2}^{\prime} \subset A_{+}^{1} \backslash\{0\}$.

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}. Without loss of generality, we may assume that $1_{A} \in \mathcal{F}, 1_{A} \in \mathcal{H}_{1}^{\prime} \subset \mathcal{H}_{2}^{\prime}$ and $\mathcal{H}_{2}^{\prime} \subset A_{+}^{1} \backslash\{0\}$. Put

$$
\begin{equation*}
\sigma_{0}=\min \left\{\Delta_{1}(\hat{g}): g \in \mathcal{H}_{2}^{\prime}\right\} \tag{e10.50}
\end{equation*}
$$

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}. Without loss of generality, we may assume that $1_{A} \in \mathcal{F}, 1_{A} \in \mathcal{H}_{1}^{\prime} \subset \mathcal{H}_{2}^{\prime}$ and $\mathcal{H}_{2}^{\prime} \subset A_{+}^{1} \backslash\{0\}$. Put

$$
\sigma_{0}=\min \left\{\Delta_{1}(\hat{g}): g \in \mathcal{H}_{2}^{\prime}\right\}
$$

We may write $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$.

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\quad \mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}. Without loss of generality, we may assume that $1_{A} \in \mathcal{F}, 1_{A} \in \mathcal{H}_{1}^{\prime} \subset \mathcal{H}_{2}^{\prime}$ and $\mathcal{H}_{2}^{\prime} \subset A_{+}^{1} \backslash\{0\}$. Put

$$
\begin{equation*}
\sigma_{0}=\min \left\{\Delta_{1}(\hat{g}): g \in \mathcal{H}_{2}^{\prime}\right\} \tag{e10.50}
\end{equation*}
$$

We may write $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$. Without loss of generality, we may assume that $\left\{p_{i}: 1 \leq i \leq k_{1}\right\}$ is a set of mutually orthogonal projections such that $1_{A}=\sum_{i=1}^{k_{1}} p_{i}$.

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\quad \mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}. Without loss of generality, we may assume that $1_{A} \in \mathcal{F}, 1_{A} \in \mathcal{H}_{1}^{\prime} \subset \mathcal{H}_{2}^{\prime}$ and $\mathcal{H}_{2}^{\prime} \subset A_{+}^{1} \backslash\{0\}$. Put

$$
\begin{equation*}
\sigma_{0}=\min \left\{\Delta_{1}(\hat{g}): g \in \mathcal{H}_{2}^{\prime}\right\} \tag{e10.50}
\end{equation*}
$$

We may write $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$. Without loss of generality, we may assume that $\left\{p_{i}: 1 \leq i \leq k_{1}\right\}$ is a set of mutually orthogonal projections such that $1_{A}=\sum_{i=1}^{k_{1}} p_{i}$. Let $\mathcal{H}_{1}=\mathcal{H}_{1}^{\prime} \cup\left\{p_{i}: 1 \leq i \leq k_{1}\right\} \cup \mathcal{H}_{1}^{\prime \prime}$ and $\mathcal{H}_{2}=\mathcal{H}_{2}^{\prime} \cup \mathcal{H}_{1}$.

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\quad \mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}. Without loss of generality, we may assume that $1_{A} \in \mathcal{F}, 1_{A} \in \mathcal{H}_{1}^{\prime} \subset \mathcal{H}_{2}^{\prime}$ and $\mathcal{H}_{2}^{\prime} \subset A_{+}^{1} \backslash\{0\}$. Put

$$
\begin{equation*}
\sigma_{0}=\min \left\{\Delta_{1}(\hat{g}): g \in \mathcal{H}_{2}^{\prime}\right\} \tag{e10.50}
\end{equation*}
$$

We may write $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$. Without loss of generality, we may assume that $\left\{p_{i}: 1 \leq i \leq k_{1}\right\}$ is a set of mutually orthogonal projections such that $1_{A}=\sum_{i=1}^{k_{1}} p_{i}$. Let $\mathcal{H}_{1}=\mathcal{H}_{1}^{\prime} \cup\left\{p_{i}: 1 \leq i \leq k_{1}\right\} \cup \mathcal{H}_{1}^{\prime \prime}$ and $\mathcal{H}_{2}=\mathcal{H}_{2}^{\prime} \cup \mathcal{H}_{1}$. Let $\sigma_{1}=\min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{2}\right\}$.

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\quad \mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}. Without loss of generality, we may assume that $1_{A} \in \mathcal{F}, 1_{A} \in \mathcal{H}_{1}^{\prime} \subset \mathcal{H}_{2}^{\prime}$ and $\mathcal{H}_{2}^{\prime} \subset A_{+}^{1} \backslash\{0\}$. Put

$$
\begin{equation*}
\sigma_{0}=\min \left\{\Delta_{1}(\hat{g}): g \in \mathcal{H}_{2}^{\prime}\right\} \tag{e10.50}
\end{equation*}
$$

We may write $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$. Without loss of generality, we may assume that $\left\{p_{i}: 1 \leq i \leq k_{1}\right\}$ is a set of mutually orthogonal projections such that $1_{A}=\sum_{i=1}^{k_{1}} p_{i}$. Let $\mathcal{H}_{1}=\mathcal{H}_{1}^{\prime} \cup\left\{p_{i}: 1 \leq i \leq k_{1}\right\} \cup \mathcal{H}_{1}^{\prime \prime}$ and $\mathcal{H}_{2}=\mathcal{H}_{2}^{\prime} \cup \mathcal{H}_{1}$. Let $\sigma_{1}=\min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{2}\right\}$. Choose $\delta=\min \left\{\sigma_{0} \cdot \sigma / 4 k_{1}, \sigma_{0} \cdot \delta_{1} / 4 k_{1}, \sigma_{1} / 16 k_{1}\right\}$.

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\quad \mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}. Without loss of generality, we may assume that $1_{A} \in \mathcal{F}, 1_{A} \in \mathcal{H}_{1}^{\prime} \subset \mathcal{H}_{2}^{\prime}$ and $\mathcal{H}_{2}^{\prime} \subset A_{+}^{1} \backslash\{0\}$. Put

$$
\begin{equation*}
\sigma_{0}=\min \left\{\Delta_{1}(\hat{g}): g \in \mathcal{H}_{2}^{\prime}\right\} \tag{e10.50}
\end{equation*}
$$

We may write $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$. Without loss of generality, we may assume that $\left\{p_{i}: 1 \leq i \leq k_{1}\right\}$ is a set of mutually orthogonal projections such that $1_{A}=\sum_{i=1}^{k_{1}} p_{i}$. Let $\mathcal{H}_{1}=\mathcal{H}_{1}^{\prime} \cup\left\{p_{i}: 1 \leq i \leq k_{1}\right\} \cup \mathcal{H}_{1}^{\prime \prime}$ and $\mathcal{H}_{2}=\mathcal{H}_{2}^{\prime} \cup \mathcal{H}_{1}$. Let $\sigma_{1}=\min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{2}\right\}$. Choose $\delta=\min \left\{\sigma_{0} \cdot \sigma / 4 k_{1}, \sigma_{0} \cdot \delta_{1} / 4 k_{1}, \sigma_{1} / 16 k_{1}\right\}$. Suppose now that $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ are two unital homomorphisms

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\quad \mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}. Without loss of generality, we may assume that $1_{A} \in \mathcal{F}, 1_{A} \in \mathcal{H}_{1}^{\prime} \subset \mathcal{H}_{2}^{\prime}$ and $\mathcal{H}_{2}^{\prime} \subset A_{+}^{1} \backslash\{0\}$. Put

$$
\begin{equation*}
\sigma_{0}=\min \left\{\Delta_{1}(\hat{g}): g \in \mathcal{H}_{2}^{\prime}\right\} \tag{e10.50}
\end{equation*}
$$

We may write $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$. Without loss of generality, we may assume that $\left\{p_{i}: 1 \leq i \leq k_{1}\right\}$ is a set of mutually orthogonal projections such that $1_{A}=\sum_{i=1}^{k_{1}} p_{i}$. Let $\mathcal{H}_{1}=\mathcal{H}_{1}^{\prime} \cup\left\{p_{i}: 1 \leq i \leq k_{1}\right\} \cup \mathcal{H}_{1}^{\prime \prime}$ and $\mathcal{H}_{2}=\mathcal{H}_{2}^{\prime} \cup \mathcal{H}_{1}$. Let $\sigma_{1}=\min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{2}\right\}$. Choose $\delta=\min \left\{\sigma_{0} \cdot \sigma / 4 k_{1}, \sigma_{0} \cdot \delta_{1} / 4 k_{1}, \sigma_{1} / 16 k_{1}\right\}$. Suppose now that $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ are two unital homomorphisms described in the lemma for the above $\mathcal{H}_{1}, \mathcal{H}_{2}$ and Δ.

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}. Without loss of generality, we may assume that $1_{A} \in \mathcal{F}, 1_{A} \in \mathcal{H}_{1}^{\prime} \subset \mathcal{H}_{2}^{\prime}$ and $\mathcal{H}_{2}^{\prime} \subset A_{+}^{1} \backslash\{0\}$. Put

$$
\begin{equation*}
\sigma_{0}=\min \left\{\Delta_{1}(\hat{g}): g \in \mathcal{H}_{2}^{\prime}\right\} \tag{e10.50}
\end{equation*}
$$

We may write $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$. Without loss of generality, we may assume that $\left\{p_{i}: 1 \leq i \leq k_{1}\right\}$ is a set of mutually orthogonal projections such that $1_{A}=\sum_{i=1}^{k_{1}} p_{i}$. Let $\mathcal{H}_{1}=\mathcal{H}_{1}^{\prime} \cup\left\{p_{i}: 1 \leq i \leq k_{1}\right\} \cup \mathcal{H}_{1}^{\prime \prime}$ and $\mathcal{H}_{2}=\mathcal{H}_{2}^{\prime} \cup \mathcal{H}_{1}$. Let $\sigma_{1}=\min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{2}\right\}$. Choose $\delta=\min \left\{\sigma_{0} \cdot \sigma / 4 k_{1}, \sigma_{0} \cdot \delta_{1} / 4 k_{1}, \sigma_{1} / 16 k_{1}\right\}$. Suppose now that $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ are two unital homomorphisms described in the lemma for the above $\mathcal{H}_{1}, \mathcal{H}_{2}$ and Δ.
We may write $\phi_{j}(f)=\sum_{k=1}^{n} f\left(x_{k, j}\right) q_{k, j}$ for all $f \in M_{r}(C(X))$,

Proof: We will only prove the case that $A=M_{r}(C(X))$. Let $\Delta_{1}=(1 / 2) \Delta$. Let $\mathcal{P} \in A$ be a finite subset of mutually orthogonal projections, $\mathcal{H}_{1}^{\prime} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}_{1}) be a finite subset, $\quad \mathcal{H}_{2}^{\prime} \subset A_{\text {s.a. }}$. (in place of \mathcal{H}_{2}) be a finite subset and $\delta_{1}>0$ (in place of δ) required by Theorem 2.3 for $\epsilon / 2$ (in place of ϵ), \mathcal{F} and Δ_{1}. Without loss of generality, we may assume that $1_{A} \in \mathcal{F}, 1_{A} \in \mathcal{H}_{1}^{\prime} \subset \mathcal{H}_{2}^{\prime}$ and $\mathcal{H}_{2}^{\prime} \subset A_{+}^{1} \backslash\{0\}$. Put

$$
\begin{equation*}
\sigma_{0}=\min \left\{\Delta_{1}(\hat{g}): g \in \mathcal{H}_{2}^{\prime}\right\} \tag{e10.50}
\end{equation*}
$$

We may write $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{k_{1}}\right\}$. Without loss of generality, we may assume that $\left\{p_{i}: 1 \leq i \leq k_{1}\right\}$ is a set of mutually orthogonal projections such that $1_{A}=\sum_{i=1}^{k_{1}} p_{i}$. Let $\mathcal{H}_{1}=\mathcal{H}_{1}^{\prime} \cup\left\{p_{i}: 1 \leq i \leq k_{1}\right\} \cup \mathcal{H}_{1}^{\prime \prime}$ and $\mathcal{H}_{2}=\mathcal{H}_{2}^{\prime} \cup \mathcal{H}_{1}$. Let $\sigma_{1}=\min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{2}\right\}$. Choose $\delta=\min \left\{\sigma_{0} \cdot \sigma / 4 k_{1}, \sigma_{0} \cdot \delta_{1} / 4 k_{1}, \sigma_{1} / 16 k_{1}\right\}$. Suppose now that $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ are two unital homomorphisms described in the lemma for the above $\mathcal{H}_{1}, \mathcal{H}_{2}$ and Δ.
We may write $\phi_{j}(f)=\sum_{k=1}^{n} f\left(x_{k, j}\right) q_{k, j}$ for all $f \in M_{r}(C(X))$, where $\left\{q_{k, j}: 1 \leq k \leq n\right\}(j=1,2)$ is a set of mutually orthogonal rank r projections and $x_{k, j} \in X$.

We have

$$
\begin{equation*}
\left|\tau \circ \phi_{1}\left(p_{i}\right)-\tau \circ \phi_{2}\left(p_{i}\right)\right|<\delta, \quad i=1,2, \ldots, k_{1}, \tag{e10.51}
\end{equation*}
$$

We have

$$
\left|\tau \circ \phi_{1}\left(p_{i}\right)-\tau \circ \phi_{2}\left(p_{i}\right)\right|<\delta, \quad i=1,2, \ldots, k_{1},
$$

where τ is the tracial state on M_{n}.

We have

$$
\begin{equation*}
\left|\tau \circ \phi_{1}\left(p_{i}\right)-\tau \circ \phi_{2}\left(p_{i}\right)\right|<\delta, \quad i=1,2, \ldots, k_{1}, \tag{e10.51}
\end{equation*}
$$

where τ is the tracial state on M_{n}. Therefore, there exists a projection $P_{0, j} \in M_{n}$ such that

We have

$$
\begin{equation*}
\left|\tau \circ \phi_{1}\left(p_{i}\right)-\tau \circ \phi_{2}\left(p_{i}\right)\right|<\delta, \quad i=1,2, \ldots, k_{1}, \tag{e10.51}
\end{equation*}
$$

where τ is the tracial state on M_{n}. Therefore, there exists a projection $P_{0, j} \in M_{n}$ such that

$$
\begin{equation*}
\tau\left(P_{0, j}\right)<k_{1} \delta<\sigma_{0} \cdot \sigma, j=1,2 \tag{e10.52}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left|\tau \circ \phi_{1}\left(p_{i}\right)-\tau \circ \phi_{2}\left(p_{i}\right)\right|<\delta, \quad i=1,2, \ldots, k_{1}, \tag{e10.51}
\end{equation*}
$$

where τ is the tracial state on M_{n}. Therefore, there exists a projection $P_{0, j} \in M_{n}$ such that

$$
\begin{equation*}
\tau\left(P_{0, j}\right)<k_{1} \delta<\sigma_{0} \cdot \sigma, j=1,2 \tag{e10.52}
\end{equation*}
$$

$\operatorname{rank}\left(P_{0,1}\right)=\operatorname{rank}\left(P_{0,2}\right)$,

We have

$$
\begin{equation*}
\left|\tau \circ \phi_{1}\left(p_{i}\right)-\tau \circ \phi_{2}\left(p_{i}\right)\right|<\delta, \quad i=1,2, \ldots, k_{1} \tag{e10.51}
\end{equation*}
$$

where τ is the tracial state on M_{n}. Therefore, there exists a projection $P_{0, j} \in M_{n}$ such that

$$
\begin{equation*}
\tau\left(P_{0, j}\right)<k_{1} \delta<\sigma_{0} \cdot \sigma, \quad j=1,2 \tag{e10.52}
\end{equation*}
$$

$\operatorname{rank}\left(P_{0,1}\right)=\operatorname{rank}\left(P_{0,2}\right)$, unital homomorphisms $\phi_{1,0}: A \rightarrow P_{0,1} M_{n} P_{0,1}$, $\phi_{2,0}: A \rightarrow P_{0,2} M_{n} P_{0,2}$,

We have

$$
\begin{equation*}
\left|\tau \circ \phi_{1}\left(p_{i}\right)-\tau \circ \phi_{2}\left(p_{i}\right)\right|<\delta, \quad i=1,2, \ldots, k_{1} \tag{e10.51}
\end{equation*}
$$

where τ is the tracial state on M_{n}. Therefore, there exists a projection $P_{0, j} \in M_{n}$ such that

$$
\begin{equation*}
\tau\left(P_{0, j}\right)<k_{1} \delta<\sigma_{0} \cdot \sigma, \quad j=1,2 \tag{e10.52}
\end{equation*}
$$

$\operatorname{rank}\left(P_{0,1}\right)=\operatorname{rank}\left(P_{0,2}\right)$, unital homomorphisms $\phi_{1,0}: A \rightarrow P_{0,1} M_{n} P_{0,1}$, $\phi_{2,0}: A \rightarrow P_{0,2} M_{n} P_{0,2}, \phi_{1,1}: A \rightarrow\left(1-P_{0,1}\right) M_{n}\left(1-P_{0,1}\right)$ and $\phi_{1,2}: A \rightarrow\left(1-P_{0,2}\right) M_{n}\left(1-P_{0,2}\right)$

We have

$$
\begin{equation*}
\left|\tau \circ \phi_{1}\left(p_{i}\right)-\tau \circ \phi_{2}\left(p_{i}\right)\right|<\delta, \quad i=1,2, \ldots, k_{1}, \tag{e10.51}
\end{equation*}
$$

where τ is the tracial state on M_{n}. Therefore, there exists a projection $P_{0, j} \in M_{n}$ such that

$$
\begin{equation*}
\tau\left(P_{0, j}\right)<k_{1} \delta<\sigma_{0} \cdot \sigma, \quad j=1,2 \tag{e10.52}
\end{equation*}
$$

$\operatorname{rank}\left(P_{0,1}\right)=\operatorname{rank}\left(P_{0,2}\right)$, unital homomorphisms $\phi_{1,0}: A \rightarrow P_{0,1} M_{n} P_{0,1}$, $\phi_{2,0}: A \rightarrow P_{0,2} M_{n} P_{0,2}, \phi_{1,1}: A \rightarrow\left(1-P_{0,1}\right) M_{n}\left(1-P_{0,1}\right)$ and $\phi_{1,2}: A \rightarrow\left(1-P_{0,2}\right) M_{n}\left(1-P_{0,2}\right)$ such that

$$
\begin{array}{r}
\phi_{1}=\phi_{1,0} \oplus \phi_{1,1}, \quad \phi_{2}=\phi_{2,0} \oplus \phi_{2,1} \\
\tau \circ \phi_{1,1}\left(p_{i}\right)=\tau \circ \phi_{1,2}\left(p_{i}\right), \quad i=1,2, \ldots, k_{1} . \tag{e10.54}
\end{array}
$$

By replacing ϕ_{1} by $\operatorname{Ad} v \circ \phi_{1}$, simplifying the notation, without loss of generality, we may assume that $P_{0,1}=P_{0,2}$. It follows (see ??) that

$$
\begin{equation*}
\left.\left[\phi_{1,1}\right]\right|_{\mathcal{P}}=\left.\left[\phi_{2,1}\right]\right|_{\mathcal{P}} . \tag{e10.55}
\end{equation*}
$$

By (e10.52) and choice of σ_{0}, we also have

$$
\begin{array}{r}
\tau \circ \phi_{1,1}(g) \geq \Delta_{1}(\hat{g}) \text { for all } g \in \mathcal{H}_{1}^{\prime} \text { and } \\
\left|\tau \circ \phi_{1,1}(g)-\tau \circ \phi_{1,2}(g)\right|<\sigma_{0} \cdot \delta_{1} \text { for all } g \in \mathcal{H}_{2}^{\prime} .
\end{array}
$$

Therefore

$$
\begin{array}{r}
t \circ \phi_{1,1}(g) \geq \Delta_{1}(\hat{g}) \text { for all } g \in \mathcal{H}_{1}^{\prime} \text { and } \\
\left|t \circ \phi_{1,1}(g)-t \circ \phi_{1,2}(g)\right|<\delta_{1} \text { for all } g \in \mathcal{H}_{2}^{\prime} \tag{e10.59}
\end{array}
$$

where t is the tracial state on $\left(1-P_{1,0}\right) M_{n}\left(1-P_{1,0}\right)$. By applying ??, there exists a unitary $v_{1} \in\left(1-P_{1,0}\right) M_{n}\left(1-P_{1,0}\right)$ such that

$$
\begin{equation*}
\left\|\operatorname{Ad} v_{1} \circ \phi_{1,1}(f)-\phi_{2,1}(f)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F} . \tag{e10.60}
\end{equation*}
$$

Put $H=\phi_{2,1}$ and $p=P_{1,0}$. The lemma for the case that $A=M_{r}(C(X))$ follows.

Corollary 2.5.
Let X be a compact metric space and let $A=P C\left(X, M_{n}\right) P$,

Corollary 2.5.
Let X be a compact metric space and let $A=P C\left(X, M_{n}\right) P$, where $P \in C(X, F)$ is a projection.

Corollary 2.5.
Let X be a compact metric space and let $A=P C\left(X, M_{n}\right) P$, where $P \in C(X, F)$ is a projection. Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map and let $1>\alpha>1 / 2$.

Corollary 2.5.

Let X be a compact metric space and let $A=P C\left(X, M_{n}\right) P$, where $P \in C(X, F)$ is a projection. Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map and let $1>\alpha>1 / 2$.
For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$,

Corollary 2.5.

Let X be a compact metric space and let $A=P C\left(X, M_{n}\right) P$, where $P \in C(X, F)$ is a projection. Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map and let $1>\alpha>1 / 2$.
For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, any finite subset $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and any integer $K \geq 1$.

Corollary 2.5.

Let X be a compact metric space and let $A=P C\left(X, M_{n}\right) P$, where $P \in C(X, F)$ is a projection. Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map and let $1>\alpha>1 / 2$. For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, any finite subset $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and any integer $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$,

Corollary 2.5.

Let X be a compact metric space and let $A=P C\left(X, M_{n}\right) P$, where $P \in C(X, F)$ is a projection. Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map and let $1>\alpha>1 / 2$.
For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, any finite subset $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and any integer $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}, \delta>0$ satisfying the following:

Corollary 2.5 .

Let X be a compact metric space and let $A=P C\left(X, M_{n}\right) P$, where $P \in C(X, F)$ is a projection. Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map and let $1>\alpha>1 / 2$.
For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, any finite subset $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and any integer $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}, \delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for any integer $n \geq N$) are two unital homomorphisms

Corollary 2.5 .

Let X be a compact metric space and let $A=P C\left(X, M_{n}\right) P$, where $P \in C(X, F)$ is a projection. Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map and let $1>\alpha>1 / 2$.
For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, any finite subset $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and any integer $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}, \delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for any integer $n \geq N$) are two unital homomorphisms such that

$$
\tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and }
$$

Corollary 2.5 .

Let X be a compact metric space and let $A=P C\left(X, M_{n}\right) P$, where $P \in C(X, F)$ is a projection. Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map and let $1>\alpha>1 / 2$.
For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, any finite subset $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and any integer $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}, \delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for any integer $n \geq N$) are two unital homomorphisms such that

$$
\begin{gathered}
\tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and } \\
\left|\tau \circ \phi_{1}(g)-\tau \circ \phi_{2}(g)\right|<\delta \text { for all } g \in \mathcal{H}_{2}
\end{gathered}
$$

Corollary 2.5 .

Let X be a compact metric space and let $A=P C\left(X, M_{n}\right) P$, where $P \in C(X, F)$ is a projection. Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map and let $1>\alpha>1 / 2$.
For any $\epsilon>0$, any finite subset $\mathcal{F} \subset A$, any finite subset $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and any integer $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}, \delta>0$ satisfying the following: If $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for any integer $n \geq N$) are two unital homomorphisms such that

$$
\begin{gathered}
\tau \circ \phi_{1}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and } \\
\left|\tau \circ \phi_{1}(g)-\tau \circ \phi_{2}(g)\right|<\delta \text { for all } g \in \mathcal{H}_{2}
\end{gathered}
$$

then, there exists a unitary $u \in M_{n}$ such that
$\|\operatorname{Ad} u \circ \phi_{1}(f)-(h_{1}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon$,

$$
\begin{aligned}
& \|\operatorname{Ad} u \circ \phi_{1}(f)-(h_{1}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon, \\
& \|\phi_{2}(f)-(h_{2}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon \text { for all } f \in \mathcal{F},
\end{aligned}
$$

$$
\begin{aligned}
& \|\operatorname{Ad} u \circ \phi_{1}(f)-(h_{1}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon, \\
& \|\phi_{2}(f)-(h_{2}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon \text { for all } f \in \mathcal{F}, \\
& \text { and } \tau \circ \psi(g) \geq \alpha \frac{\Delta(\hat{g})}{K} \text { for all } g \in \mathcal{H}_{0},
\end{aligned}
$$

$$
\begin{aligned}
& \|\operatorname{Ad} u \circ \phi_{1}(f)-(h_{1}(f)+\operatorname{diag}(\overbrace{(\psi(f), \psi(f), \ldots, \psi(f)}))\|<\epsilon, \\
& \|\phi_{2}(f)-(h_{2}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon \text { for all } f \in \mathcal{F},
\end{aligned}
$$

$$
\text { and } \tau \circ \psi(g) \geq \alpha \frac{\Delta(\hat{g})}{K} \text { for all } g \in \mathcal{H}_{0}
$$

$\tau \in T\left(M_{n}\right), h_{1}, h_{2}: A \rightarrow e_{0} M_{n} e_{0}$,

$$
\begin{aligned}
& \|\operatorname{Ad} u \circ \phi_{1}(f)-(h_{1}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon, \\
& \|\phi_{2}(f)-(h_{2}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon \text { for all } f \in \mathcal{F}, \\
& \text { and } \tau \circ \psi(g) \geq \alpha \frac{\Delta(\hat{g})}{K} \text { for all } g \in \mathcal{H}_{0},
\end{aligned}
$$

$\tau \in T\left(M_{n}\right), h_{1}, h_{2}: A \rightarrow e_{0} M_{n} e_{0}, \quad \psi: A \rightarrow e_{1} M_{n} e_{1}$ are unital homomorphisms,

$$
\begin{aligned}
& \|\operatorname{Ad} u \circ \phi_{1}(f)-(h_{1}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon, \\
& \|\phi_{2}(f)-(h_{2}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon \text { for all } f \in \mathcal{F}, \\
& \text { and } \tau \circ \psi(g) \geq \alpha \frac{\Delta(\hat{g})}{K} \text { for all } g \in \mathcal{H}_{0},
\end{aligned}
$$

$\tau \in T\left(M_{n}\right), h_{1}, h_{2}: A \rightarrow e_{0} M_{n} e_{0}, \quad \psi: A \rightarrow e_{1} M_{n} e_{1}$ are unital homomorphisms, $e_{0}, e_{1}, e_{2}, \ldots, e_{K} \in M_{n}$ are mutually orthogonal non-zero projections,

$$
\begin{aligned}
& \|\operatorname{Ad} u \circ \phi_{1}(f)-(h_{1}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon, \\
& \|\phi_{2}(f)-(h_{2}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon \text { for all } f \in \mathcal{F}, \\
& \text { and } \tau \circ \psi(g) \geq \alpha \frac{\Delta(\hat{g})}{K} \text { for all } g \in \mathcal{H}_{0},
\end{aligned}
$$

$\tau \in T\left(M_{n}\right), h_{1}, h_{2}: A \rightarrow e_{0} M_{n} e_{0}, \quad \psi: A \rightarrow e_{1} M_{n} e_{1}$ are unital homomorphisms, $e_{0}, e_{1}, e_{2}, \ldots, e_{K} \in M_{n}$ are mutually orthogonal non-zero projections, $e_{1}, e_{2}, \ldots, e_{K}$ are equivalent, $e_{0} \lesssim e_{1}$ and $e_{0}+\sum_{i=1}^{K} e_{i}=1_{M_{n}}$.

$$
\begin{aligned}
& \|\operatorname{Ad} u \circ \phi_{1}(f)-(h_{1}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon, \\
& \|\phi_{2}(f)-(h_{2}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon \text { for all } f \in \mathcal{F}, \\
& \text { and } \tau \circ \psi(g) \geq \alpha \frac{\Delta(\hat{g})}{K} \text { for all } g \in \mathcal{H}_{0},
\end{aligned}
$$

$\tau \in T\left(M_{n}\right), h_{1}, h_{2}: A \rightarrow e_{0} M_{n} e_{0}, \quad \psi: A \rightarrow e_{1} M_{n} e_{1}$ are unital homomorphisms, $e_{0}, e_{1}, e_{2}, \ldots, e_{K} \in M_{n}$ are mutually orthogonal non-zero projections, $e_{1}, e_{2}, \ldots, e_{K}$ are equivalent, $e_{0} \lesssim e_{1}$ and $e_{0}+\sum_{i=1}^{K} e_{i}=1_{M_{n}}$.

Remark: If X has infinitely many points, then there is no need to mention the integer N.

$$
\begin{aligned}
& \|\operatorname{Ad} u \circ \phi_{1}(f)-(h_{1}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon, \\
& \|\phi_{2}(f)-(h_{2}(f)+\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon \text { for all } f \in \mathcal{F}, \\
& \text { and } \tau \circ \psi(g) \geq \alpha \frac{\Delta(\hat{g})}{K} \text { for all } g \in \mathcal{H}_{0},
\end{aligned}
$$

$\tau \in T\left(M_{n}\right), h_{1}, h_{2}: A \rightarrow e_{0} M_{n} e_{0}, \quad \psi: A \rightarrow e_{1} M_{n} e_{1}$ are unital homomorphisms, $e_{0}, e_{1}, e_{2}, \ldots, e_{K} \in M_{n}$ are mutually orthogonal non-zero projections, $e_{1}, e_{2}, \ldots, e_{K}$ are equivalent, $e_{0} \lesssim e_{1}$ and $e_{0}+\sum_{i=1}^{K} e_{i}=1_{M_{n}}$.

Remark: If X has infinitely many points, then there is no need to mention the integer N. The integer n will be large when \mathcal{H}_{0} is large.

Idea of the proof

Idea of the proof

We can write

$$
H \approx_{\epsilon} \phi+\operatorname{diag}(\psi, \psi, \cdots, \psi)
$$

Proof: We prove the case that $C=C(X)$.

Proof: We prove the case that $C=C(X)$. By applying Lemma 2.4 , it is easy to see that it suffices to prove the following statement:

Proof: We prove the case that $C=C(X)$. By applying Lemma 2.4 , it is easy to see that it suffices to prove the following statement:
Let $X, F, P A$ and α be as in the corollary.

Proof: We prove the case that $C=C(X)$. By applying Lemma 2.4 , it is easy to see that it suffices to prove the following statement:
Let $X, F, P A$ and α be as in the corollary.
Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset, let $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and let $K \geq 1$.

Proof: We prove the case that $C=C(X)$. By applying Lemma 2.4 , it is easy to see that it suffices to prove the following statement:
Let $X, F, P A$ and α be as in the corollary.
Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset, let $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and let $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$

Proof: We prove the case that $C=C(X)$. By applying Lemma 2.4 , it is easy to see that it suffices to prove the following statement:
Let $X, F, P A$ and α be as in the corollary.
Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset, let $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and let $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $H: A \rightarrow M_{n}$ (for some $n \geq N$) is a unital homomorphism such that

Proof: We prove the case that $C=C(X)$. By applying Lemma 2.4 , it is easy to see that it suffices to prove the following statement:
Let $X, F, P A$ and α be as in the corollary.
Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset, let $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and let $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $H: A \rightarrow M_{n}$ (for some $n \geq N$) is a unital homomorphism such that

$$
\begin{equation*}
\tau \circ H(g) \geq \Delta(\hat{g}) \text { for all } g \in \mathcal{H}_{0} \tag{e10.61}
\end{equation*}
$$

Proof: We prove the case that $C=C(X)$. By applying Lemma 2.4 , it is easy to see that it suffices to prove the following statement:
Let $X, F, P A$ and α be as in the corollary.
Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset, let $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and let $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $H: A \rightarrow M_{n}$ (for some $n \geq N$) is a unital homomorphism such that

$$
\begin{equation*}
\tau \circ H(g) \geq \Delta(\hat{g}) \text { for all } g \in \mathcal{H}_{0} \tag{e10.61}
\end{equation*}
$$

Then there are mutually orthogonal projections $e_{0}, e_{1}, e_{2}, \ldots, e_{K} \in M_{n}$,

Proof: We prove the case that $C=C(X)$. By applying Lemma 2.4 , it is easy to see that it suffices to prove the following statement:
Let $X, F, P A$ and α be as in the corollary.
Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset, let $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and let $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $H: A \rightarrow M_{n}$ (for some $n \geq N$) is a unital homomorphism such that

$$
\begin{equation*}
\tau \circ H(g) \geq \Delta(\hat{g}) \text { for all } g \in \mathcal{H}_{0} \tag{e10.61}
\end{equation*}
$$

Then there are mutually orthogonal projections $e_{0}, e_{1}, e_{2}, \ldots, e_{K} \in M_{n}$, a unital homomorphism $\phi: A \rightarrow e_{0} M_{n} e_{0}$ and a unital homomorphism $\psi: A \rightarrow e_{1} M_{n} e_{1}$

Proof : We prove the case that $C=C(X)$. By applying Lemma 2.4 , it is easy to see that it suffices to prove the following statement:
Let $X, F, P A$ and α be as in the corollary.
Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset, let $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and let $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $H: A \rightarrow M_{n}$ (for some $n \geq N$) is a unital homomorphism such that

$$
\begin{equation*}
\tau \circ H(g) \geq \Delta(\hat{g}) \text { for all } g \in \mathcal{H}_{0} \tag{e10.61}
\end{equation*}
$$

Then there are mutually orthogonal projections $e_{0}, e_{1}, e_{2}, \ldots, e_{K} \in M_{n}$, a unital homomorphism $\phi: A \rightarrow e_{0} M_{n} e_{0}$ and a unital homomorphism $\psi: A \rightarrow e_{1} M_{n} e_{1}$ such that

$$
\|H(f)-(\phi(f) \oplus \operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon \text { for all } f \in \mathcal{F},
$$

Proof: We prove the case that $C=C(X)$. By applying Lemma 2.4 , it is easy to see that it suffices to prove the following statement:
Let $X, F, P A$ and α be as in the corollary.
Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset, let $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ and let $K \geq 1$. There is an integer $N \geq 1$, a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $H: A \rightarrow M_{n}$ (for some $n \geq N$) is a unital homomorphism such that

$$
\begin{equation*}
\tau \circ H(g) \geq \Delta(\hat{g}) \text { for all } g \in \mathcal{H}_{0} \tag{e10.61}
\end{equation*}
$$

Then there are mutually orthogonal projections $e_{0}, e_{1}, e_{2}, \ldots, e_{K} \in M_{n}$, a unital homomorphism $\phi: A \rightarrow e_{0} M_{n} e_{0}$ and a unital homomorphism $\psi: A \rightarrow e_{1} M_{n} e_{1}$ such that

$$
\begin{array}{r}
\|H(f)-(\phi(f) \oplus \operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon \text { for all } f \in \mathcal{F}, \\
\tau \circ \psi(g) \geq \alpha \Delta(\hat{g}) \text { for all } g \in \mathcal{H}_{0} .
\end{array}
$$

Put

$$
\begin{equation*}
\sigma_{0}=((1-\alpha) / 4) \min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{0}\right\}>0 \tag{e10.62}
\end{equation*}
$$

Put

$$
\sigma_{0}=((1-\alpha) / 4) \min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{0}\right\}>0
$$

Let $\epsilon_{1}=\min \left\{\epsilon / 16, \sigma_{0}\right\}$ and let $\mathcal{F}_{1}=\mathcal{F} \cup \mathcal{H}_{0}$.

Put

$$
\sigma_{0}=((1-\alpha) / 4) \min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{0}\right\}>0
$$

Let $\epsilon_{1}=\min \left\{\epsilon / 16, \sigma_{0}\right\}$ and let $\mathcal{F}_{1}=\mathcal{F} \cup \mathcal{H}_{0}$. Choose $d_{0}>0$ such that

$$
\begin{equation*}
\left|f(x)-f\left(x^{\prime}\right)\right|<\epsilon_{1} \text { for all } f \in \mathcal{F}_{1} \tag{e10.63}
\end{equation*}
$$

Put

$$
\begin{equation*}
\sigma_{0}=((1-\alpha) / 4) \min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{0}\right\}>0 \tag{e10.62}
\end{equation*}
$$

Let $\epsilon_{1}=\min \left\{\epsilon / 16, \sigma_{0}\right\}$ and let $\mathcal{F}_{1}=\mathcal{F} \cup \mathcal{H}_{0}$. Choose $d_{0}>0$ such that

$$
\left|f(x)-f\left(x^{\prime}\right)\right|<\epsilon_{1} \text { for all } f \in \mathcal{F}_{1},
$$

provided that $x, x^{\prime} \in X$ and $\operatorname{dist}\left(x, x^{\prime}\right)<d_{0}$.

Put

$$
\begin{equation*}
\sigma_{0}=((1-\alpha) / 4) \min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{0}\right\}>0 \tag{e10.62}
\end{equation*}
$$

Let $\epsilon_{1}=\min \left\{\epsilon / 16, \sigma_{0}\right\}$ and let $\mathcal{F}_{1}=\mathcal{F} \cup \mathcal{H}_{0}$. Choose $d_{0}>0$ such that

$$
\begin{equation*}
\left|f(x)-f\left(x^{\prime}\right)\right|<\epsilon_{1} \text { for all } f \in \mathcal{F}_{1} \tag{e10.63}
\end{equation*}
$$

provided that $x, x^{\prime} \in X$ and $\operatorname{dist}\left(x, x^{\prime}\right)<d_{0}$.
Choose $\xi_{1}, \xi_{2}, \ldots, \xi_{m} \in X$ such that $\cup_{j=1}^{m} B\left(\xi_{j}, d_{0} / 2\right) \supset X$, where $B(\xi, r)=\{x \in X: \operatorname{dist}(x, \xi)<r\}$.

Put

$$
\begin{equation*}
\sigma_{0}=((1-\alpha) / 4) \min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{0}\right\}>0 \tag{e10.62}
\end{equation*}
$$

Let $\epsilon_{1}=\min \left\{\epsilon / 16, \sigma_{0}\right\}$ and let $\mathcal{F}_{1}=\mathcal{F} \cup \mathcal{H}_{0}$. Choose $d_{0}>0$ such that

$$
\begin{equation*}
\left|f(x)-f\left(x^{\prime}\right)\right|<\epsilon_{1} \text { for all } f \in \mathcal{F}_{1} \tag{e10.63}
\end{equation*}
$$

provided that $x, x^{\prime} \in X$ and $\operatorname{dist}\left(x, x^{\prime}\right)<d_{0}$.
Choose $\xi_{1}, \xi_{2}, \ldots, \xi_{m} \in X$ such that $\cup_{j=1}^{m} B\left(\xi_{j}, d_{0} / 2\right) \supset X$, where $B(\xi, r)=\{x \in X: \operatorname{dist}(x, \xi)<r\}$. There is $d_{1}>0$ such that $d_{1}<d_{0} / 2$ and

$$
\begin{equation*}
B\left(\xi_{j}, d_{1}\right) \cap B\left(\xi_{i}, d_{1}\right)=\emptyset \tag{e10.64}
\end{equation*}
$$

if $i \neq j$.

Put

$$
\begin{equation*}
\sigma_{0}=((1-\alpha) / 4) \min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{0}\right\}>0 \tag{e10.62}
\end{equation*}
$$

Let $\epsilon_{1}=\min \left\{\epsilon / 16, \sigma_{0}\right\}$ and let $\mathcal{F}_{1}=\mathcal{F} \cup \mathcal{H}_{0}$. Choose $d_{0}>0$ such that

$$
\begin{equation*}
\left|f(x)-f\left(x^{\prime}\right)\right|<\epsilon_{1} \text { for all } f \in \mathcal{F}_{1} \tag{e10.63}
\end{equation*}
$$

provided that $x, x^{\prime} \in X$ and $\operatorname{dist}\left(x, x^{\prime}\right)<d_{0}$.
Choose $\xi_{1}, \xi_{2}, \ldots, \xi_{m} \in X$ such that $\cup_{j=1}^{m} B\left(\xi_{j}, d_{0} / 2\right) \supset X$, where $B(\xi, r)=\{x \in X: \operatorname{dist}(x, \xi)<r\}$. There is $d_{1}>0$ such that $d_{1}<d_{0} / 2$ and

$$
\begin{equation*}
B\left(\xi_{j}, d_{1}\right) \cap B\left(\xi_{i}, d_{1}\right)=\emptyset \tag{e10.64}
\end{equation*}
$$

if $i \neq j$. There is, for each j, a function $h_{j} \in C(X)$ with $0 \leq h_{j} \leq 1$, $h_{j}(x)=1$ if $x \in B\left(\xi_{j}, d_{1} / 2\right)$ and $h_{j}(x)=0$ if $x \notin B\left(\xi_{j}, d_{1}\right)$. Define $\mathcal{H}_{1}=\mathcal{H}_{0} \cup\left\{h_{j}: 1 \leq j \leq m\right\}$ and put

$$
\begin{equation*}
\sigma_{1}=\min \left\{\Delta(\hat{g}): g \in \mathcal{H}_{1}\right\} \tag{e10.65}
\end{equation*}
$$

Choose an integer $N_{0} \geq 1$ such that $1 / N_{0}<\sigma_{1} \cdot(1-\alpha) / 4$ and $N=4 m\left(N_{0}+1\right)^{2}(K+1)^{2}$.
Now let $H: C(X) \rightarrow M_{n}$ be a unital homomorphism with $n>N$

Let $Y_{1}=\overline{B\left(\xi_{1}, d_{0} / 2\right)} \backslash \cup_{i=2}^{m} B\left(\xi_{i}, d_{1}\right)$,
$Y_{2}=\overline{B\left(\xi_{2}, d_{0} / 2\right)} \backslash\left(Y_{1} \cup \cup_{i=3}^{m} B\left(\xi_{i}, d_{1}\right)\right.$,
$Y_{j}=\overline{B\left(\xi_{j}, d_{0} / 2\right)} \backslash\left(\cup_{i=1}^{j-1} Y_{i} \cup \cup_{i=j+1}^{m} B\left(\xi_{i}, d_{1}\right)\right), j=1,2, \ldots, m$. Note that $Y_{j} \cap Y_{i}=\emptyset$ if $i \neq j$ and $B\left(\xi_{j}, d_{1}\right) \subset Y_{j}$. We write that

$$
H(f)=\sum_{i=1}^{n} f\left(x_{i}\right) p_{i}=\sum_{j=1}^{m}\left(\sum_{x_{i} \in Y_{j}} f\left(x_{i}\right) p_{i}\right) \text { for all } f \in C(X) \text {, (e 10.66) }
$$

where $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is a set of mutually orthogonal rank one projections in $M_{n},\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset X$. Let R_{j} be the cardinality of $\left\{x_{i}: x_{i} \in Y_{j}\right\}$. Then, by (e 10.61),

$$
R_{j} \geq N \tau \circ H\left(h_{j}\right) \geq N \Delta\left(\hat{h}_{j}\right) \geq\left(N_{0}+1\right)^{2} K \sigma_{1} \geq\left(N_{0}+1\right) K^{2},(\mathrm{e} 10.67)
$$

$j=1,2, \ldots, m$. Write $R_{j}=S_{j} K+r_{j}$, where $S_{j} \geq N_{0} K m$ and $0 \leq r_{j}<K$, $j=1,2, \ldots, m$. Choose $x_{j, 1}, x_{j, 2}, \ldots, x_{j, r_{j}} \subset\left\{x_{i} \in Y_{j}\right\}$ and denote $Z_{j}=\left\{x_{j, 1}, x_{j, 2}, \ldots, x_{j, r_{j}}\right\}, j=1,2, \ldots, m$.

Therefore we may write

$$
\begin{equation*}
H(f)=\sum_{j=1}^{m}\left(\sum_{x_{i} \in Y_{j} \backslash Z_{j}} f\left(x_{i}\right) p_{i}\right)+\sum_{j=1}^{m}\left(\sum_{i=1}^{r_{j}} f\left(x_{j, i}\right) p_{j, i}\right) \tag{e10.68}
\end{equation*}
$$

for $f \in C(X)$. Note that the cardinality of $\left\{x_{i} \in Y_{j} \backslash Z_{j}\right\}$ is $K S_{j}$, $j=1,2, \ldots, m$. Define

$$
\Psi(f)=\sum_{j=1}^{m} f\left(\xi_{j}\right) P_{j}=\sum_{k=1}^{K}\left(\sum_{j=1}^{m} f\left(\xi_{j}\right) Q_{j, k}\right) \text { for all } f \in C(X) \text {, (e 10.69) }
$$

where $P_{j}=\sum_{x_{i} \in Y_{j} \backslash Z_{j}} p_{i}=\sum_{k=1}^{K} Q_{j, k}$ and $\operatorname{rank} Q_{j, k}=S_{j}, j=1,2, \ldots, m$.
Put $e_{0}=\sum_{i=1}^{m}\left(\sum_{i=1}^{r_{j}} p_{j, i}\right), e_{k}=\sum_{j=1}^{m} Q_{j, k}, k=1,2, \ldots, K$. Note that

$$
\begin{array}{r}
\operatorname{rank}\left(e_{0}\right)=\sum_{j=1}^{m} r_{j}<m K \text { and } \operatorname{rank}\left(e_{k}\right)=S_{j} \\
S_{j} \geq N_{0} m K>m K, j=1,2, . ., K \tag{e10.71}
\end{array}
$$

It follows that $e_{0} \lesssim e_{1}$ and e_{i} is equivalent to e_{1}.

Moreover, we may write

$$
\begin{equation*}
\Psi(f)=\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}) \text { for all } f \in A, \tag{e10.72}
\end{equation*}
$$

where $\psi(f)=\sum_{j=1}^{m} f\left(\xi_{j}\right) Q_{j, 1}$ for all $f \in A$. We also estimate that

$$
\|H(f)-(\phi(f) \oplus \operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}))\|<\epsilon_{1} \text { for all } f \in \mathcal{F} \Phi .10 .73)
$$

We also compute that

$$
\left.\tau \circ \psi(g) \geq(1 / K)\left(\Delta(\hat{g}): g \in \mathcal{H}_{0}\right\}-\epsilon_{1}-\frac{m K}{N_{0} K m}\right) \geq \alpha \frac{\Delta(\hat{g})}{K}(\mathrm{e} 10.74)
$$

for all $g \in \mathcal{H}_{0}$.
$\operatorname{Cor}(\operatorname{Cor} A)$ Let $A_{0}=P M_{r}(C(X)) P, A=A_{0} \otimes C(\mathbb{T})$, let $\epsilon>0$
$\operatorname{Cor}(\operatorname{Cor} A)$ Let $A_{0}=P M_{r}(C(X)) P, A=A_{0} \otimes C(\mathbb{T})$, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.
$\operatorname{Cor}(\operatorname{Cor} A)$ Let $A_{0}=P M_{r}(C(X)) P, A=A_{0} \otimes C(\mathbb{T})$, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\Delta:\left(A_{0}\right)_{+}^{q, \mathbf{1}} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.
Suppose that $\mathcal{H}_{1} \subset\left(A_{0}\right)_{+}^{1} \backslash\{0\}$ is a finite subset, $\sigma>0$ is positive number and $n \geq 1$ is an integer. There exists a finite subset $\mathcal{H}_{2} \subset\left(A_{0}\right)_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $\phi: A=A_{0} \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $k \geq 1$) is a unital homomorphism and

$$
\begin{equation*}
\operatorname{tr} \circ \phi(h \otimes 1) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{2} \tag{e10.75}
\end{equation*}
$$

Then there exist mutually orthogonal projections $e_{0}, e_{1}, e_{2}, \ldots, e_{n} \in M_{k}$ such that $e_{1}, e_{2}, \ldots, e_{n}$ are equivalent and $\sum_{i=0}^{n} e_{i}=1$, and there exists a unital homomorphisms $\psi_{0}: A=A_{0} \otimes C(\mathbb{T}) \rightarrow e_{0} M_{k} e_{0}$ and $\psi: A=A_{0} \otimes C(\mathbb{T}) \rightarrow e_{1} M_{k} e_{1}$ such that one may write that

$$
\begin{align*}
& \|\phi(f)-\operatorname{diag}(\psi_{0}(f), \overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{n})\|<\epsilon \tag{e10.76}\\
& \text { and } \operatorname{tr}\left(e_{0}\right)<\sigma \tag{e10.77}
\end{align*}
$$

for all $f \in \mathcal{F}$, where tr is the tracial state on M_{k}.

Moreover,

$$
\operatorname{tr}(\psi(g \otimes 1)) \geq \frac{\Delta(\hat{g})}{2 n} \text { for all } g \in \mathcal{H}_{1}
$$

Lemma 2.6.
Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and let $A=P M_{r}(C(X)) P$

Lemma 2.6.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.

Lemma 2.6.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$,

Lemma 2.6.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{P} \subset \underline{K}(A)$,

Lemma 2.6.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}$ and an integer $K \geq 1$ satisfying the following:

Lemma 2.6.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{P} \subset K(A)$, a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}$ and an integer $K \geq 1$ satisfying the following: For any two unital δ - \mathcal{G}-multiplicative contractive completely positive linear maps $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer n)

Lemma 2.6.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}$ and an integer $K \geq 1$ satisfying the following: For any two unital δ - \mathcal{G}-multiplicative contractive completely positive linear maps $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer n) and any unital homomorphism $\psi: A \rightarrow M_{m}$ with $m \geq n$ such that

Lemma 2.6.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}$ and an integer $K \geq 1$ satisfying the following: For any two unital δ - \mathcal{G}-multiplicative contractive completely positive linear maps $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer n) and any unital homomorphism $\psi: A \rightarrow M_{m}$ with $m \geq n$ such that

$$
\begin{equation*}
\tau \circ \psi(g) \geq \Delta(\hat{g}) \text { for all } g \in \mathcal{H} \text { and }\left.\left[\phi_{1}\right]\right|_{\mathcal{P}}=\left.\left[\phi_{2}\right]\right|_{\mathcal{P}}, \tag{e10.79}
\end{equation*}
$$

Lemma 2.6.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}$ and an integer $K \geq 1$ satisfying the following: For any two unital δ - \mathcal{G}-multiplicative contractive completely positive linear maps $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer n) and any unital homomorphism $\psi: A \rightarrow M_{m}$ with $m \geq n$ such that

$$
\begin{equation*}
\tau \circ \psi(g) \geq \Delta(\hat{g}) \text { for all } g \in \mathcal{H} \text { and }\left.\left[\phi_{1}\right]\right|_{\mathcal{P}}=\left.\left[\phi_{2}\right]\right|_{\mathcal{P}}, \tag{e10.79}
\end{equation*}
$$

there exists a unitary $U \in M_{K m+n}$ such that

$$
\left\|\operatorname{Ad} U \circ\left(\phi_{1} \oplus \Psi\right)(f)-\left(\phi_{2} \oplus \Psi\right)(f)\right\|<\epsilon \text { for all } f \in A, \quad(\mathrm{e} 10.80)
$$

Lemma 2.6.

Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}$ and an integer $K \geq 1$ satisfying the following: For any two unital δ-G-multiplicative contractive completely positive linear maps $\phi_{1}, \phi_{2}: A \rightarrow M_{n}$ (for some integer n) and any unital homomorphism $\psi: A \rightarrow M_{m}$ with $m \geq n$ such that

$$
\begin{equation*}
\tau \circ \psi(g) \geq \Delta(\hat{g}) \text { for all } g \in \mathcal{H} \text { and }\left.\left[\phi_{1}\right]\right|_{\mathcal{P}}=\left.\left[\phi_{2}\right]\right|_{\mathcal{P}}, \tag{e10.79}
\end{equation*}
$$

there exists a unitary $U \in M_{K m+n}$ such that

$$
\left\|\operatorname{Ad} U \circ\left(\phi_{1} \oplus \Psi\right)(f)-\left(\phi_{2} \oplus \Psi\right)(f)\right\|<\epsilon \text { for all } f \in A, \quad(\mathrm{e} 10.80)
$$

where

$$
\Psi(f)=\operatorname{diag}(\overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K}) \text { for all } f \in A \text {. }
$$

The above follows from the following:
Theorem 2.7.
Let A be a unital separable amenable C^{*}-algebra and let B be a unital C^{*}-algebra.

The above follows from the following:
Theorem 2.7.
Let A be a unital separable amenable C^{*}-algebra and let B be a unital C^{*}-algebra. Suppose that $h_{1}, h_{2}: A \rightarrow B$ are two homomorphisms such that

The above follows from the following:
Theorem 2.7.
Let A be a unital separable amenable C^{*}-algebra and let B be a unital C^{*}-algebra. Suppose that $h_{1}, h_{2}: A \rightarrow B$ are two homomorphisms such that

$$
\left[h_{1}\right]=\left[h_{2}\right] \text { in } K L(A, B)
$$

The above follows from the following:
Theorem 2.7.
Let A be a unital separable amenable C^{*}-algebra and let B be a unital C^{*}-algebra. Suppose that $h_{1}, h_{2}: A \rightarrow B$ are two homomorphisms such that

$$
\left[h_{1}\right]=\left[h_{2}\right] \text { in } K L(A, B)
$$

Suppose that $h_{0}: A \rightarrow B$ is a unital full monomorphism.

The above follows from the following:
Theorem 2.7.
Let A be a unital separable amenable C^{*}-algebra and let B be a unital C^{*}-algebra. Suppose that $h_{1}, h_{2}: A \rightarrow B$ are two homomorphisms such that

$$
\left[h_{1}\right]=\left[h_{2}\right] \text { in } K L(A, B)
$$

Suppose that $h_{0}: A \rightarrow B$ is a unital full monomorphism. Then, for any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$,

The above follows from the following:
Theorem 2.7.
Let A be a unital separable amenable C^{*}-algebra and let B be a unital C^{*}-algebra. Suppose that $h_{1}, h_{2}: A \rightarrow B$ are two homomorphisms such that

$$
\left[h_{1}\right]=\left[h_{2}\right] \text { in } K L(A, B)
$$

Suppose that $h_{0}: A \rightarrow B$ is a unital full monomorphism. Then, for any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exits an integer $n \geq 1$ and a unitary $W \in M_{n+1}(B)$ such that

The above follows from the following:

Theorem 2.7.

Let A be a unital separable amenable C^{*}-algebra and let B be a unital C^{*}-algebra. Suppose that $h_{1}, h_{2}: A \rightarrow B$ are two homomorphisms such that

$$
\left[h_{1}\right]=\left[h_{2}\right] \text { in } K L(A, B)
$$

Suppose that $h_{0}: A \rightarrow B$ is a unital full monomorphism. Then, for any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exits an integer $n \geq 1$ and a unitary $W \in M_{n+1}(B)$ such that

$$
\left\|W^{*} \operatorname{diag}\left(h_{1}(a), h_{0}(a), \ldots, h_{0}(a)\right) W-\operatorname{diag}\left(h_{2}(a), h_{0}(a), \ldots, h_{0}(a)\right)\right\|<\epsilon
$$

The above follows from the following:

Theorem 2.7.

Let A be a unital separable amenable C^{*}-algebra and let B be a unital C^{*}-algebra. Suppose that $h_{1}, h_{2}: A \rightarrow B$ are two homomorphisms such that

$$
\left[h_{1}\right]=\left[h_{2}\right] \text { in } K L(A, B)
$$

Suppose that $h_{0}: A \rightarrow B$ is a unital full monomorphism. Then, for any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exits an integer $n \geq 1$ and a unitary $W \in M_{n+1}(B)$ such that

$$
\left\|W^{*} \operatorname{diag}\left(h_{1}(a), h_{0}(a), \ldots, h_{0}(a)\right) W-\operatorname{diag}\left(h_{2}(a), h_{0}(a), \ldots, h_{0}(a)\right)\right\|<\epsilon
$$

for all $a \in \mathcal{F}$ and $W^{*} p W=q$, where
$p=\operatorname{diag}\left(h_{1}\left(1_{A}\right), h_{0}\left(1_{A}\right), \ldots, h_{0}\left(1_{A}\right)\right)$ and $q=\operatorname{diag}\left(h_{2}\left(1_{A}\right), h_{0}\left(1_{A}\right), \ldots, h_{0}\left(1_{A}\right)\right)$

The above follows from the following:

Theorem 2.7.

Let A be a unital separable amenable C^{*}-algebra and let B be a unital C^{*}-algebra. Suppose that $h_{1}, h_{2}: A \rightarrow B$ are two homomorphisms such that

$$
\left[h_{1}\right]=\left[h_{2}\right] \text { in } K L(A, B)
$$

Suppose that $h_{0}: A \rightarrow B$ is a unital full monomorphism. Then, for any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exits an integer $n \geq 1$ and a unitary $W \in M_{n+1}(B)$ such that

$$
\left\|W^{*} \operatorname{diag}\left(h_{1}(a), h_{0}(a), \ldots, h_{0}(a)\right) W-\operatorname{diag}\left(h_{2}(a), h_{0}(a), \ldots, h_{0}(a)\right)\right\|<\epsilon
$$

for all $a \in \mathcal{F}$ and $W^{*} p W=q$, where
$p=\operatorname{diag}\left(h_{1}\left(1_{A}\right), h_{0}\left(1_{A}\right), \ldots, h_{0}\left(1_{A}\right)\right)$ and $q=\operatorname{diag}\left(h_{2}\left(1_{A}\right), h_{0}\left(1_{A}\right), \ldots, h_{0}\left(1_{A}\right)\right)$ In particular, if $h_{1}\left(1_{A}\right)=h_{2}\left(1_{A}\right), W \in U\left(p M_{n+1}(B) p\right)$.

```
Lemma 2.8.
Let A be a unital C*-algebra whose irreducible representations have bounded dimension.
```

```
Lemma 2.8.
Let A be a unital C*-algebra whose irreducible representations have bounded dimension.
```


Lemma 2.8.
 Let A be a unital C*-algebra whose irreducible representations have bounded dimension. Let T be a finite subset of tracial states on A. For any finite subset $\mathcal{F} \subset A$ and for any $\epsilon>0$ and $\sigma>0$,

Lemma 2.8.

Let A be a unital C*-algebra whose irreducible representations have bounded dimension. Let T be a finite subset of tracial states on A. For any finite subset $\mathcal{F} \subset A$ and for any $\epsilon>0$ and $\sigma>0$, there is an ideal $J \subset A$ such that $\left\|\left.\tau\right|_{J}\right\|<\sigma$ for all $\tau \in T$,

Lemma 2.8.

Let A be a unital C*-algebra whose irreducible representations have bounded dimension. Let T be a finite subset of tracial states on A. For any finite subset $\mathcal{F} \subset A$ and for any $\epsilon>0$ and $\sigma>0$, there is an ideal $J \subset A$ such that $\left\|\left.\tau\right|_{J}\right\|<\sigma$ for all $\tau \in T$, a finite dimensional C^{*}-subalgebra $C \subset A / J$ and a unital homomorphism π_{0} from A such that

Lemma 2.8.

Let A be a unital C*-algebra whose irreducible representations have bounded dimension. Let T be a finite subset of tracial states on A. For any finite subset $\mathcal{F} \subset A$ and for any $\epsilon>0$ and $\sigma>0$, there is an ideal $J \subset A$ such that $\left\|\left.\tau\right|_{J}\right\|<\sigma$ for all $\tau \in T$, a finite dimensional C^{*}-subalgebra $C \subset A / J$ and a unital homomorphism π_{0} from A such that

$$
\begin{equation*}
\operatorname{dist}(\pi(x), C)<\epsilon \text { for all } a \in \mathcal{F}, \tag{e10.81}
\end{equation*}
$$

Lemma 2.8.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimension. Let T be a finite subset of tracial states on A. For any finite subset $\mathcal{F} \subset A$ and for any $\epsilon>0$ and $\sigma>0$, there is an ideal $J \subset A$ such that $\|\tau \mid J\|<\sigma$ for all $\tau \in T$, a finite dimensional C^{*}-subalgebra $C \subset A / J$ and a unital homomorphism π_{0} from A such that

$$
\begin{array}{r}
\operatorname{dist}(\pi(x), C)<\epsilon \text { for all } a \in \mathcal{F} \\
\pi_{0}(A)=\pi_{0}(C) \cong C \text { and } \operatorname{ker} \pi_{0} \supset J \tag{e10.82}
\end{array}
$$

where $\pi: A \rightarrow A / J$ is the quotient map.

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X.

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X. We may assume that there is $\delta_{0}>0$ such that

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X. We may assume that there is $\delta_{0}>0$ such that for any $x \in X,\left.A\right|_{\bar{B}\left(x, \delta_{0}\right)} \cong M_{n}\left(C\left(\bar{B}\left(x, \delta_{0}\right)\right)\right)$,

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X. We may assume that there is $\delta_{0}>0$ such that for any $x \in X,\left.A\right|_{\bar{B}\left(x, \delta_{0}\right)} \cong M_{n}\left(C\left(\bar{B}\left(x, \delta_{0}\right)\right)\right)$, where $\bar{B}\left(x, \delta_{0}\right)=\left\{y \in X: \operatorname{dist}(x, y) \leq \delta_{0}\right\}$.

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X. We may assume that there is $\delta_{0}>0$ such that for any $x \in X,\left.A\right|_{\bar{B}\left(x, \delta_{0}\right)} \cong M_{n}\left(C\left(\bar{B}\left(x, \delta_{0}\right)\right)\right)$, where $\bar{B}\left(x, \delta_{0}\right)=\left\{y \in X: \operatorname{dist}(x, y) \leq \delta_{0}\right\}$.
Let $\epsilon>0$. There exists $\delta_{1}>0$ such that

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X. We may assume that there is $\delta_{0}>0$ such that for any $x \in X,\left.A\right|_{\bar{B}\left(x, \delta_{0}\right)} \cong M_{n}\left(C\left(\bar{B}\left(x, \delta_{0}\right)\right)\right)$, where $\bar{B}\left(x, \delta_{0}\right)=\left\{y \in X: \operatorname{dist}(x, y) \leq \delta_{0}\right\}$.
Let $\epsilon>0$. There exists $\delta_{1}>0$ such that

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F}
$$

provided that $\operatorname{dist}\left(x, x^{\prime}\right)<\delta_{1}$.

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X. We may assume that there is $\delta_{0}>0$ such that for any $x \in X,\left.A\right|_{\bar{B}\left(x, \delta_{0}\right)} \cong M_{n}\left(C\left(\bar{B}\left(x, \delta_{0}\right)\right)\right)$, where $\bar{B}\left(x, \delta_{0}\right)=\left\{y \in X: \operatorname{dist}(x, y) \leq \delta_{0}\right\}$.
Let $\epsilon>0$. There exists $\delta_{1}>0$ such that

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F}
$$

provided that $\operatorname{dist}\left(x, x^{\prime}\right)<\delta_{1}$. We may assume that $\delta_{1}<\delta_{0}$.

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X. We may assume that there is $\delta_{0}>0$ such that for any $x \in X,\left.A\right|_{\bar{B}\left(x, \delta_{0}\right)} \cong M_{n}\left(C\left(\bar{B}\left(x, \delta_{0}\right)\right)\right)$, where $\bar{B}\left(x, \delta_{0}\right)=\left\{y \in X: \operatorname{dist}(x, y) \leq \delta_{0}\right\}$.
Let $\epsilon>0$. There exists $\delta_{1}>0$ such that

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F}
$$

provided that $\operatorname{dist}\left(x, x^{\prime}\right)<\delta_{1}$. We may assume that $\delta_{1}<\delta_{0}$. For each $x \in X$, since T is finite, there is δ_{x} with $\delta_{1} / 2<d_{x}<\delta_{1}$ such that

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X. We may assume that there is $\delta_{0}>0$ such that for any $x \in X,\left.A\right|_{\bar{B}\left(x, \delta_{0}\right)} \cong M_{n}\left(C\left(\bar{B}\left(x, \delta_{0}\right)\right)\right)$, where $\bar{B}\left(x, \delta_{0}\right)=\left\{y \in X: \operatorname{dist}(x, y) \leq \delta_{0}\right\}$.
Let $\epsilon>0$. There exists $\delta_{1}>0$ such that

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F}
$$

provided that $\operatorname{dist}\left(x, x^{\prime}\right)<\delta_{1}$. We may assume that $\delta_{1}<\delta_{0}$. For each $x \in X$, since T is finite, there is δ_{x} with $\delta_{1} / 2<d_{x}<\delta_{1}$ such that

$$
\begin{equation*}
\mu_{\tau}\left(\left\{y: \operatorname{dist}(x, y)=d_{x}\right\}\right)=0 \text { for all } \tau \in T \tag{e10.83}
\end{equation*}
$$

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X. We may assume that there is $\delta_{0}>0$ such that for any $x \in X,\left.A\right|_{\bar{B}\left(x, \delta_{0}\right)} \cong M_{n}\left(C\left(\bar{B}\left(x, \delta_{0}\right)\right)\right)$, where $\bar{B}\left(x, \delta_{0}\right)=\left\{y \in X: \operatorname{dist}(x, y) \leq \delta_{0}\right\}$.
Let $\epsilon>0$. There exists $\delta_{1}>0$ such that

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F}
$$

provided that $\operatorname{dist}\left(x, x^{\prime}\right)<\delta_{1}$. We may assume that $\delta_{1}<\delta_{0}$. For each $x \in X$, since T is finite, there is δ_{x} with $\delta_{1} / 2<d_{x}<\delta_{1}$ such that

$$
\begin{equation*}
\mu_{\tau}\left(\left\{y: \operatorname{dist}(x, y)=d_{x}\right\}\right)=0 \text { for all } \tau \in T \tag{e10.83}
\end{equation*}
$$

where μ_{τ} is the probability measure on X induced by τ.

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X. We may assume that there is $\delta_{0}>0$ such that for any $x \in X,\left.A\right|_{\bar{B}\left(x, \delta_{0}\right)} \cong M_{n}\left(C\left(\bar{B}\left(x, \delta_{0}\right)\right)\right)$, where $\bar{B}\left(x, \delta_{0}\right)=\left\{y \in X: \operatorname{dist}(x, y) \leq \delta_{0}\right\}$.
Let $\epsilon>0$. There exists $\delta_{1}>0$ such that

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F}
$$

provided that $\operatorname{dist}\left(x, x^{\prime}\right)<\delta_{1}$. We may assume that $\delta_{1}<\delta_{0}$. For each $x \in X$, since T is finite, there is δ_{x} with $\delta_{1} / 2<d_{x}<\delta_{1}$ such that

$$
\begin{equation*}
\mu_{\tau}\left(\left\{y: \operatorname{dist}(x, y)=d_{x}\right\}\right)=0 \text { for all } \tau \in T \tag{e10.83}
\end{equation*}
$$

where μ_{τ} is the probability measure on X induced by τ. Note that $\cup_{x \in X} O\left(x, \delta_{x}\right)=X$. Suppose that $\cup_{i=1}^{m} O\left(x_{i}, \delta_{x_{i}}\right)=X$.

Proof: We prove the case that A arising from a locally trivial continuous field of M_{n} over a compact metric space X. We may assume that there is $\delta_{0}>0$ such that for any $x \in X,\left.A\right|_{\bar{B}\left(x, \delta_{0}\right)} \cong M_{n}\left(C\left(\bar{B}\left(x, \delta_{0}\right)\right)\right)$, where $\bar{B}\left(x, \delta_{0}\right)=\left\{y \in X: \operatorname{dist}(x, y) \leq \delta_{0}\right\}$.
Let $\epsilon>0$. There exists $\delta_{1}>0$ such that

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|<\epsilon / 16 \text { for all } f \in \mathcal{F}
$$

provided that $\operatorname{dist}\left(x, x^{\prime}\right)<\delta_{1}$. We may assume that $\delta_{1}<\delta_{0}$. For each $x \in X$, since T is finite, there is δ_{x} with $\delta_{1} / 2<d_{x}<\delta_{1}$ such that

$$
\begin{equation*}
\mu_{\tau}\left(\left\{y: \operatorname{dist}(x, y)=d_{x}\right\}\right)=0 \text { for all } \tau \in T \tag{e10.83}
\end{equation*}
$$

where μ_{τ} is the probability measure on X induced by τ. Note that $\cup_{x \in X} O\left(x, \delta_{x}\right)=X$. Suppose that $\cup_{i=1}^{m} O\left(x_{i}, \delta_{x_{i}}\right)=X$. Define

$$
F=\sum_{i=1}^{m}\left\{y: \operatorname{dist}\left(y, x_{i}\right)=\delta_{x_{i}}\right\}
$$

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$.

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$. There is an open set $O \supset F$ such that

$$
\mu_{\tau}(O)<\sigma
$$

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$. There is an open set $O \supset F$ such that

$$
\mu_{\tau}(O)<\sigma
$$

Let

$$
J=\left\{a \in A:\left.a\right|_{F}=0\right\} .
$$

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$. There is an open set $O \supset F$ such that

$$
\mu_{\tau}(O)<\sigma
$$

Let

$$
J=\left\{a \in A:\left.a\right|_{F}=0\right\} .
$$

Then $A / J=\bigoplus_{i=1}^{K} D_{i}$, where $D_{i}=\left.A\right|_{G_{i}} \cong M_{n}\left(C\left(G_{i}\right)\right)$ and $G_{i} \subset X$ is a compact subset with diameter $<\delta_{1}$

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$. There is an open set $O \supset F$ such that

$$
\mu_{\tau}(O)<\sigma
$$

Let

$$
J=\left\{a \in A:\left.a\right|_{F}=0\right\} .
$$

Then $A / J=\bigoplus_{i=1}^{K} D_{i}$, where $D_{i}=\left.A\right|_{G_{i}} \cong M_{n}\left(C\left(G_{i}\right)\right)$ and $G_{i} \subset X$ is a compact subset with diameter $<\delta_{1}$ and $G_{i} \cap G_{j}=\emptyset, i \neq j$.

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$. There is an open set $O \supset F$ such that

$$
\mu_{\tau}(O)<\sigma
$$

Let

$$
J=\left\{a \in A:\left.a\right|_{F}=0\right\} .
$$

Then $A / J=\bigoplus_{i=1}^{K} D_{i}$, where $D_{i}=\left.A\right|_{G_{i}} \cong M_{n}\left(C\left(G_{i}\right)\right)$ and $G_{i} \subset X$ is a compact subset with diameter $<\delta_{1}$ and $G_{i} \cap G_{j}=\emptyset, i \neq j$. Fix $\xi_{i} \in G_{i}$, let $C_{i}=\left\{f \in D_{i}: f(t)=f\left(\xi_{i}\right)\right\}, i=1,2, \ldots, K$.

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$. There is an open set $O \supset F$ such that

$$
\mu_{\tau}(O)<\sigma
$$

Let

$$
J=\left\{a \in A:\left.a\right|_{F}=0\right\} .
$$

Then $A / J=\bigoplus_{i=1}^{K} D_{i}$, where $D_{i}=\left.A\right|_{G_{i}} \cong M_{n}\left(C\left(G_{i}\right)\right)$ and $G_{i} \subset X$ is a compact subset with diameter $<\delta_{1}$ and $G_{i} \cap G_{j}=\emptyset, i \neq j$. Fix $\xi_{i} \in G_{i}$, let $C_{i}=\left\{f \in D_{i}: f(t)=f\left(\xi_{i}\right)\right\}, i=1,2, \ldots, K$. Define $C=\bigoplus_{i=1}^{K} C_{i}$. So $C \subset A / J$.

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$. There is an open set $O \supset F$ such that

$$
\mu_{\tau}(O)<\sigma
$$

Let

$$
J=\left\{a \in A:\left.a\right|_{F}=0\right\} .
$$

Then $A / J=\bigoplus_{i=1}^{K} D_{i}$, where $D_{i}=\left.A\right|_{G_{i}} \cong M_{n}\left(C\left(G_{i}\right)\right)$ and $G_{i} \subset X$ is a compact subset with diameter $<\delta_{1}$ and $G_{i} \cap G_{j}=\emptyset, i \neq j$. Fix $\xi_{i} \in G_{i}$, let $C_{i}=\left\{f \in D_{i}: f(t)=f\left(\xi_{i}\right)\right\}, i=1,2, \ldots, K$. Define $C=\bigoplus_{i=1}^{K} C_{i}$. So $C \subset A / J$. By the choice of δ, we estimate that, for any $f \in \mathcal{F}$,

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$. There is an open set $O \supset F$ such that

$$
\mu_{\tau}(O)<\sigma
$$

Let

$$
J=\left\{a \in A:\left.a\right|_{F}=0\right\} .
$$

Then $A / J=\bigoplus_{i=1}^{K} D_{i}$, where $D_{i}=\left.A\right|_{G_{i}} \cong M_{n}\left(C\left(G_{i}\right)\right)$ and $G_{i} \subset X$ is a compact subset with diameter $<\delta_{1}$ and $G_{i} \cap G_{j}=\emptyset, i \neq j$. Fix $\xi_{i} \in G_{i}$, let $C_{i}=\left\{f \in D_{i}: f(t)=f\left(\xi_{i}\right)\right\}, i=1,2, \ldots, K$. Define $C=\bigoplus_{i=1}^{K} C_{i}$. So $C \subset A / J$. By the choice of δ, we estimate that, for any $f \in \mathcal{F}$,

$$
\operatorname{dist}\left(\left.f\right|_{G_{i}}, C_{i}\right)<\epsilon / 16
$$

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$. There is an open set $O \supset F$ such that

$$
\mu_{\tau}(O)<\sigma
$$

Let

$$
J=\left\{a \in A:\left.a\right|_{F}=0\right\} .
$$

Then $A / J=\bigoplus_{i=1}^{K} D_{i}$, where $D_{i}=\left.A\right|_{G_{i}} \cong M_{n}\left(C\left(G_{i}\right)\right)$ and $G_{i} \subset X$ is a compact subset with diameter $<\delta_{1}$ and $G_{i} \cap G_{j}=\emptyset, i \neq j$. Fix $\xi_{i} \in G_{i}$, let $C_{i}=\left\{f \in D_{i}: f(t)=f\left(\xi_{i}\right)\right\}, i=1,2, \ldots, K$. Define $C=\bigoplus_{i=1}^{K} C_{i}$. So $C \subset A / J$. By the choice of δ, we estimate that, for any $f \in \mathcal{F}$,

$$
\operatorname{dist}\left(\left.f\right|_{G_{i}}, C_{i}\right)<\epsilon / 16
$$

It follows that $\operatorname{dist}(\pi(f), C)<\epsilon$ for all $f \in \mathcal{F}$.

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$. There is an open set $O \supset F$ such that

$$
\mu_{\tau}(O)<\sigma
$$

Let

$$
J=\left\{a \in A:\left.a\right|_{F}=0\right\} .
$$

Then $A / J=\bigoplus_{i=1}^{K} D_{i}$, where $D_{i}=\left.A\right|_{G_{i}} \cong M_{n}\left(C\left(G_{i}\right)\right)$ and $G_{i} \subset X$ is a compact subset with diameter $<\delta_{1}$ and $G_{i} \cap G_{j}=\emptyset, i \neq j$. Fix $\xi_{i} \in G_{i}$, let $C_{i}=\left\{f \in D_{i}: f(t)=f\left(\xi_{i}\right)\right\}, i=1,2, \ldots, K$. Define $C=\bigoplus_{i=1}^{K} C_{i}$. So $C \subset A / J$. By the choice of δ, we estimate that, for any $f \in \mathcal{F}$,

$$
\operatorname{dist}\left(\left.f\right|_{G_{i}}, C_{i}\right)<\epsilon / 16
$$

It follows that $\operatorname{dist}(\pi(f), C)<\epsilon$ for all $f \in \mathcal{F}$. Let $\pi_{0}: A \rightarrow \bigoplus_{i=1}^{K} M_{n}$ be defined by $\pi_{0}(f)=\oplus_{i=1}^{K} f\left(\xi_{i}\right)$ for all $f \in A$.

Then F is closed and $\mu_{\tau}(F)=0$ for all $\tau \in T$. There is an open set $O \supset F$ such that

$$
\mu_{\tau}(O)<\sigma
$$

Let

$$
J=\left\{a \in A:\left.a\right|_{F}=0\right\} .
$$

Then $A / J=\bigoplus_{i=1}^{K} D_{i}$, where $D_{i}=\left.A\right|_{G_{i}} \cong M_{n}\left(C\left(G_{i}\right)\right)$ and $G_{i} \subset X$ is a compact subset with diameter $<\delta_{1}$ and $G_{i} \cap G_{j}=\emptyset, i \neq j$. Fix $\xi_{i} \in G_{i}$, let $C_{i}=\left\{f \in D_{i}: f(t)=f\left(\xi_{i}\right)\right\}, i=1,2, \ldots, K$. Define $C=\bigoplus_{i=1}^{K} C_{i}$. So $C \subset A / J$. By the choice of δ, we estimate that, for any $f \in \mathcal{F}$,

$$
\operatorname{dist}\left(\left.f\right|_{G_{i}}, C_{i}\right)<\epsilon / 16
$$

It follows that $\operatorname{dist}(\pi(f), C)<\epsilon$ for all $f \in \mathcal{F}$. Let $\pi_{0}: A \rightarrow \bigoplus_{i=1}^{K} M_{n}$ be defined by $\pi_{0}(f)=\oplus_{i=1}^{K} f\left(\xi_{i}\right)$ for all $f \in A$. Then $\operatorname{ker} \pi_{0} \supset J$ and $\pi_{0}(A)=\pi_{0}(C) \cong C$.

A unital C^{*}-algebra B has real rank zero, if every self-adjoint element is a norm limit of those self-adjoint elements with finite spectrum.

A unital C^{*}-algebra B has real rank zero, if every self-adjoint element is a norm limit of those self-adjoint elements with finite spectrum. If A is not unital, then A has real rank zero if \tilde{A} has real rank zero.

A unital C^{*}-algebra B has real rank zero, if every self-adjoint element is a norm limit of those self-adjoint elements with finite spectrum. If A is not unital, then A has real rank zero if \tilde{A} has real rank zero.

A projection in $p \in A^{* *}$ is open if there exists a sequence of positive elements $a_{n} \in A$

A unital C^{*}-algebra B has real rank zero, if every self-adjoint element is a norm limit of those self-adjoint elements with finite spectrum. If A is not unital, then A has real rank zero if \tilde{A} has real rank zero.

A projection in $p \in A^{* *}$ is open if there exists a sequence of positive elements $a_{n} \in A$ such that $0 \leq a_{n} \leq a_{n+1} \leq p$ and $\lim _{n \rightarrow \infty} a_{n}=p$ in weak topology of $A^{* *}$.

A unital C^{*}-algebra B has real rank zero, if every self-adjoint element is a norm limit of those self-adjoint elements with finite spectrum. If A is not unital, then A has real rank zero if \tilde{A} has real rank zero.

A projection in $p \in A^{* *}$ is open if there exists a sequence of positive elements $a_{n} \in A$ such that $0 \leq a_{n} \leq a_{n+1} \leq p$ and $\lim _{n \rightarrow \infty} a_{n}=p$ in weak topology of $A^{* *}$. A projection $q \in A^{* *}$ is closed, if $1-q$ is open.

A unital C^{*}-algebra B has real rank zero, if every self-adjoint element is a norm limit of those self-adjoint elements with finite spectrum. If A is not unital, then A has real rank zero if \tilde{A} has real rank zero.

A projection in $p \in A^{* *}$ is open if there exists a sequence of positive elements $a_{n} \in A$ such that $0 \leq a_{n} \leq a_{n+1} \leq p$ and $\lim _{n \rightarrow \infty} a_{n}=p$ in weak topology of $A^{* *}$. A projection $q \in A^{* *}$ is closed, if $1-q$ is open. A closed projection $q \in A^{* *}$ is compact, if there exists an element $a \in A_{+}$ such that $q \leq a$.

A unital C^{*}-algebra B has real rank zero, if every self-adjoint element is a norm limit of those self-adjoint elements with finite spectrum. If A is not unital, then A has real rank zero if \tilde{A} has real rank zero.

A projection in $p \in A^{* *}$ is open if there exists a sequence of positive elements $a_{n} \in A$ such that $0 \leq a_{n} \leq a_{n+1} \leq p$ and $\lim _{n \rightarrow \infty} a_{n}=p$ in weak topology of $A^{* *}$. A projection $q \in A^{* *}$ is closed, if $1-q$ is open. A closed projection $q \in A^{* *}$ is compact, if there exists an element $a \in A_{+}$ such that $q \leq a$.

Theorem 2.9. (L. G. Brown-1991)
Let A be a C^{*}-algebra, p and q are two closed projections (in $A^{* *}$) such that $p q=0$ and p is compact.

A unital C^{*}-algebra B has real rank zero, if every self-adjoint element is a norm limit of those self-adjoint elements with finite spectrum. If A is not unital, then A has real rank zero if \tilde{A} has real rank zero.

A projection in $p \in A^{* *}$ is open if there exists a sequence of positive elements $a_{n} \in A$ such that $0 \leq a_{n} \leq a_{n+1} \leq p$ and $\lim _{n \rightarrow \infty} a_{n}=p$ in weak topology of $A^{* *}$. A projection $q \in A^{* *}$ is closed, if $1-q$ is open. A closed projection $q \in A^{* *}$ is compact, if there exists an element $a \in A_{+}$ such that $q \leq a$.

Theorem 2.9. (L. G. Brown-1991)
Let A be a C^{*}-algebra, p and q are two closed projections (in $A^{* *}$) such that $p q=0$ and p is compact. Then there exists a projection $e \in A$ such that

A unital C^{*}-algebra B has real rank zero, if every self-adjoint element is a norm limit of those self-adjoint elements with finite spectrum. If A is not unital, then A has real rank zero if \tilde{A} has real rank zero.

A projection in $p \in A^{* *}$ is open if there exists a sequence of positive elements $a_{n} \in A$ such that $0 \leq a_{n} \leq a_{n+1} \leq p$ and $\lim _{n \rightarrow \infty} a_{n}=p$ in weak topology of $A^{* *}$. A projection $q \in A^{* *}$ is closed, if $1-q$ is open. A closed projection $q \in A^{* *}$ is compact, if there exists an element $a \in A_{+}$ such that $q \leq a$.

Theorem 2.9. (L. G. Brown-1991)
Let A be a C^{*}-algebra, p and q are two closed projections (in $A^{* *}$) such that $p q=0$ and p is compact. Then there exists a projection $e \in A$ such that

$$
p \leq e \leq(1-q)
$$

A unital C^{*}-algebra B has real rank zero, if every self-adjoint element is a norm limit of those self-adjoint elements with finite spectrum. If A is not unital, then A has real rank zero if \tilde{A} has real rank zero.

A projection in $p \in A^{* *}$ is open if there exists a sequence of positive elements $a_{n} \in A$ such that $0 \leq a_{n} \leq a_{n+1} \leq p$ and $\lim _{n \rightarrow \infty} a_{n}=p$ in weak topology of $A^{* *}$. A projection $q \in A^{* *}$ is closed, if $1-q$ is open. A closed projection $q \in A^{* *}$ is compact, if there exists an element $a \in A_{+}$ such that $q \leq a$.

Theorem 2.9. (L. G. Brown-1991)
Let A be a C^{*}-algebra, p and q are two closed projections (in $A^{* *}$) such that $p q=0$ and p is compact. Then there exists a projection $e \in A$ such that

$$
p \leq e \leq(1-q)
$$

The converse also holds.

Theorem 2.10. (S. Zhang, Pedersen and Brown) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras.

Theorem 2.10. (S. Zhang, Pedersen and Brown)
Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Suppose that C and J have real rank zero.

Theorem 2.10. (S. Zhang, Pedersen and Brown)
Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Suppose that C and J have real rank zero. Suppose also that every projection $\bar{e} \in C$ can be lifted,

Theorem 2.10. (S. Zhang, Pedersen and Brown) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Suppose that C and J have real rank zero. Suppose also that every projection $\bar{e} \in C$ can be lifted, i.e., there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map.

Theorem 2.10. (S. Zhang, Pedersen and Brown) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Suppose that C and J have real rank zero. Suppose also that every projection $\bar{e} \in C$ can be lifted, i.e., there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. Then A has real rank zero.

Theorem 2.10. (S. Zhang, Pedersen and Brown) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Suppose that C and J have real rank zero. Suppose also that every projection $\bar{e} \in C$ can be lifted, i.e., there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. Then A has real rank zero.

Theorem 2.11. (L-2000) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras,

Theorem 2.10. (S. Zhang, Pedersen and Brown) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Suppose that C and J have real rank zero. Suppose also that every projection $\bar{e} \in C$ can be lifted, i.e., there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. Then A has real rank zero.

Theorem 2.11. (L-2000) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras, where A and C are unital, J and C have real rank zero.

Theorem 2.10. (S. Zhang, Pedersen and Brown) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Suppose that C and J have real rank zero. Suppose also that every projection $\bar{e} \in C$ can be lifted, i.e., there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. Then A has real rank zero.

Theorem 2.11. (L-2000) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras, where A and C are unital, J and C have real rank zero. Suppose $A \subset D$ and J is a hereditary C^{*}-subalgebra of D,

Theorem 2.10. (S. Zhang, Pedersen and Brown) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Suppose that C and J have real rank zero. Suppose also that every projection $\bar{e} \in C$ can be lifted, i.e., there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. Then A has real rank zero.

Theorem 2.11. (L-2000) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras, where A and C are unital, J and C have real rank zero. Suppose $A \subset D$ and J is a hereditary C^{*}-subalgebra of D, where D also has real rank zero.

Theorem 2.10. (S. Zhang, Pedersen and Brown) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Suppose that C and J have real rank zero. Suppose also that every projection $\bar{e} \in C$ can be lifted, i.e., there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. Then A has real rank zero.

Theorem 2.11. (L-2000) Let

$$
0 \rightarrow J \rightarrow A \rightarrow C \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras, where A and C are unital, J and C have real rank zero. Suppose $A \subset D$ and J is a hereditary C^{*}-subalgebra of D, where D also has real rank zero. Then A has real rank zero.

Proof : For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. By Zhang's theorem, this implies A has real rank zero.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. By Zhang's theorem, this implies A has real rank zero.
There is a positive element $a \in A$ such that $0 \leq a \leq 1$ and $\pi(a)=\bar{e}$.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. By Zhang's theorem, this implies A has real rank zero.
There is a positive element $a \in A$ such that $0 \leq a \leq 1$ and $\pi(a)=\bar{e}$. Define $h_{n} \in C_{0}((0,1])_{+}$by $h_{n}(t)=1$ if $t \in[0,1 / 8-1 / 2 n], h_{n}(t)=0$ if $t \in[1 / 8,1]$ and $h_{n}(t)$ is linear in $(1 / 8-1 / 2 n, 1 / 8), n=1,2, \ldots$.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. By Zhang's theorem, this implies A has real rank zero.
There is a positive element $a \in A$ such that $0 \leq a \leq 1$ and $\pi(a)=\bar{e}$. Define $h_{n} \in C_{0}((0,1])_{+}$by $h_{n}(t)=1$ if $t \in[0,1 / 8-1 / 2 n], h_{n}(t)=0$ if $t \in[1 / 8,1]$ and $h_{n}(t)$ is linear in $(1 / 8-1 / 2 n, 1 / 8), n=1,2, \ldots$. Note $0 \leq h_{n}(a) \leq h_{n+1}(a), n=1,2, \ldots$

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. By Zhang's theorem, this implies A has real rank zero.
There is a positive element $a \in A$ such that $0 \leq a \leq 1$ and $\pi(a)=\bar{e}$. Define $h_{n} \in C_{0}((0,1])+$ by $h_{n}(t)=1$ if $t \in[0,1 / 8-1 / 2 n], h_{n}(t)=0$ if $t \in[1 / 8,1]$ and $h_{n}(t)$ is linear in $(1 / 8-1 / 2 n, 1 / 8), n=1,2, \ldots$. Note $0 \leq h_{n}(a) \leq h_{n+1}(a), n=1,2, \ldots$. Let $h=\lim _{n \rightarrow \infty} h_{n}(a)$ in $A^{* *}$ which corresponds to the open interval $(-\infty, 1 / 8)$.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. By Zhang's theorem, this implies A has real rank zero.
There is a positive element $a \in A$ such that $0 \leq a \leq 1$ and $\pi(a)=\bar{e}$. Define $h_{n} \in C_{0}((0,1])_{+}$by $h_{n}(t)=1$ if $t \in[0,1 / 8-1 / 2 n], h_{n}(t)=0$ if $t \in[1 / 8,1]$ and $h_{n}(t)$ is linear in $(1 / 8-1 / 2 n, 1 / 8), n=1,2, \ldots$. Note $0 \leq h_{n}(a) \leq h_{n+1}(a), n=1,2, \ldots$. Let $h=\lim _{n \rightarrow \infty} h_{n}(a)$ in $A^{* *}$ which corresponds to the open interval $(-\infty, 1 / 8) . h$ is an open projection.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. By Zhang's theorem, this implies A has real rank zero.
There is a positive element $a \in A$ such that $0 \leq a \leq 1$ and $\pi(a)=\bar{e}$. Define $h_{n} \in C_{0}((0,1])_{+}$by $h_{n}(t)=1$ if $t \in[0,1 / 8-1 / 2 n], h_{n}(t)=0$ if $t \in[1 / 8,1]$ and $h_{n}(t)$ is linear in $(1 / 8-1 / 2 n, 1 / 8), n=1,2, \ldots$. Note $0 \leq h_{n}(a) \leq h_{n+1}(a), n=1,2, \ldots$. Let $h=\lim _{n \rightarrow \infty} h_{n}(a)$ in $A^{* *}$ which corresponds to the open interval $(-\infty, 1 / 8)$. h is an open projection. Let $p=1-h\left(=\chi_{[1 / 8,1]}(a)\right)$.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. By Zhang's theorem, this implies A has real rank zero.
There is a positive element $a \in A$ such that $0 \leq a \leq 1$ and $\pi(a)=\bar{e}$. Define $h_{n} \in C_{0}((0,1])_{+}$by $h_{n}(t)=1$ if $t \in[0,1 / 8-1 / 2 n], h_{n}(t)=0$ if $t \in[1 / 8,1]$ and $h_{n}(t)$ is linear in $(1 / 8-1 / 2 n, 1 / 8), n=1,2, \ldots$. Note $0 \leq h_{n}(a) \leq h_{n+1}(a), n=1,2, \ldots$. Let $h=\lim _{n \rightarrow \infty} h_{n}(a)$ in $A^{* *}$ which corresponds to the open interval $(-\infty, 1 / 8)$. h is an open projection. Let $p=1-h\left(=\chi_{[1 / 8,1]}(a)\right)$. Since $p \leq f_{1 / 8}(a), p$ is compact.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. By Zhang's theorem, this implies A has real rank zero.
There is a positive element $a \in A$ such that $0 \leq a \leq 1$ and $\pi(a)=\bar{e}$. Define $h_{n} \in C_{0}((0,1])_{+}$by $h_{n}(t)=1$ if $t \in[0,1 / 8-1 / 2 n], h_{n}(t)=0$ if $t \in[1 / 8,1]$ and $h_{n}(t)$ is linear in $(1 / 8-1 / 2 n, 1 / 8), n=1,2, \ldots$. Note $0 \leq h_{n}(a) \leq h_{n+1}(a), n=1,2, \ldots$. Let $h=\lim _{n \rightarrow \infty} h_{n}(a)$ in $A^{* *}$ which corresponds to the open interval $(-\infty, 1 / 8)$. h is an open projection. Let $p=1-h\left(=\chi_{[1 / 8,1]}(a)\right)$. Since $p \leq f_{1 / 8}(a), p$ is compact. Let $1-q$ be the open projection corresponds to $(1 / 16, \infty)$,

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. By Zhang's theorem, this implies A has real rank zero.
There is a positive element $a \in A$ such that $0 \leq a \leq 1$ and $\pi(a)=\bar{e}$. Define $h_{n} \in C_{0}((0,1])_{+}$by $h_{n}(t)=1$ if $t \in[0,1 / 8-1 / 2 n], h_{n}(t)=0$ if $t \in[1 / 8,1]$ and $h_{n}(t)$ is linear in $(1 / 8-1 / 2 n, 1 / 8), n=1,2, \ldots$. Note $0 \leq h_{n}(a) \leq h_{n+1}(a), n=1,2, \ldots$. Let $h=\lim _{n \rightarrow \infty} h_{n}(a)$ in $A^{* *}$ which corresponds to the open interval $(-\infty, 1 / 8)$. h is an open projection. Let $p=1-h\left(=\chi_{[1 / 8,1]}(a)\right)$. Since $p \leq f_{1 / 8}(a), p$ is compact. Let $1-q$ be the open projection corresponds to $(1 / 16, \infty)$, i.e.,
$1-q=\lim _{n \rightarrow \infty}\left(f_{1 / 16}(a)\right)^{1 / n}$.

Proof: For any $r>0$, define $f \in C_{0}((0, \infty))_{+}$as follows. $f_{r}(t)=1$ if $t \in[r, \infty), f_{r}(t)=0$ if $t \in[0, r / 2]$ and $f(t)=2(t-r / 2) / r$ if $t \in(r / 2, r)$. (We will use this later).
Let $\bar{e} \in C$ be a projection. We will show that there is a projection $e \in A$ such that $\pi(e)=\bar{e}$, where $\pi: A \rightarrow C$ is the quotient map. By Zhang's theorem, this implies A has real rank zero.
There is a positive element $a \in A$ such that $0 \leq a \leq 1$ and $\pi(a)=\bar{e}$. Define $h_{n} \in C_{0}((0,1])_{+}$by $h_{n}(t)=1$ if $t \in[0,1 / 8-1 / 2 n], h_{n}(t)=0$ if $t \in[1 / 8,1]$ and $h_{n}(t)$ is linear in $(1 / 8-1 / 2 n, 1 / 8), n=1,2, \ldots$. Note $0 \leq h_{n}(a) \leq h_{n+1}(a), n=1,2, \ldots$. Let $h=\lim _{n \rightarrow \infty} h_{n}(a)$ in $A^{* *}$ which corresponds to the open interval $(-\infty, 1 / 8)$. h is an open projection. Let $p=1-h\left(=\chi_{[1 / 8,1]}(a)\right)$. Since $p \leq f_{1 / 8}(a), p$ is compact. Let $1-q$ be the open projection corresponds to $(1 / 16, \infty)$, i.e., $1-q=\lim _{n \rightarrow \infty}\left(f_{1 / 16}(a)\right)^{1 / n}$. So q is closed and $p q=0$.

It follows Brown interpolation lemma that there is a projection $e \in D$ such that

$$
\begin{equation*}
p \leq e \leq 1-q . \tag{e10.84}
\end{equation*}
$$

We have

$$
\begin{equation*}
f_{1 / 4}(a) \leq e \leq f_{1 / 32}(a) \tag{e10.85}
\end{equation*}
$$

It follows Brown interpolation lemma that there is a projection $e \in D$ such that

$$
\begin{equation*}
p \leq e \leq 1-q . \tag{e10.84}
\end{equation*}
$$

We have

$$
\begin{equation*}
f_{1 / 4}(a) \leq e \leq f_{1 / 32}(a) \tag{e10.85}
\end{equation*}
$$

Let $g \in C_{0}((0,1])_{+}$be defined as follows:

It follows Brown interpolation lemma that there is a projection $e \in D$ such that

$$
\begin{equation*}
p \leq e \leq 1-q . \tag{e10.84}
\end{equation*}
$$

We have

$$
\begin{equation*}
f_{1 / 4}(a) \leq e \leq f_{1 / 32}(a) . \tag{e10.85}
\end{equation*}
$$

Let $g \in C_{0}((0,1])_{+}$be defined as follows: $g(t)=0$ if $t \in[0,1 / 64] \cup[1 / 4,1], g(t)=1$ in $[1 / 32,1 / 8]$ and $g(t)$ is linear in $(1 / 64,1 / 32)$ and in (1/8, 1/4).

It follows Brown interpolation lemma that there is a projection $e \in D$ such that

$$
\begin{equation*}
p \leq e \leq 1-q . \tag{e10.84}
\end{equation*}
$$

We have

$$
\begin{equation*}
f_{1 / 4}(a) \leq e \leq f_{1 / 32}(a) . \tag{e10.85}
\end{equation*}
$$

Let $g \in C_{0}((0,1])_{+}$be defined as follows: $g(t)=0$ if $t \in[0,1 / 64] \cup[1 / 4,1], g(t)=1$ in $[1 / 32,1 / 8]$ and $g(t)$ is linear in $(1 / 64,1 / 32)$ and in (1/8, 1/4). Then $e-f_{1 / 4}(a) \leq g(a)$.

It follows Brown interpolation lemma that there is a projection $e \in D$ such that

$$
\begin{equation*}
p \leq e \leq 1-q . \tag{e10.84}
\end{equation*}
$$

We have

$$
\begin{equation*}
f_{1 / 4}(a) \leq e \leq f_{1 / 32}(a) . \tag{e10.85}
\end{equation*}
$$

Let $g \in C_{0}((0,1])_{+}$be defined as follows: $g(t)=0$ if $t \in[0,1 / 64] \cup[1 / 4,1], g(t)=1$ in $[1 / 32,1 / 8]$ and $g(t)$ is linear in $(1 / 64,1 / 32)$ and in $(1 / 8,1 / 4)$. Then $e-f_{1 / 4}(a) \leq g(a)$. Since $a \in A$, $g(a) \in A$.

It follows Brown interpolation lemma that there is a projection $e \in D$ such that

$$
\begin{equation*}
p \leq e \leq 1-q . \tag{e10.84}
\end{equation*}
$$

We have

$$
\begin{equation*}
f_{1 / 4}(a) \leq e \leq f_{1 / 32}(a) . \tag{e10.85}
\end{equation*}
$$

Let $g \in C_{0}((0,1])_{+}$be defined as follows: $g(t)=0$ if $t \in[0,1 / 64] \cup[1 / 4,1], g(t)=1$ in $[1 / 32,1 / 8]$ and $g(t)$ is linear in $(1 / 64,1 / 32)$ and in $(1 / 8,1 / 4)$. Then $e-f_{1 / 4}(a) \leq g(a)$. Since $a \in A$, $g(a) \in A$. However, $\pi(g(a))=g(\pi(a))=0$. Therefore $g(a) \in J$.

It follows Brown interpolation lemma that there is a projection $e \in D$ such that

$$
\begin{equation*}
p \leq e \leq 1-q . \tag{e10.84}
\end{equation*}
$$

We have

$$
\begin{equation*}
f_{1 / 4}(a) \leq e \leq f_{1 / 32}(a) \tag{e10.85}
\end{equation*}
$$

Let $g \in C_{0}((0,1])_{+}$be defined as follows: $g(t)=0$ if $t \in[0,1 / 64] \cup[1 / 4,1], g(t)=1$ in $[1 / 32,1 / 8]$ and $g(t)$ is linear in $(1 / 64,1 / 32)$ and in $(1 / 8,1 / 4)$. Then $e-f_{1 / 4}(a) \leq g(a)$. Since $a \in A$, $g(a) \in A$. However, $\pi(g(a))=g(\pi(a))=0$. Therefore $g(a) \in J$. Consequently, $e-f_{1 / 4}(a) \in J$, since J is hereditary C^{*}-subalgebra of D.

It follows Brown interpolation lemma that there is a projection $e \in D$ such that

$$
\begin{equation*}
p \leq e \leq 1-q . \tag{e10.84}
\end{equation*}
$$

We have

$$
\begin{equation*}
f_{1 / 4}(a) \leq e \leq f_{1 / 32}(a) \tag{e10.85}
\end{equation*}
$$

Let $g \in C_{0}((0,1])_{+}$be defined as follows: $g(t)=0$ if $t \in[0,1 / 64] \cup[1 / 4,1], g(t)=1$ in $[1 / 32,1 / 8]$ and $g(t)$ is linear in $(1 / 64,1 / 32)$ and in $(1 / 8,1 / 4)$. Then $e-f_{1 / 4}(a) \leq g(a)$. Since $a \in A$, $g(a) \in A$. However, $\pi(g(a))=g(\pi(a))=0$. Therefore $g(a) \in J$. Consequently, $e-f_{1 / 4}(a) \in J$, since J is hereditary C^{*}-subalgebra of D. But $f_{1 / 4}(a) \in A$, it follows that $e \in A$.

It follows Brown interpolation lemma that there is a projection $e \in D$ such that

$$
\begin{equation*}
p \leq e \leq 1-q . \tag{e10.84}
\end{equation*}
$$

We have

$$
\begin{equation*}
f_{1 / 4}(a) \leq e \leq f_{1 / 32}(a) . \tag{e10.85}
\end{equation*}
$$

Let $g \in C_{0}((0,1])_{+}$be defined as follows: $g(t)=0$ if $t \in[0,1 / 64] \cup[1 / 4,1], g(t)=1$ in $[1 / 32,1 / 8]$ and $g(t)$ is linear in $(1 / 64,1 / 32)$ and in $(1 / 8,1 / 4)$. Then $e-f_{1 / 4}(a) \leq g(a)$. Since $a \in A$, $g(a) \in A$. However, $\pi(g(a))=g(\pi(a))=0$. Therefore $g(a) \in J$. Consequently, $e-f_{1 / 4}(a) \in J$, since J is hereditary C^{*}-subalgebra of D. But $f_{1 / 4}(a) \in A$, it follows that $e \in A$. The inequality $f_{1 / 4}(a) \leq e \leq f_{1 / 32}(a)$ implies that $\pi(e)=\bar{e}$.

Lemma 2.12.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions.

Lemma 2.12.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset and let $\sigma_{0}>0$.

Lemma 2.12.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset and let $\sigma_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following:

Lemma 2.12.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset and let $\sigma_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) is a δ-G-multiplicative contractive completely positive linear map.

Lemma 2.12.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset and let $\sigma_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map. Then, there exists a projection $p \in M_{n}$ and a unital homomorphism $\phi_{0}: A \rightarrow p M_{n} p$ such that

Lemma 2.12.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset and let $\sigma_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map. Then, there exists a projection $p \in M_{n}$ and a unital homomorphism $\phi_{0}: A \rightarrow p M_{n} p$ such that

$$
\|p \phi(a)-\phi(a) p\|<\epsilon \text { for all } a \in \mathcal{F},
$$

Lemma 2.12.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset and let $\sigma_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) is a δ-G-multiplicative contractive completely positive linear map. Then, there exists a projection $p \in M_{n}$ and a unital homomorphism $\phi_{0}: A \rightarrow p M_{n} p$ such that

$$
\begin{aligned}
\|p \phi(a)-\phi(a) p\| & <\epsilon \text { for all } a \in \mathcal{F}, \\
\left\|\phi(a)-\left[(1-p) \phi(a)(1-p)+\phi_{0}(a)\right]\right\| & <\epsilon \text { for all } a \in \mathcal{F} \text { and }
\end{aligned}
$$

Lemma 2.12.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset and let $\sigma_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map. Then, there exists a projection $p \in M_{n}$ and a unital homomorphism $\phi_{0}: A \rightarrow p M_{n} p$ such that

$$
\begin{aligned}
\|p \phi(a)-\phi(a) p\| & <\epsilon \text { for all } a \in \mathcal{F}, \\
\left\|\phi(a)-\left[(1-p) \phi(a)(1-p)+\phi_{0}(a)\right]\right\| & <\epsilon \text { for all } a \in \mathcal{F} \text { and } \\
\operatorname{tr}(1-p) & <\sigma_{0},
\end{aligned}
$$

Lemma 2.12.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset and let $\sigma_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map. Then, there exists a projection $p \in M_{n}$ and a unital homomorphism $\phi_{0}: A \rightarrow p M_{n} p$ such that

$$
\begin{aligned}
\|p \phi(a)-\phi(a) p\| & <\epsilon \text { for all } a \in \mathcal{F}, \\
\left\|\phi(a)-\left[(1-p) \phi(a)(1-p)+\phi_{0}(a)\right]\right\| & <\epsilon \text { for all } a \in \mathcal{F} \text { and } \\
\operatorname{tr}(1-p) & <\sigma_{0},
\end{aligned}
$$

where tr is the normalized trace on M_{n}.

Proof : We assume that the lemma is false.

Proof: We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$,

Proof: We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A,

Proof : We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A, a sequence of decreasing positive numbers $\left\{\delta_{n}\right\}$ with $\sum_{n=1}^{\infty} \delta_{n}<\infty$,

Proof : We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A, a sequence of decreasing positive numbers $\left\{\delta_{n}\right\}$ with $\sum_{n=1}^{\infty} \delta_{n}<\infty$, a sequence of integers $\{m(n)\}$ and a sequence of unital $\mathcal{G}_{n}-\delta_{n}$-multiplicative contractive completely positive linear maps $\phi_{n}: A \rightarrow M_{m(n)}$ satisfying the following:

Proof : We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A, a sequence of decreasing positive numbers $\left\{\delta_{n}\right\}$ with $\sum_{n=1}^{\infty} \delta_{n}<\infty$, a sequence of integers $\{m(n)\}$ and a sequence of unital $\mathcal{G}_{n}-\delta_{n}$-multiplicative contractive completely positive linear maps $\phi_{n}: A \rightarrow M_{m(n)}$ satisfying the following:
$\inf \left\{\max \left\{\| \phi_{n}(a)-\left[(1-p) \phi_{n}(a)(1-p)+\phi_{0}(a) \|: a \in \mathcal{F}_{0}\right\}\right\} \geq \epsilon_{0},(\mathrm{e} 10.86)\right.$

Proof : We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A, a sequence of decreasing positive numbers $\left\{\delta_{n}\right\}$ with $\sum_{n=1}^{\infty} \delta_{n}<\infty$, a sequence of integers $\{m(n)\}$ and a sequence of unital $\mathcal{G}_{n}-\delta_{n}$-multiplicative contractive completely positive linear maps $\phi_{n}: A \rightarrow M_{m(n)}$ satisfying the following:
$\inf \left\{\max \left\{\| \phi_{n}(a)-\left[(1-p) \phi_{n}(a)(1-p)+\phi_{0}(a) \|: a \in \mathcal{F}_{0}\right\}\right\} \geq \epsilon_{0},(\mathrm{e} 10.86)\right.$
where infimun is take among all projections $p \in M_{m(n)}$ with $t_{n}(1-p)<\sigma_{0}$, where $t r_{n}$ is the normalized trace on $M_{m(n)}$ and all possible homomorphisms $\phi_{0}: A \rightarrow p M_{m(n)} p$.

Proof : We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A, a sequence of decreasing positive numbers $\left\{\delta_{n}\right\}$ with $\sum_{n=1}^{\infty} \delta_{n}<\infty$, a sequence of integers $\{m(n)\}$ and a sequence of unital $\mathcal{G}_{n}-\delta_{n}$-multiplicative contractive completely positive linear maps $\phi_{n}: A \rightarrow M_{m(n)}$ satisfying the following:
$\inf \left\{\max \left\{\| \phi_{n}(a)-\left[(1-p) \phi_{n}(a)(1-p)+\phi_{0}(a) \|: a \in \mathcal{F}_{0}\right\}\right\} \geq \epsilon_{0},(\mathrm{e} 10.86)\right.$
where infimun is take among all projections $p \in M_{m(n)}$ with $\operatorname{tr}_{n}(1-p)<\sigma_{0}$, where $t r_{n}$ is the normalized trace on $M_{m(n)}$ and all possible homomorphisms $\phi_{0}: A \rightarrow p M_{m(n)} p$. One may also assume that $m(n) \rightarrow \infty$ as $n \rightarrow \infty$.

Proof : We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A, a sequence of decreasing positive numbers $\left\{\delta_{n}\right\}$ with $\sum_{n=1}^{\infty} \delta_{n}<\infty$, a sequence of integers $\{m(n)\}$ and a sequence of unital $\mathcal{G}_{n}-\delta_{n}$-multiplicative contractive completely positive linear maps $\phi_{n}: A \rightarrow M_{m(n)}$ satisfying the following:
$\inf \left\{\max \left\{\| \phi_{n}(a)-\left[(1-p) \phi_{n}(a)(1-p)+\phi_{0}(a) \|: a \in \mathcal{F}_{0}\right\}\right\} \geq \epsilon_{0},(\mathrm{e} 10.86)\right.$
where infimun is take among all projections $p \in M_{m(n)}$ with $\operatorname{tr}_{n}(1-p)<\sigma_{0}$, where $t r_{n}$ is the normalized trace on $M_{m(n)}$ and all possible homomorphisms $\phi_{0}: A \rightarrow p M_{m(n)} p$. One may also assume that $m(n) \rightarrow \infty$ as $n \rightarrow \infty$.
Note that $\left\{\operatorname{tr}_{n} \circ \phi_{n}\right\}$ is a sequence of (not necessary tracial) states of A.

Proof : We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A, a sequence of decreasing positive numbers $\left\{\delta_{n}\right\}$ with $\sum_{n=1}^{\infty} \delta_{n}<\infty$, a sequence of integers $\{m(n)\}$ and a sequence of unital $\mathcal{G}_{n}-\delta_{n}$-multiplicative contractive completely positive linear maps $\phi_{n}: A \rightarrow M_{m(n)}$ satisfying the following:
$\inf \left\{\max \left\{\| \phi_{n}(a)-\left[(1-p) \phi_{n}(a)(1-p)+\phi_{0}(a) \|: a \in \mathcal{F}_{0}\right\}\right\} \geq \epsilon_{0},(\mathrm{e} 10.86)\right.$
where infimun is take among all projections $p \in M_{m(n)}$ with $t_{n}(1-p)<\sigma_{0}$, where $t r_{n}$ is the normalized trace on $M_{m(n)}$ and all possible homomorphisms $\phi_{0}: A \rightarrow p M_{m(n)} p$. One may also assume that $m(n) \rightarrow \infty$ as $n \rightarrow \infty$.
Note that $\left\{\operatorname{tr}_{n} \circ \phi_{n}\right\}$ is a sequence of (not necessary tracial) states of A.
Let t_{0} be a weak limit of $\left\{t_{n} \circ \phi_{n}\right\}$.

Proof : We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A, a sequence of decreasing positive numbers $\left\{\delta_{n}\right\}$ with $\sum_{n=1}^{\infty} \delta_{n}<\infty$, a sequence of integers $\{m(n)\}$ and a sequence of unital $\mathcal{G}_{n}-\delta_{n}$-multiplicative contractive completely positive linear maps $\phi_{n}: A \rightarrow M_{m(n)}$ satisfying the following:
$\inf \left\{\max \left\{\| \phi_{n}(a)-\left[(1-p) \phi_{n}(a)(1-p)+\phi_{0}(a) \|: a \in \mathcal{F}_{0}\right\}\right\} \geq \epsilon_{0},(\mathrm{e} 10.86)\right.$
where infimun is take among all projections $p \in M_{m(n)}$ with $\operatorname{tr}_{n}(1-p)<\sigma_{0}$, where $t r_{n}$ is the normalized trace on $M_{m(n)}$ and all possible homomorphisms $\phi_{0}: A \rightarrow p M_{m(n)} p$. One may also assume that $m(n) \rightarrow \infty$ as $n \rightarrow \infty$.
Note that $\left\{\operatorname{tr}_{n} \circ \phi_{n}\right\}$ is a sequence of (not necessary tracial) states of A. Let t_{0} be a weak limit of $\left\{t r_{n} \circ \phi_{n}\right\}$. Since A is separable, there is a subsequence (instead of subnet) of $\left\{t_{n} \circ \phi_{n}\right\}$ converging to t_{0}.

Proof : We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A, a sequence of decreasing positive numbers $\left\{\delta_{n}\right\}$ with $\sum_{n=1}^{\infty} \delta_{n}<\infty$, a sequence of integers $\{m(n)\}$ and a sequence of unital $\mathcal{G}_{n}-\delta_{n}$-multiplicative contractive completely positive linear maps $\phi_{n}: A \rightarrow M_{m(n)}$ satisfying the following:
$\inf \left\{\max \left\{\| \phi_{n}(a)-\left[(1-p) \phi_{n}(a)(1-p)+\phi_{0}(a) \|: a \in \mathcal{F}_{0}\right\}\right\} \geq \epsilon_{0},(\mathrm{e} 10.86)\right.$
where infimun is take among all projections $p \in M_{m(n)}$ with $t r_{n}(1-p)<\sigma_{0}$, where $t r_{n}$ is the normalized trace on $M_{m(n)}$ and all possible homomorphisms $\phi_{0}: A \rightarrow p M_{m(n)} p$. One may also assume that $m(n) \rightarrow \infty$ as $n \rightarrow \infty$.
Note that $\left\{\operatorname{tr}_{n} \circ \phi_{n}\right\}$ is a sequence of (not necessary tracial) states of A.
Let t_{0} be a weak limit of $\left\{t r_{n} \circ \phi_{n}\right\}$. Since A is separable, there is a subsequence (instead of subnet) of $\left\{t r_{n} \circ \phi_{n}\right\}$ converging to t_{0}. Without loss of generality, we may assume that $t r_{n} \circ \phi_{n}$ converges to t_{0}.

Proof : We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A, a sequence of decreasing positive numbers $\left\{\delta_{n}\right\}$ with $\sum_{n=1}^{\infty} \delta_{n}<\infty$, a sequence of integers $\{m(n)\}$ and a sequence of unital $\mathcal{G}_{n}-\delta_{n}$-multiplicative contractive completely positive linear maps $\phi_{n}: A \rightarrow M_{m(n)}$ satisfying the following:
$\inf \left\{\max \left\{\| \phi_{n}(a)-\left[(1-p) \phi_{n}(a)(1-p)+\phi_{0}(a) \|: a \in \mathcal{F}_{0}\right\}\right\} \geq \epsilon_{0},(\mathrm{e} 10.86)\right.$
where infimun is take among all projections $p \in M_{m(n)}$ with $t_{n}(1-p)<\sigma_{0}$, where $t r_{n}$ is the normalized trace on $M_{m(n)}$ and all possible homomorphisms $\phi_{0}: A \rightarrow p M_{m(n)} p$. One may also assume that $m(n) \rightarrow \infty$ as $n \rightarrow \infty$.
Note that $\left\{\operatorname{tr}_{n} \circ \phi_{n}\right\}$ is a sequence of (not necessary tracial) states of A.
Let t_{0} be a weak limit of $\left\{\operatorname{tr}_{n} \circ \phi_{n}\right\}$. Since A is separable, there is a subsequence (instead of subnet) of $\left\{t_{n} \circ \phi_{n}\right\}$ converging to t_{0}.
Without loss of generality, we may assume that $t r_{n} \circ \phi_{n}$ converges to t_{0}.
By the $\delta_{n}-\mathcal{G}_{n}$-multiplicativity of ϕ_{n}, we know that t_{0} is a tracial state on A.

Proof : We assume that the lemma is false. Then there exists $\epsilon_{0}>0$, a finite subset \mathcal{F}_{0}, a positive number $\sigma_{0}>0$, an increasing sequence of finite subsets $\mathcal{G}_{n} \subset A$ such that $\mathcal{G}_{n} \subset \mathcal{G}_{n+1}$ and such that $\cup_{n=1} \mathcal{G}_{n}$ is dense in A, a sequence of decreasing positive numbers $\left\{\delta_{n}\right\}$ with $\sum_{n=1}^{\infty} \delta_{n}<\infty$, a sequence of integers $\{m(n)\}$ and a sequence of unital $\mathcal{G}_{n}-\delta_{n}$-multiplicative contractive completely positive linear maps $\phi_{n}: A \rightarrow M_{m(n)}$ satisfying the following:
$\inf \left\{\max \left\{\| \phi_{n}(a)-\left[(1-p) \phi_{n}(a)(1-p)+\phi_{0}(a) \|: a \in \mathcal{F}_{0}\right\}\right\} \geq \epsilon_{0},(\mathrm{e} 10.86)\right.$
where infimun is take among all projections $p \in M_{m(n)}$ with $t_{n}(1-p)<\sigma_{0}$, where $t r_{n}$ is the normalized trace on $M_{m(n)}$ and all possible homomorphisms $\phi_{0}: A \rightarrow p M_{m(n)} p$. One may also assume that $m(n) \rightarrow \infty$ as $n \rightarrow \infty$.
Note that $\left\{\operatorname{tr}_{n} \circ \phi_{n}\right\}$ is a sequence of (not necessary tracial) states of A.
Let t_{0} be a weak limit of $\left\{\operatorname{tr}_{n} \circ \phi_{n}\right\}$. Since A is separable, there is a subsequence (instead of subnet) of $\left\{t_{n} \circ \phi_{n}\right\}$ converging to t_{0}.
Without loss of generality, we may assume that $t r_{n} \circ \phi_{n}$ converges to t_{0}.
By the $\delta_{n}-\mathcal{G}_{n}$-multiplicativity of ϕ_{n}, we know that t_{0} is a tracial state on A.

Denote by $\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ the ideal

$$
\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)=\left\{\left\{a_{n}\right\}: a_{n} \in M_{m(n)} \text { and } \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\} .
$$

Denote by $\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ the ideal

$$
\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)=\left\{\left\{a_{n}\right\}: a_{n} \in M_{m(n)} \text { and } \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\}
$$

Denote by Q the quotient $\prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\} / \bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)\right.$.

Denote by $\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ the ideal

$$
\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)=\left\{\left\{a_{n}\right\}: a_{n} \in M_{m(n)} \text { and } \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\}
$$

Denote by Q the quotient $\prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\} / \bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)\right.$. Let $\pi_{\omega}: \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right) \rightarrow Q$ be the quotient map.

Denote by $\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ the ideal

$$
\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)=\left\{\left\{a_{n}\right\}: a_{n} \in M_{m(n)} \text { and } \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\}
$$

Denote by Q the quotient $\prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\} / \bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)\right.$. Let $\pi_{\omega}: \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right) \rightarrow Q$ be the quotient map.
Let $A_{0}=\left\{\pi_{\omega}\left(\left\{\phi_{n}(f)\right\}\right): f \in A\right\}$ which is a subalgebra of Q.

Denote by $\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ the ideal

$$
\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)=\left\{\left\{a_{n}\right\}: a_{n} \in M_{m(n)} \text { and } \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\}
$$

Denote by Q the quotient $\prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\} / \bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)\right.$. Let $\pi_{\omega}: \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right) \rightarrow Q$ be the quotient map.
Let $A_{0}=\left\{\pi_{\omega}\left(\left\{\phi_{n}(f)\right\}\right): f \in A\right\}$ which is a subalgebra of Q. Then Ψ is a unital homomorphism from A to $\prod_{n=1}^{\infty}\left(M_{m(n)}\right) / \bigoplus\left(\left\{M_{m(n)}\right\}\right)$ with $\Psi(A)=\pi_{\omega}\left(A_{0}\right)$.

Denote by $\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ the ideal

$$
\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)=\left\{\left\{a_{n}\right\}: a_{n} \in M_{m(n)} \text { and } \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\} .
$$

Denote by Q the quotient $\prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\} / \bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)\right.$. Let $\pi_{\omega}: \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right) \rightarrow Q$ be the quotient map.
Let $A_{0}=\left\{\pi_{\omega}\left(\left\{\phi_{n}(f)\right\}\right): f \in A\right\}$ which is a subalgebra of Q. Then Ψ is a unital homomorphism from A to $\prod_{n=1}^{\infty}\left(M_{m(n)}\right) / \bigoplus\left(\left\{M_{m(n)}\right\}\right)$ with $\Psi(A)=\pi_{\omega}\left(A_{0}\right)$. If $a \in A$ has zero image in $\pi_{\omega}\left(A_{0}\right)$, that is, $\phi_{n}(a) \rightarrow 0$, then $t_{0}(a)=\lim _{n \rightarrow \infty} \operatorname{tr}_{n}\left(\phi_{n}(a)\right)=0$.

Denote by $\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ the ideal

$$
\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)=\left\{\left\{a_{n}\right\}: a_{n} \in M_{m(n)} \text { and } \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\} .
$$

Denote by Q the quotient $\prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\} / \bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)\right.$. Let $\pi_{\omega}: \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right) \rightarrow Q$ be the quotient map.
Let $A_{0}=\left\{\pi_{\omega}\left(\left\{\phi_{n}(f)\right\}\right): f \in A\right\}$ which is a subalgebra of Q. Then Ψ is a unital homomorphism from A to $\prod_{n=1}^{\infty}\left(M_{m(n)}\right) / \bigoplus\left(\left\{M_{m(n)}\right\}\right)$ with $\Psi(A)=\pi_{\omega}\left(A_{0}\right)$. If $a \in A$ has zero image in $\pi_{\omega}\left(A_{0}\right)$, that is, $\phi_{n}(a) \rightarrow 0$, then $t_{0}(a)=\lim _{n \rightarrow \infty} \operatorname{tr}_{n}\left(\phi_{n}(a)\right)=0$. So we may view t_{0} as a state on $\pi_{\omega}\left(A_{0}\right)=\Psi(A)$.

Denote by $\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ the ideal

$$
\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)=\left\{\left\{a_{n}\right\}: a_{n} \in M_{m(n)} \text { and } \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\} .
$$

Denote by Q the quotient $\prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\} / \bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)\right.$. Let $\pi_{\omega}: \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right) \rightarrow Q$ be the quotient map.
Let $A_{0}=\left\{\pi_{\omega}\left(\left\{\phi_{n}(f)\right\}\right): f \in A\right\}$ which is a subalgebra of Q. Then Ψ is a unital homomorphism from A to $\prod_{n=1}^{\infty}\left(M_{m(n)}\right) / \bigoplus\left(\left\{M_{m(n)}\right\}\right)$ with $\Psi(A)=\pi_{\omega}\left(A_{0}\right)$. If $a \in A$ has zero image in $\pi_{\omega}\left(A_{0}\right)$, that is, $\phi_{n}(a) \rightarrow 0$, then $t_{0}(a)=\lim _{n \rightarrow \infty} \operatorname{tr}_{n}\left(\phi_{n}(a)\right)=0$. So we may view t_{0} as a state on $\pi_{\omega}\left(A_{0}\right)=\Psi(A)$.
It follows from Lemma 2.8 that there is a (two-sided closed) ideal $I \subset \Psi(A)$

Denote by $\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ the ideal

$$
\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)=\left\{\left\{a_{n}\right\}: a_{n} \in M_{m(n)} \text { and } \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\} .
$$

Denote by Q the quotient $\prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\} / \bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)\right.$. Let $\pi_{\omega}: \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right) \rightarrow Q$ be the quotient map.
Let $A_{0}=\left\{\pi_{\omega}\left(\left\{\phi_{n}(f)\right\}\right): f \in A\right\}$ which is a subalgebra of Q. Then Ψ is a unital homomorphism from A to $\prod_{n=1}^{\infty}\left(M_{m(n)}\right) / \bigoplus\left(\left\{M_{m(n)}\right\}\right)$ with $\Psi(A)=\pi_{\omega}\left(A_{0}\right)$. If $a \in A$ has zero image in $\pi_{\omega}\left(A_{0}\right)$, that is, $\phi_{n}(a) \rightarrow 0$, then $t_{0}(a)=\lim _{n \rightarrow \infty} \operatorname{tr}_{n}\left(\phi_{n}(a)\right)=0$. So we may view t_{0} as a state on $\pi_{\omega}\left(A_{0}\right)=\Psi(A)$.
It follows from Lemma 2.8 that there is a (two-sided closed) ideal $I \subset \Psi(A)$ and a finite dimensional C^{*}-subalgebra $B \subset \Psi(A) / I$ and a unital homomorphism $\pi_{00}: \Psi(A) / I \rightarrow B$ such that

Denote by $\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ the ideal

$$
\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)=\left\{\left\{a_{n}\right\}: a_{n} \in M_{m(n)} \text { and } \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\} .
$$

Denote by Q the quotient $\prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\} / \bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)\right.$. Let $\pi_{\omega}: \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right) \rightarrow Q$ be the quotient map.
Let $A_{0}=\left\{\pi_{\omega}\left(\left\{\phi_{n}(f)\right\}\right): f \in A\right\}$ which is a subalgebra of Q. Then Ψ is a unital homomorphism from A to $\prod_{n=1}^{\infty}\left(M_{m(n)}\right) / \bigoplus\left(\left\{M_{m(n)}\right\}\right)$ with $\Psi(A)=\pi_{\omega}\left(A_{0}\right)$. If $a \in A$ has zero image in $\pi_{\omega}\left(A_{0}\right)$, that is, $\phi_{n}(a) \rightarrow 0$, then $t_{0}(a)=\lim _{n \rightarrow \infty} \operatorname{tr}_{n}\left(\phi_{n}(a)\right)=0$. So we may view t_{0} as a state on $\pi_{\omega}\left(A_{0}\right)=\Psi(A)$.
It follows from Lemma 2.8 that there is a (two-sided closed) ideal $I \subset \Psi(A)$ and a finite dimensional C^{*}-subalgebra $B \subset \Psi(A) / I$ and a unital homomorphism $\pi_{00}: \Psi(A) / I \rightarrow B$ such that

$$
\begin{array}{rll}
\operatorname{dist}\left(\pi_{I} \circ \Psi(f), B\right) & <\epsilon_{0} / 16 \text { for all } f \in \mathcal{F}_{0}, & (\mathrm{e} 10.87) \\
\left\|\left(t_{0}\right) \mid,\right\| & <\sigma_{0} / 2 & (\mathrm{e} 10.88) \\
\left.\pi_{00}\right|_{B}=\mathrm{id} & & (\mathrm{e} 10.89)
\end{array}
$$

Denote by $\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ the ideal

$$
\bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)=\left\{\left\{a_{n}\right\}: a_{n} \in M_{m(n)} \text { and } \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\} .
$$

Denote by Q the quotient $\prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\} / \bigoplus_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)\right.$. Let $\pi_{\omega}: \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right) \rightarrow Q$ be the quotient map.
Let $A_{0}=\left\{\pi_{\omega}\left(\left\{\phi_{n}(f)\right\}\right): f \in A\right\}$ which is a subalgebra of Q. Then Ψ is a unital homomorphism from A to $\prod_{n=1}^{\infty}\left(M_{m(n)}\right) / \bigoplus\left(\left\{M_{m(n)}\right\}\right)$ with $\Psi(A)=\pi_{\omega}\left(A_{0}\right)$. If $a \in A$ has zero image in $\pi_{\omega}\left(A_{0}\right)$, that is, $\phi_{n}(a) \rightarrow 0$, then $t_{0}(a)=\lim _{n \rightarrow \infty} \operatorname{tr}_{n}\left(\phi_{n}(a)\right)=0$. So we may view t_{0} as a state on $\pi_{\omega}\left(A_{0}\right)=\Psi(A)$.
It follows from Lemma 2.8 that there is a (two-sided closed) ideal $I \subset \Psi(A)$ and a finite dimensional C^{*}-subalgebra $B \subset \Psi(A) / I$ and a unital homomorphism $\pi_{00}: \Psi(A) / I \rightarrow B$ such that

$$
\begin{array}{rll}
\operatorname{dist}\left(\pi_{I} \circ \Psi(f), B\right) & <\epsilon_{0} / 16 \text { for all } f \in \mathcal{F}_{0}, & (\mathrm{e} 10.87) \\
\left\|\left(t_{0}\right) \mid,\right\| & <\sigma_{0} / 2 & (\mathrm{e} 10.88) \\
\left.\pi_{00}\right|_{B}=\mathrm{id} & & (\mathrm{e} 10.89)
\end{array}
$$

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$.

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$. There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$.
There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16
$$

(e 10.90)

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$.
There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16
$$

$$
\text { Put } C^{\prime}=B+I \text { and } I_{0}=\Psi^{-1}(I) \text { and } C_{1}=\Psi^{-1}\left(C^{\prime}\right) .
$$

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$.
There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\begin{equation*}
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16 \tag{e10.90}
\end{equation*}
$$

Put $C^{\prime}=B+I$ and $I_{0}=\Psi^{-1}(I)$ and $C_{1}=\Psi^{-1}\left(C^{\prime}\right)$. For each $f \in \mathcal{F}_{0}$, there exists $a_{f} \in C_{1} \subset A$ such that

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$.
There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\begin{equation*}
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16 \tag{e10.90}
\end{equation*}
$$

$$
\text { Put } C^{\prime}=B+I \text { and } I_{0}=\Psi^{-1}(I) \text { and } C_{1}=\Psi^{-1}\left(C^{\prime}\right) . \text { For each } f \in \mathcal{F}_{0}
$$ there exists $a_{f} \in C_{1} \subset A$ such that

$$
\begin{equation*}
\left\|f-a_{f}\right\|<\epsilon_{0} / 16 \text { and } \pi_{l} \circ \Psi\left(a_{f}\right)=b_{f} . \tag{e10.91}
\end{equation*}
$$

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$. There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\begin{equation*}
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16 \tag{e10.90}
\end{equation*}
$$

$$
\text { Put } C^{\prime}=B+I \text { and } I_{0}=\Psi^{-1}(I) \text { and } C_{1}=\Psi^{-1}\left(C^{\prime}\right) . \text { For each } f \in \mathcal{F}_{0}
$$ there exists $a_{f} \in C_{1} \subset A$ such that

$$
\begin{equation*}
\left\|f-a_{f}\right\|<\epsilon_{0} / 16 \text { and } \pi_{l} \circ \Psi\left(a_{f}\right)=b_{f} . \tag{e10.91}
\end{equation*}
$$

Let $a \in\left(I_{0}\right)_{+}$be a strictly positive element and let $J=\overline{\Psi(a) Q \Psi(a)}$ be the hereditary C^{*}-subalgebra of Q generated by $\Psi(a)$.

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$. There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\begin{equation*}
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16 \tag{e10.90}
\end{equation*}
$$

$$
\text { Put } C^{\prime}=B+I \text { and } I_{0}=\Psi^{-1}(I) \text { and } C_{1}=\Psi^{-1}\left(C^{\prime}\right) . \text { For each } f \in \mathcal{F}_{0}
$$ there exists $a_{f} \in C_{1} \subset A$ such that

$$
\begin{equation*}
\left\|f-a_{f}\right\|<\epsilon_{0} / 16 \text { and } \pi_{l} \circ \Psi\left(a_{f}\right)=b_{f} . \tag{e10.91}
\end{equation*}
$$

Let $a \in\left(I_{0}\right)_{+}$be a strictly positive element and let $J=\overline{\Psi(a) Q \Psi(a)}$ be the hereditary C^{*}-subalgebra of Q generated by $\Psi(a)$. Put $C_{2}=\Psi\left(C_{1}\right)+J$.

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$. There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\begin{equation*}
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16 \tag{e10.90}
\end{equation*}
$$

$$
\text { Put } C^{\prime}=B+I \text { and } I_{0}=\Psi^{-1}(I) \text { and } C_{1}=\Psi^{-1}\left(C^{\prime}\right) . \text { For each } f \in \mathcal{F}_{0}
$$ there exists $a_{f} \in C_{1} \subset A$ such that

$$
\begin{equation*}
\left\|f-a_{f}\right\|<\epsilon_{0} / 16 \text { and } \pi_{l} \circ \Psi\left(a_{f}\right)=b_{f} . \tag{e10.91}
\end{equation*}
$$

Let $a \in\left(I_{0}\right)_{+}$be a strictly positive element and let $J=\overline{\Psi(a) Q \Psi(a)}$ be the hereditary C^{*}-subalgebra of Q generated by $\Psi(a)$. Put $C_{2}=\Psi\left(C_{1}\right)+J$. Then J is an ideal of C_{2}.

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$. There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\begin{equation*}
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16 \tag{e10.90}
\end{equation*}
$$

$$
\text { Put } C^{\prime}=B+I \text { and } I_{0}=\Psi^{-1}(I) \text { and } C_{1}=\Psi^{-1}\left(C^{\prime}\right) . \text { For each } f \in \mathcal{F}_{0}
$$ there exists $a_{f} \in C_{1} \subset A$ such that

$$
\begin{equation*}
\left\|f-a_{f}\right\|<\epsilon_{0} / 16 \text { and } \pi_{l} \circ \Psi\left(a_{f}\right)=b_{f} . \tag{e10.91}
\end{equation*}
$$

Let $a \in\left(I_{0}\right)_{+}$be a strictly positive element and let $J=\overline{\Psi(a) Q \Psi(a)}$ be the hereditary C^{*}-subalgebra of Q generated by $\Psi(a)$. Put $C_{2}=\Psi\left(C_{1}\right)+J$. Then J is an ideal of C_{2}. Denote by $\pi_{J}: C_{2} \rightarrow B$ the quotient map.

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$. There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\begin{equation*}
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16 \tag{e10.90}
\end{equation*}
$$

$$
\text { Put } C^{\prime}=B+I \text { and } I_{0}=\Psi^{-1}(I) \text { and } C_{1}=\Psi^{-1}\left(C^{\prime}\right) . \text { For each } f \in \mathcal{F}_{0} \text {, }
$$ there exists $a_{f} \in C_{1} \subset A$ such that

$$
\begin{equation*}
\left\|f-a_{f}\right\|<\epsilon_{0} / 16 \text { and } \pi_{l} \circ \Psi\left(a_{f}\right)=b_{f} . \tag{e10.91}
\end{equation*}
$$

Let $a \in\left(I_{0}\right)_{+}$be a strictly positive element and let $J=\overline{\Psi(a) Q \Psi(a)}$ be the hereditary C^{*}-subalgebra of Q generated by $\Psi(a)$. Put $C_{2}=\Psi\left(C_{1}\right)+J$. Then J is an ideal of C_{2}. Denote by $\pi_{J}: C_{2} \rightarrow B$ the quotient map. Since Q and J have real rank zero and

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$. There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\begin{equation*}
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16 \tag{e10.90}
\end{equation*}
$$

$$
\text { Put } C^{\prime}=B+I \text { and } I_{0}=\Psi^{-1}(I) \text { and } C_{1}=\Psi^{-1}\left(C^{\prime}\right) . \text { For each } f \in \mathcal{F}_{0} \text {, }
$$ there exists $a_{f} \in C_{1} \subset A$ such that

$$
\begin{equation*}
\left\|f-a_{f}\right\|<\epsilon_{0} / 16 \text { and } \pi_{l} \circ \Psi\left(a_{f}\right)=b_{f} . \tag{e10.91}
\end{equation*}
$$

Let $a \in\left(I_{0}\right)_{+}$be a strictly positive element and let $J=\overline{\Psi(a) Q \Psi(a)}$ be the hereditary C^{*}-subalgebra of Q generated by $\Psi(a)$. Put $C_{2}=\Psi\left(C_{1}\right)+J$. Then J is an ideal of C_{2}. Denote by $\pi_{J}: C_{2} \rightarrow B$ the quotient map. Since Q and J have real rank zero and C_{2} / J has finite dimensional,

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$. There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\begin{equation*}
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16 \tag{e10.90}
\end{equation*}
$$

$$
\text { Put } C^{\prime}=B+I \text { and } I_{0}=\Psi^{-1}(I) \text { and } C_{1}=\Psi^{-1}\left(C^{\prime}\right) . \text { For each } f \in \mathcal{F}_{0} \text {, }
$$ there exists $a_{f} \in C_{1} \subset A$ such that

$$
\begin{equation*}
\left\|f-a_{f}\right\|<\epsilon_{0} / 16 \text { and } \pi_{l} \circ \Psi\left(a_{f}\right)=b_{f} . \tag{e10.91}
\end{equation*}
$$

Let $a \in\left(I_{0}\right)_{+}$be a strictly positive element and let $J=\overline{\Psi(a) Q \Psi(a)}$ be the hereditary C^{*}-subalgebra of Q generated by $\Psi(a)$. Put $C_{2}=\Psi\left(C_{1}\right)+J$. Then J is an ideal of C_{2}. Denote by $\pi_{J}: C_{2} \rightarrow B$ the quotient map. Since Q and J have real rank zero and C_{2} / J has finite dimensional, C_{2} has real rank zero.

Note that π_{00} can be regarded as map from A to B, then $\operatorname{ker} \pi_{00} \supset I$. There is, for each $f \in \mathcal{F}_{0}$, an element $b_{f} \in B$ such that

$$
\begin{equation*}
\left\|\pi_{I} \circ \Psi(f)-b_{f}\right\|<\epsilon_{0} / 16 \tag{e10.90}
\end{equation*}
$$

$$
\text { Put } C^{\prime}=B+I \text { and } I_{0}=\Psi^{-1}(I) \text { and } C_{1}=\Psi^{-1}\left(C^{\prime}\right) . \text { For each } f \in \mathcal{F}_{0}
$$ there exists $a_{f} \in C_{1} \subset A$ such that

$$
\begin{equation*}
\left\|f-a_{f}\right\|<\epsilon_{0} / 16 \text { and } \pi_{l} \circ \Psi\left(a_{f}\right)=b_{f} . \tag{e10.91}
\end{equation*}
$$

Let $a \in\left(I_{0}\right)_{+}$be a strictly positive element and let $J=\overline{\Psi(a) Q \Psi(a)}$ be the hereditary C^{*}-subalgebra of Q generated by $\Psi(a)$. Put $C_{2}=\Psi\left(C_{1}\right)+J$. Then J is an ideal of C_{2}. Denote by $\pi_{J}: C_{2} \rightarrow B$ the quotient map. Since Q and J have real rank zero and C_{2} / J has finite dimensional, C_{2} has real rank zero. It follows that

$$
0 \rightarrow J \rightarrow C_{2} \rightarrow B \rightarrow 0
$$

is a quasidiagonal extension.

One then concludes there is a projection $P \in J$ and a unital

 homomorphism $\psi_{0}: B \rightarrow(1-P) C_{2}(1-P)$ such that$$
\left\|P \Psi\left(a_{f}\right)-\Psi\left(a_{f}\right) P\right\|<\epsilon_{0} / 8 \text { and }
$$

One then concludes there is a projection $P \in J$ and a unital homomorphism $\psi_{0}: B \rightarrow(1-P) C_{2}(1-P)$ such that

$$
\begin{align*}
\left\|P \Psi\left(a_{f}\right)-\Psi\left(a_{f}\right) P\right\|<\epsilon_{0} / 8 \text { and } \tag{e10.92}\\
\left\|\Psi\left(a_{f}\right)-\left[P \Psi\left(a_{f}\right) P+\psi_{0} \circ \pi_{J} \circ \Psi\left(a_{f}\right)\right]\right\|<\epsilon_{0} / 8
\end{align*}
$$

One then concludes there is a projection $P \in J$ and a unital

 homomorphism $\psi_{0}: B \rightarrow(1-P) C_{2}(1-P)$ such that$$
\begin{align*}
\left\|P \Psi\left(a_{f}\right)-\Psi\left(a_{f}\right) P\right\|<\epsilon_{0} / 8 \text { and } \tag{e10.92}\\
\left\|\Psi\left(a_{f}\right)-\left[P \Psi\left(a_{f}\right) P+\psi_{0} \circ \pi_{J} \circ \Psi\left(a_{f}\right)\right]\right\|<\epsilon_{0} / 8
\end{align*}
$$

for all $f \in \mathcal{F}_{0}$.

One then concludes there is a projection $P \in J$ and a unital

 homomorphism $\psi_{0}: B \rightarrow(1-P) C_{2}(1-P)$ such that$$
\begin{align*}
\left\|P \Psi\left(a_{f}\right)-\Psi\left(a_{f}\right) P\right\|<\epsilon_{0} / 8 \text { and } \\
\left\|\Psi\left(a_{f}\right)-\left[P \Psi\left(a_{f}\right) P+\psi_{0} \circ \pi_{J} \circ \Psi\left(a_{f}\right)\right]\right\|<\epsilon_{0} / 8 \tag{e10.93}
\end{align*}
$$

for all $f \in \mathcal{F}_{0}$. Let $H: A \rightarrow \psi_{0}(B)$ be defined by $H=\psi_{0} \circ \pi_{00} \circ \pi_{I} \circ \Psi$.

One then concludes there is a projection $P \in J$ and a unital homomorphism $\psi_{0}: B \rightarrow(1-P) C_{2}(1-P)$ such that

$$
\begin{align*}
&\left\|P \Psi\left(a_{f}\right)-\Psi\left(a_{f}\right) P\right\|<\epsilon_{0} / 8 \text { and }(\mathrm{e} 10.92) \\
&\left\|\Psi\left(a_{f}\right)-\left[P \Psi\left(a_{f}\right) P+\psi_{0} \circ \pi_{J} \circ \Psi\left(a_{f}\right)\right]\right\|<\epsilon_{0} / 8 \tag{e10.93}
\end{align*}
$$

for all $f \in \mathcal{F}_{0}$. Let $H: A \rightarrow \psi_{0}(B)$ be defined by $H=\psi_{0} \circ \pi_{00} \circ \pi_{I} \circ \Psi$. One estimates that

$$
\begin{gather*}
\|P \Psi(f)-\Psi(f) P\|<\epsilon_{0} / 2 \text { and } \tag{e10.94}\\
\|\Psi(f)-[P \Psi(f) P+H(f)]\|<\epsilon_{0} / 2
\end{gather*}
$$

(e 10.95)
for all $f \in \mathcal{F}_{0}$.

One then concludes there is a projection $P \in J$ and a unital homomorphism $\psi_{0}: B \rightarrow(1-P) C_{2}(1-P)$ such that

$$
\begin{array}{cl}
\left\|P \Psi\left(a_{f}\right)-\Psi\left(a_{f}\right) P\right\|<\epsilon_{0} / 8 \text { and } & (\mathrm{e} 10.92) \\
\left\|\Psi\left(a_{f}\right)-\left[P \Psi\left(a_{f}\right) P+\psi_{0} \circ \pi_{J} \circ \Psi\left(a_{f}\right)\right]\right\|<\epsilon_{0} / 8 \tag{e10.93}
\end{array}
$$

for all $f \in \mathcal{F}_{0}$. Let $H: A \rightarrow \psi_{0}(B)$ be defined by $H=\psi_{0} \circ \pi_{00} \circ \pi_{I} \circ \Psi$. One estimates that

$$
\begin{gather*}
\|P \Psi(f)-\Psi(f) P\|<\epsilon_{0} / 2 \text { and } \tag{e10.94}\\
\|\Psi(f)-[P \Psi(f) P+H(f)]\|<\epsilon_{0} / 2
\end{gather*}
$$

(e 10.95)
for all $f \in \mathcal{F}_{0}$. Note that $\operatorname{dim} H(A)<\infty$, and that $H(A) \subset Q$.

One then concludes there is a projection $P \in J$ and a unital homomorphism $\psi_{0}: B \rightarrow(1-P) C_{2}(1-P)$ such that

$$
\begin{align*}
\left\|P \Psi\left(a_{f}\right)-\Psi\left(a_{f}\right) P\right\|<\epsilon_{0} / 8 \text { and } \\
\left\|\Psi\left(a_{f}\right)-\left[P \Psi\left(a_{f}\right) P+\psi_{0} \circ \pi_{J} \circ \Psi\left(a_{f}\right)\right]\right\|<\epsilon_{0} / 8 \tag{e10.93}
\end{align*}
$$

for all $f \in \mathcal{F}_{0}$. Let $H: A \rightarrow \psi_{0}(B)$ be defined by $H=\psi_{0} \circ \pi_{00} \circ \pi_{I} \circ \Psi$. One estimates that

$$
\begin{gather*}
\|P \Psi(f)-\Psi(f) P\|<\epsilon_{0} / 2 \text { and } \tag{e10.94}\\
\|\Psi(f)-[P \Psi(f) P+H(f)]\|<\epsilon_{0} / 2 \tag{e10.95}
\end{gather*}
$$

for all $f \in \mathcal{F}_{0}$. Note that $\operatorname{dim} H(A)<\infty$, and that $H(A) \subset Q$. There is a homomorphism $H_{1}: H(A) \rightarrow \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ such that $\pi \circ H_{1} \circ H=H$.

One then concludes there is a projection $P \in J$ and a unital homomorphism $\psi_{0}: B \rightarrow(1-P) C_{2}(1-P)$ such that

$$
\begin{array}{r}
\left\|P \Psi\left(a_{f}\right)-\Psi\left(a_{f}\right) P\right\|<\epsilon_{0} / 8 \text { and } \\
\left\|\Psi\left(a_{f}\right)-\left[P \Psi\left(a_{f}\right) P+\psi_{0} \circ \pi_{J} \circ \Psi\left(a_{f}\right)\right]\right\|<\epsilon_{0} / 8 \tag{e10.93}
\end{array}
$$

for all $f \in \mathcal{F}_{0}$. Let $H: A \rightarrow \psi_{0}(B)$ be defined by $H=\psi_{0} \circ \pi_{00} \circ \pi_{I} \circ \Psi$. One estimates that

$$
\begin{gather*}
\|P \Psi(f)-\Psi(f) P\|<\epsilon_{0} / 2 \text { and } \tag{e10.94}\\
\|\Psi(f)-[P \Psi(f) P+H(f)]\|<\epsilon_{0} / 2 \tag{e10.95}
\end{gather*}
$$

for all $f \in \mathcal{F}_{0}$. Note that $\operatorname{dim} H(A)<\infty$, and that $H(A) \subset Q$.
There is a homomorphism $H_{1}: H(A) \rightarrow \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ such that $\pi \circ H_{1} \circ H=H$. One may write $H_{1}=\left\{h_{n}\right\}$, where each $h_{n}: H(A) \rightarrow M_{m(n)}$ is a (not necessary unital) homomorphism, $n=1,2, \ldots$.

One then concludes there is a projection $P \in J$ and a unital homomorphism $\psi_{0}: B \rightarrow(1-P) C_{2}(1-P)$ such that

$$
\begin{array}{r}
\left\|P \Psi\left(a_{f}\right)-\Psi\left(a_{f}\right) P\right\|<\epsilon_{0} / 8 \text { and } \\
\left\|\Psi\left(a_{f}\right)-\left[P \Psi\left(a_{f}\right) P+\psi_{0} \circ \pi_{J} \circ \Psi\left(a_{f}\right)\right]\right\|<\epsilon_{0} / 8 \tag{e10.93}
\end{array}
$$

for all $f \in \mathcal{F}_{0}$. Let $H: A \rightarrow \psi_{0}(B)$ be defined by $H=\psi_{0} \circ \pi_{00} \circ \pi_{I} \circ \Psi$. One estimates that

$$
\begin{gather*}
\|P \Psi(f)-\Psi(f) P\|<\epsilon_{0} / 2 \text { and } \tag{e10.94}\\
\|\Psi(f)-[P \Psi(f) P+H(f)]\|<\epsilon_{0} / 2 \tag{e10.95}
\end{gather*}
$$

for all $f \in \mathcal{F}_{0}$. Note that $\operatorname{dim} H(A)<\infty$, and that $H(A) \subset Q$.
There is a homomorphism $H_{1}: H(A) \rightarrow \prod_{n=1}^{\infty}\left(\left\{M_{m(n)}\right\}\right)$ such that $\pi \circ H_{1} \circ H=H$. One may write $H_{1}=\left\{h_{n}\right\}$, where each $h_{n}: H(A) \rightarrow M_{m(n)}$ is a (not necessary unital) homomorphism, $n=1,2, \ldots$. There is also a sequence of projections $q_{n} \in M_{m(n)}$ such that $\pi\left(\left\{q_{n}\right\}\right)=P$. Let $p_{n}=1-q_{n}, n=1,2, \ldots$

Then, for sufficiently large n, by (e 10.94) and (e 10.95),

$$
\left\|\left(1-p_{n}\right) \phi_{n}(f)-\phi_{n}(f)\left(1-p_{n}\right)\right\|<\epsilon_{0}, \quad(e 10.96)
$$

Then, for sufficiently large n, by (e 10.94) and (e 10.95),

$$
\begin{array}{r}
\left\|\left(1-p_{n}\right) \phi_{n}(f)-\phi_{n}(f)\left(1-p_{n}\right)\right\|<\epsilon_{0}, \\
\left\|\phi_{n}(f)-\left[\left(1-p_{n}\right) \phi_{n}(f)\left(1-p_{n}\right)+h_{n} \circ H(f)\right]\right\|<\epsilon_{0}
\end{array}
$$

for all $f \in \mathcal{F}_{0}$.

Then, for sufficiently large n, by (e 10.94) and (e 10.95),

$$
\begin{array}{r}
\left\|\left(1-p_{n}\right) \phi_{n}(f)-\phi_{n}(f)\left(1-p_{n}\right)\right\|<\epsilon_{0}, \\
\left\|\phi_{n}(f)-\left[\left(1-p_{n}\right) \phi_{n}(f)\left(1-p_{n}\right)+h_{n} \circ H(f)\right]\right\|<\epsilon_{0}
\end{array}
$$

for all $f \in \mathcal{F}_{0}$. Moreover, since $P \in J$, for any $\eta>0$, there is $b \in I_{0}$ with $0 \leq b \leq 1$ such that

Then, for sufficiently large n, by (e 10.94) and (e 10.95),

$$
\begin{array}{r}
\left\|\left(1-p_{n}\right) \phi_{n}(f)-\phi_{n}(f)\left(1-p_{n}\right)\right\|<\epsilon_{0}, \\
\left\|\phi_{n}(f)-\left[\left(1-p_{n}\right) \phi_{n}(f)\left(1-p_{n}\right)+h_{n} \circ H(f)\right]\right\|<\epsilon_{0}
\end{array}
$$

for all $f \in \mathcal{F}_{0}$. Moreover, since $P \in J$, for any $\eta>0$, there is $b \in I_{0}$ with $0 \leq b \leq 1$ such that

$$
\|\Psi(b) P-P\|<\eta .
$$

Then, for sufficiently large n, by (e 10.94) and (e 10.95),

$$
\begin{array}{r}
\left\|\left(1-p_{n}\right) \phi_{n}(f)-\phi_{n}(f)\left(1-p_{n}\right)\right\|<\epsilon_{0}, \\
\left\|\phi_{n}(f)-\left[\left(1-p_{n}\right) \phi_{n}(f)\left(1-p_{n}\right)+h_{n} \circ H(f)\right]\right\|<\epsilon_{0}
\end{array}
$$

for all $f \in \mathcal{F}_{0}$. Moreover, since $P \in J$, for any $\eta>0$, there is $b \in I_{0}$ with $0 \leq b \leq 1$ such that

$$
\|\Psi(b) P-P\|<\eta .
$$

However, by (e 10.88),

$$
0<t_{0}(\Psi(b))<\sigma_{0} / 2 \text { for all } b \in I_{0} \text { with } 0 \leq n \leq 1
$$

Then, for sufficiently large n, by (e 10.94) and (e 10.95),

$$
\begin{array}{r}
\left\|\left(1-p_{n}\right) \phi_{n}(f)-\phi_{n}(f)\left(1-p_{n}\right)\right\|<\epsilon_{0}, \\
\left\|\phi_{n}(f)-\left[\left(1-p_{n}\right) \phi_{n}(f)\left(1-p_{n}\right)+h_{n} \circ H(f)\right]\right\|<\epsilon_{0}
\end{array}
$$

for all $f \in \mathcal{F}_{0}$. Moreover, since $P \in J$, for any $\eta>0$, there is $b \in I_{0}$ with $0 \leq b \leq 1$ such that

$$
\|\Psi(b) P-P\|<\eta .
$$

However, by (e 10.88),

$$
0<t_{0}(\Psi(b))<\sigma_{0} / 2 \text { for all } b \in I_{0} \text { with } 0 \leq n \leq 1
$$

By choosing sufficiently small η, for all sufficiently large n,

Then, for sufficiently large n, by (e 10.94) and (e 10.95),

$$
\begin{array}{r}
\left\|\left(1-p_{n}\right) \phi_{n}(f)-\phi_{n}(f)\left(1-p_{n}\right)\right\|<\epsilon_{0}, \\
\left\|\phi_{n}(f)-\left[\left(1-p_{n}\right) \phi_{n}(f)\left(1-p_{n}\right)+h_{n} \circ H(f)\right]\right\|<\epsilon_{0}
\end{array}
$$

for all $f \in \mathcal{F}_{0}$. Moreover, since $P \in J$, for any $\eta>0$, there is $b \in I_{0}$ with $0 \leq b \leq 1$ such that

$$
\|\Psi(b) P-P\|<\eta .
$$

However, by (e 10.88),

$$
0<t_{0}(\Psi(b))<\sigma_{0} / 2 \text { for all } b \in I_{0} \text { with } 0 \leq n \leq 1
$$

By choosing sufficiently small η, for all sufficiently large n,

$$
t r_{n}\left(1-p_{n}\right)<\sigma_{0}
$$

Then, for sufficiently large n, by (e 10.94) and (e 10.95),

$$
\begin{array}{r}
\left\|\left(1-p_{n}\right) \phi_{n}(f)-\phi_{n}(f)\left(1-p_{n}\right)\right\|<\epsilon_{0}, \\
\left\|\phi_{n}(f)-\left[\left(1-p_{n}\right) \phi_{n}(f)\left(1-p_{n}\right)+h_{n} \circ H(f)\right]\right\|<\epsilon_{0}
\end{array}
$$

for all $f \in \mathcal{F}_{0}$. Moreover, since $P \in J$, for any $\eta>0$, there is $b \in I_{0}$ with $0 \leq b \leq 1$ such that

$$
\|\Psi(b) P-P\|<\eta .
$$

However, by (e 10.88),

$$
0<t_{0}(\Psi(b))<\sigma_{0} / 2 \text { for all } b \in I_{0} \text { with } 0 \leq n \leq 1
$$

By choosing sufficiently small η, for all sufficiently large n,

$$
t r_{n}\left(1-p_{n}\right)<\sigma_{0}
$$

This contradicts with (e 10.86).

Corollary 2.13.

Let A be a unital C*-algebra whose irreducible representations have bounded dimensions.

Corollary 2.13.

Let A be a unital C*-algebra whose irreducible representations have bounded dimensions. Let $\eta>0$, let $\mathcal{E} \subset A$ be a finite subset and let $\eta_{0}>0$.

Corollary 2.13 .

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\eta>0$, let $\mathcal{E} \subset A$ be a finite subset and let $\eta_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following:

Corollary 2.13 .

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\eta>0$, let $\mathcal{E} \subset A$ be a finite subset and let $\eta_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi, \psi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two \mathcal{G} - δ-multiplicative contractive completely positive linear maps.

Corollary 2.13 .

Let A be a unital C*-algebra whose irreducible representations have bounded dimensions. Let $\eta>0$, let $\mathcal{E} \subset A$ be a finite subset and let $\eta_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi, \psi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two \mathcal{G} - δ-multiplicative contractive completely positive linear maps. Then, there exist projections $p, q \in M_{n}$ with $\operatorname{rank}(p)=\operatorname{rank}(q)$

Corollary 2.13.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\eta>0$, let $\mathcal{E} \subset A$ be a finite subset and let $\eta_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi, \psi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two \mathcal{G} - δ-multiplicative contractive completely positive linear maps. Then, there exist projections $p, q \in M_{n}$ with $\operatorname{rank}(p)=\operatorname{rank}(q)$ and unital homomorphisms $\phi_{0}: A \rightarrow p M_{n} p$ and $\psi_{0}: A \rightarrow q M_{n} q$ such that

Corollary 2.13.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\eta>0$, let $\mathcal{E} \subset A$ be a finite subset and let $\eta_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi, \psi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two \mathcal{G} - δ-multiplicative contractive completely positive linear maps. Then, there exist projections $p, q \in M_{n}$ with $\operatorname{rank}(p)=\operatorname{rank}(q)$ and unital homomorphisms $\phi_{0}: A \rightarrow p M_{n} p$ and $\psi_{0}: A \rightarrow q M_{n} q$ such that

$$
\|p \phi(a)-\phi(a) p\|<\eta, \quad\|q \psi(a)-\psi(a) q\|<\eta, \quad a \in \mathcal{E},
$$

Corollary 2.13.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\eta>0$, let $\mathcal{E} \subset A$ be a finite subset and let $\eta_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi, \psi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two \mathcal{G} - δ-multiplicative contractive completely positive linear maps. Then, there exist projections $p, q \in M_{n}$ with $\operatorname{rank}(p)=\operatorname{rank}(q)$ and unital homomorphisms $\phi_{0}: A \rightarrow p M_{n} p$ and $\psi_{0}: A \rightarrow q M_{n} q$ such that

$$
\begin{aligned}
& \|p \phi(a)-\phi(a) p\|<\eta, \quad\|q \psi(a)-\psi(a) q\|<\eta, \quad a \in \mathcal{E}, \\
& \left\|\phi(a)-\left[(1-p) \phi(a)(1-p)+\phi_{0}(a)\right]\right\|<\eta,
\end{aligned}
$$

Corollary 2.13.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\eta>0$, let $\mathcal{E} \subset A$ be a finite subset and let $\eta_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi, \psi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two \mathcal{G} - δ-multiplicative contractive completely positive linear maps. Then, there exist projections $p, q \in M_{n}$ with $\operatorname{rank}(p)=\operatorname{rank}(q)$ and unital homomorphisms $\phi_{0}: A \rightarrow p M_{n} p$ and $\psi_{0}: A \rightarrow q M_{n} q$ such that

$$
\begin{aligned}
& \|p \phi(a)-\phi(a) p\|<\eta, \quad\|q \psi(a)-\psi(a) q\|<\eta, \quad a \in \mathcal{E}, \\
& \left\|\phi(a)-\left[(1-p) \phi(a)(1-p)+\phi_{0}(a)\right]\right\|<\eta, \\
& \left\|\psi(a)-\left[(1-q) \psi(a)(1-q)+\psi_{0}(a)\right]\right\|<\eta, \quad a \in \mathcal{E}
\end{aligned}
$$

Corollary 2.13.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\eta>0$, let $\mathcal{E} \subset A$ be a finite subset and let $\eta_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi, \psi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two \mathcal{G} - δ-multiplicative contractive completely positive linear maps. Then, there exist projections $p, q \in M_{n}$ with $\operatorname{rank}(p)=\operatorname{rank}(q)$ and unital homomorphisms $\phi_{0}: A \rightarrow p M_{n} p$ and $\psi_{0}: A \rightarrow q M_{n} q$ such that

$$
\begin{aligned}
& \|p \phi(a)-\phi(a) p\|<\eta, \quad\|q \psi(a)-\psi(a) q\|<\eta, \quad a \in \mathcal{E}, \\
& \left\|\phi(a)-\left[(1-p) \phi(a)(1-p)+\phi_{0}(a)\right]\right\|<\eta, \\
& \left\|\psi(a)-\left[(1-q) \psi(a)(1-q)+\psi_{0}(a)\right]\right\|<\eta, \quad a \in \mathcal{E} \\
& \text { and } \operatorname{tr}(1-p)=\operatorname{tr}(1-q)<\eta_{0},
\end{aligned}
$$

Corollary 2.13.

Let A be a unital C^{*}-algebra whose irreducible representations have bounded dimensions. Let $\eta>0$, let $\mathcal{E} \subset A$ be a finite subset and let $\eta_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi, \psi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are two \mathcal{G} - δ-multiplicative contractive completely positive linear maps. Then, there exist projections $p, q \in M_{n}$ with $\operatorname{rank}(p)=\operatorname{rank}(q)$ and unital homomorphisms $\phi_{0}: A \rightarrow p M_{n} p$ and $\psi_{0}: A \rightarrow q M_{n} q$ such that

$$
\begin{aligned}
& \|p \phi(a)-\phi(a) p\|<\eta, \quad\|q \psi(a)-\psi(a) q\|<\eta, \quad a \in \mathcal{E}, \\
& \left\|\phi(a)-\left[(1-p) \phi(a)(1-p)+\phi_{0}(a)\right]\right\|<\eta, \\
& \left\|\psi(a)-\left[(1-q) \psi(a)(1-q)+\psi_{0}(a)\right]\right\|<\eta, \quad a \in \mathcal{E} \\
& \text { and } \operatorname{tr}(1-p)=\operatorname{tr}(1-q)<\eta_{0},
\end{aligned}
$$

where tr is the normalized trace on M_{n}.

Lemma 2.14.

Let A be an infinite dimensional unital sub-homogeneous C^{*}-algebra,

Lemma 2.14.

Let A be an infinite dimensional unital sub-homogeneous C^{*}-algebra, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.

Lemma 2.14.

Let A be an infinite dimensional unital sub-homogeneous C^{*}-algebra, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. let $\epsilon_{0}>0$ and let $\mathcal{G}_{0} \subset A$ be a finite subset.

Lemma 2.14.

Let A be an infinite dimensional unital sub-homogeneous C^{*}-algebra, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. let $\epsilon_{0}>0$ and let $\mathcal{G}_{0} \subset A$ be a finite subset., Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a positive map.

Lemma 2.14.

Let A be an infinite dimensional unital sub-homogeneous C^{*}-algebra, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. let $\epsilon_{0}>0$ and let $\mathcal{G}_{0} \subset A$ be a finite subset., Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a positive map. Suppose that $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ is a finite subset,

Lemma 2.14.

Let A be an infinite dimensional unital sub-homogeneous C^{*}-algebra, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. let $\epsilon_{0}>0$ and let $\mathcal{G}_{0} \subset A$ be a finite subset., Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a positive map. Suppose that $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ is a finite subset, $\epsilon_{1}>0$ is a positive number and $K \geq 1$ is an integer.

Lemma 2.14.

Let A be an infinite dimensional unital sub-homogeneous C^{*}-algebra, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. let $\epsilon_{0}>0$ and let $\mathcal{G}_{0} \subset A$ be a finite subset., Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a positive map. Suppose that $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ is a finite subset, $\epsilon_{1}>0$ is a positive number and $K \geq 1$ is an integer. There exists $\delta>0, \sigma>0$ and a finite subset $\mathcal{G} \subset A$

Lemma 2.14.

Let A be an infinite dimensional unital sub-homogeneous C^{*}-algebra, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. let $\epsilon_{0}>0$ and let $\mathcal{G}_{0} \subset A$ be a finite subset., Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a positive map. Suppose that $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ is a finite subset, $\epsilon_{1}>0$ is a positive number and $K \geq 1$ is an integer. There exists $\delta>0, \sigma>0$ and a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{H}_{2} \subset A_{+}^{1} \backslash\{0\}$ satisfying the following:

Lemma 2.14.

Let A be an infinite dimensional unital sub-homogeneous C^{*}-algebra, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. let $\epsilon_{0}>0$ and let $\mathcal{G}_{0} \subset A$ be a finite subset., Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a positive map. Suppose that $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ is a finite subset, $\epsilon_{1}>0$ is a positive number and $K \geq 1$ is an integer. There exists $\delta>0, \sigma>0$ and a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{H}_{2} \subset A_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are unital δ-G-multiplicative contractive completely positive linear maps

Lemma 2.14.

Let A be an infinite dimensional unital sub-homogeneous C^{*}-algebra, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. let $\epsilon_{0}>0$ and let $\mathcal{G}_{0} \subset A$ be a finite subset., Let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a positive map. Suppose that $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ is a finite subset, $\epsilon_{1}>0$ is a positive number and $K \geq 1$ is an integer. There exists $\delta>0, \sigma>0$ and a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{H}_{2} \subset A_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{n}$ (for some integer $n \geq 1$) are unital δ-G-multiplicative contractive completely positive linear maps

$$
\begin{gather*}
\operatorname{tr} \circ L_{1}(h) \geq \Delta(\hat{h}) \text { and } \operatorname{tr} \circ L_{2}(h) \geq \Delta(\hat{h}) \quad \text { for all } h \in \mathcal{H}_{2}, \text { and } \\
\qquad\left|\operatorname{tr} \circ L_{1}(h)-\operatorname{tr} \circ L_{2}(h)\right|<\sigma \quad \text { for all } h \in \mathcal{H}_{2} . \tag{e10.99}
\end{gather*}
$$

Then there exist mutually orthogonal projections $e_{0}, e_{1}, e_{2}, \ldots, e_{K} \in M_{n}$ such that $e_{1}, e_{2}, \ldots, e_{K}$ are equivalent, $e_{0} \lesssim e_{1}, \operatorname{tr}\left(e_{0}\right)<\epsilon_{1}$ and $e_{0}+\sum_{i=1}^{K} e_{i}=1$, and there exist a unital $\epsilon_{0}-\mathcal{G}_{0}$-multiplicative contractive completely positive linear maps $\psi_{1}, \psi_{2}: A \rightarrow e_{0} M_{k} e_{0}$, a unital homomorphism $\psi: A \rightarrow e_{1} M_{k} e_{1}$, and unitary $u \in M_{n}$ such that one may write that

$$
\begin{align*}
& \|L_{1}(f)-\operatorname{diag}(\psi_{1}(f), \overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K})\|<\epsilon \text { and } \\
& \|u L_{2}(f) u^{*}-\operatorname{diag}(\psi_{2}(f), \overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{K})\|<\epsilon \tag{e10.101}
\end{align*}
$$

(e 10.100)
for all $f \in \mathcal{F}$, where tr is the tracial state on M_{n}. Moreover,

$$
\begin{equation*}
\operatorname{tr}(\psi(g)) \geq \frac{\Delta(\hat{g})}{3 K} \text { for all } g \in \mathcal{H}_{1} \tag{e10.102}
\end{equation*}
$$

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$.

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$,

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A$,

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, \mathbf{1}} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$,

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following:

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps such that

$$
\left.\left[L_{1}\right]\right|_{\mathcal{P}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}}
$$

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps such that

$$
\begin{aligned}
& {\left.\left[L_{1}\right]\right|_{\mathcal{P}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}},} \\
& \operatorname{tr} \circ L_{1}(h) \geq \Delta(\hat{h}), \text { tro } L_{2}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1}
\end{aligned}
$$

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps such that

$$
\begin{aligned}
& {\left.\left[L_{1}\right]\right|_{\mathcal{P}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}},} \\
& \operatorname{tr} \circ L_{1}(h) \geq \Delta(\hat{h}), \operatorname{tr} \circ L_{2}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \\
& \quad \text { and }\left|\operatorname{tr} \circ L_{1}(h)-\operatorname{tr} \circ L_{2}(h)\right|<\sigma \text { for all } h \in \mathcal{H}_{2},
\end{aligned}
$$

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps such that

$$
\begin{aligned}
& {\left.\left[L_{1}\right]\right|_{\mathcal{P}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}},} \\
& \operatorname{tr} \circ L_{1}(h) \geq \Delta(\hat{h}), \operatorname{tr} \circ L_{2}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \\
& \text { and }\left|\operatorname{tr} \circ L_{1}(h)-\operatorname{tr} \circ L_{2}(h)\right|<\sigma \text { for all } h \in \mathcal{H}_{2},
\end{aligned}
$$

then there exists a unitary $u \in M_{k}$ such that

Theorem 2.1. Let X be a compact metric space, $P \in M_{r}(C(X))$ be a projection and $C=P M_{r}(C(X))$. Let $\Delta: C_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$, a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ and $\sigma>0$ satisfying the following: Suppose that $L_{1}, L_{2}: A \rightarrow M_{k}$ (for some integer $k \geq 1$) are two unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps such that

$$
\begin{aligned}
& {\left.\left[L_{1}\right]\right|_{\mathcal{P}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}},} \\
& \operatorname{tr} \circ L_{1}(h) \geq \Delta(\hat{h}), \operatorname{tr} \circ L_{2}(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \\
& \text { and }\left|\operatorname{tr} \circ L_{1}(h)-\operatorname{tr} \circ L_{2}(h)\right|<\sigma \text { for all } h \in \mathcal{H}_{2},
\end{aligned}
$$

then there exists a unitary $u \in M_{k}$ such that

$$
\begin{equation*}
\| \operatorname{Ad} u \circ L_{1}(f)-L_{2}(f) \mid<\epsilon \text { for all } f \in \mathcal{F} . \tag{e10.103}
\end{equation*}
$$

It follows from a combination of Lemma 2.14 and Lemma 2.6.

