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Basic Homotopy Lemma, Introduction

We begin with the following question:

Q1: For any ε > 0, is there a positive number δ > 0 satisfying the
following: Suppose that u and v are two unitaries in a unital C ∗-algebra
A such that

‖uv − vu‖ < δ,

then there exists a continuous path of unitaries {v(t) : t ∈ [0, 1]} ⊂ A
such that

‖v(t)u − uv(t)‖ < ε for all t ∈ [0, 1],

v(0) = v and v(1) = 1A?

We need to assume that v ∈ U0(A), the connected component of unitary
group U(A) containing 1A. If the answer is yes, how long is the length of
the path?
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Theorem (The Basic Homotopy Lemma—Bratteli, Elliott, Evans and
Kishimoto–1998)

Let ε > 0. There exists δ > 0 satisfying the following: For any unital
simple C ∗-algebra A of stable rank one and real rank zero and any pair
of unitaries u, v ∈ A with u ∈ U0(A) such that

‖uv − vu‖ < δ and bott1(u, v) = 0, (e 0.1)

there exists a continuous path of unitaries {u(t) : t ∈ [0, 1]} ⊂ A such
that u(0) = u, u(1) = 1A and

‖u(t)v − vu(t)‖ < ε for all t ∈ [0, 1] and (e 0.2)

(e 0.3)

length({u(t)}) ≤ 4π + 1.
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Lemma 1.1.
Let ε > 0 and let d > 0,

there exists δ > 0 satisfying the following:
Suppose that A is a unital C ∗-algebra and u ∈ A is a unitary such that
T \ sp(u) contains an arc with length d . Suppose that a ∈ A with ‖a‖ ≤ 1
such that

‖ua− au‖ < δ. (e 0.4)

Then there exists a self-adjoint element h ∈ A with ‖h‖ ≤ π such that
u = exp(ih),

‖ha− ah‖ < ε and ‖exp(ith)a− a exp(ith)‖ < ε (e 0.5)

for all t ∈ [0, 1].
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Proof : By replacing u by e iθ · u for some θ ∈ (−π, π),

without loss of
generality, we may assume that

sp(u) ⊂ Ωd = {e iπt : −1 + d/2 ≤ t ≤ 1− d/2} ⊂ T. (e 0.6)

There is a continuous function g : Ωd → [−1, 1] such that
u = exp(ig(u)). Let h = g(u). Choose an integer N ≥ 1 such that

∞∑
i=N+1

1/n! < ε/6. (e 0.7)

There is δ > 0 such that

‖au − ua‖ < δ (e 0.8)

implies that ‖hna− ahn‖ = ‖g(u)na− ag(u)n‖ < ε/6 for n = 1, 2, ...,N.
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Then

‖exp(ith)a− a exp(ith)‖ (e 0.9)

≤ ‖(
N∑

n=0

ith)n

n!
)a− a(

N∑
n=0

ith)n

n!
)‖+ 2(

∞∑
n=N+1

1

n!
) (e 0.10)

≤
N∑

n=1

ε

6n!
+ ε/3 < ε. (e 0.11)

for any t ∈ [0, 1].
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Corollary 1.2.
Let n ≥ 1 be an integer.

Let C be a unital C ∗-algebra and let F ⊂ C be
a finite subset. For any ε > 0 there exists δ > 0 satisfying the following:
Suppose L : C → Mn is a contractive map and u ∈ Mn is a unitary such
that

‖L(c)u − uL(c)‖ < δ for all c ∈ F . (e 0.12)

Then there exists a continuous path of unitaries {u(t) : t ∈ [0, 1]} ⊂ Mn

such that u(0) = u, u(1) = 1Mn and

‖L(c)u(t)− u(t)L(c)‖ < ε for all c ∈ F . (e 0.13)

Moreover, length(u(t)) ≤ π.

Proof.

The spectrum of u has a gap with the length at least d = 2π/n.
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Let R ⊂ {1, 2, ...,m} × {1, 2, ..., n} be a subset and let A ⊂ {1, 2, ...,m}.

Define RA ⊂ {1, 2, ..., n} to be the subset of those j ′s such that (i , j) ∈ R,
for some i ∈ A. The following follows from Hall’s Marriage lemma.

Lemma 1.3.
If {ai}mi=1, {bi}nj=1 ⊂ Zk

+ with
∑m

i=1 ai =
∑n

j=1 bj , and
R ⊂ {1, ...,m} × {1, ..., n} satisfying: for any A ⊂ {1, ...,m},∑

i∈A
ai ≤

∑
j∈RA

bj , (e 0.14)

then there are {cij} ⊂ Zk
+ such that

n∑
j=1

cij = ai ,
m∑
i=1

cij = bj , for all i , j (e 0.15)

and

cij = 0 unless (i , j) ∈ R. (e 0.16)
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Lemma 1.4.
Let X be a (connected) compact metric space,

let P ∈ Mr (C (X )) be a
projection and let n ≥ 1 be an integer. Let ε > 0 and let
F ⊂ C = PMr (C (X ))P be a finite subset. There exists δ > 0 and a
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Proof:
We will prove the case that C = C (X ).

There exists η > 0 such that

‖f (x)− f (y)‖ < ε/4 for all f ∈ F , (e 0.19)

provided that dist(x , y) < η. Let O1,O2, ...,Om be a finite open cover
such that each Oi has diameter < η/4. Let J ⊂ {1, 2, ...,m} be a subset.
Define gJ ∈ C (X )+ such that 0 ≤ gJ ≤ 1, gJ(x) = 1 if x ∈ ∪i∈JOi ,
gJ(x) = 0 if dist(x ,∪i∈JOi ) ≥ η/4. Let hJ ∈ C (X ) be such that
0 ≤ hJ ≤ 1, hJ(x) = 1 if dist(x ,∪i∈JOi ) < η/2 and hJ(x) = 0 if
dist(x ,∪i∈JOi ) > η. Let δ = min{η/16n, 1/16n}. Set

H = {gI , hJ : I , J ⊂ {1, 2, ...,m}}. (e 0.20)

Now suppose that φ, ψ : C (X )→ Mn such that

|τ ◦ φ(c)− τ ◦ ψ(c)| < δ for all c ∈ H. (e 0.21)

We have, for all f ∈ C (X ),

φ(f ) =

k1∑
i=1

f (xi )pi and ψ(f ) =

k2∑
i=1

f (yi )qi , (e 0.22)
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where X0 = {x1, x2, ..., xk1} and Y0 = {y1, y2, ..., yk2} are finite subsets of
X ,

and {p1, p2, ..., pk1} and {q1, q2, ..., qk2} are two sets of mutually
orthogonal projections such that

∑k1
i=1 pi =

∑k2
j=1 qj = 1Mn . Define a

subset R ⊂ {1, 2, ..., k1} × {1, 2, ..., k2} as follows: (i , j) ∈ R if and only
if dist(xi , yj) < η. Let ai = rankpi and bj = rankqj . Let S ⊂ X0 be a
subset. Put A = {i ∈ {1, 2, ..., k1} : xi ∈ S}. Then

τ(φ(gA)) ≥
∑
xi∈S

ai/n. (e 0.23)

It follows that

τ(ψ(gA)) ≥
∑
xi∈S

ai/n − 1/16n. (e 0.24)

Let PS be the range projection of ψ(gA) in Mn, Then

τ(PS) ≥
∑
xi∈S

ai/n =
∑
i∈A

ai/n. (e 0.25)

Therefore

τ(ψ(hi )) ≥
∑
i∈A

ai/n. (e 0.26)
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∑
xi∈S
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∑
xi∈S
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∑
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Therefore
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∑
i∈A
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It follows that ∑
i∈A

ai ≤
∑
j∈RA

bj . (e 0.27)

This holds, for any subset A ⊂ {1, 2, ..., k1}. By the previous lemma 1.3,
there are {ci ,j} ⊂ Z+ such that

k2∑
j=1

cij = ai ,

k1∑
i=1

cij = bj (e 0.28)

and cij 6= 0 if and only (i , j) ∈ R. Therefore there are mutually
orthogonal projections pij and qij such that

k2∑
j=1

pij = pi ,

k1∑
i=1

qij = qj (e 0.29)

rankpij = rankqij and pij 6= 0 and qij 6= 0 if and only if (i , j) ∈ R.
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We may write

φ(f ) =
∑
i ,j

f (xi )pij and ψ(f ) =
∑
i ,j

f (yj)qij . (e 0.30)

Moreover, pij 6= 0 and qij 6= 0 if and only if dist(xi , yj) < η. Therefore
there exists a unitary u ∈ Mn such that

u∗piju = qij and ‖Ad u ◦ φ(f )− ψ(f )‖ < ε (e 0.31)

for all f ∈ F . Lemma then follows easily.
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Theorem 1.5.
Let X be a compact metric space, P ∈ Mr (C (X )) be a projection,

C = PMr (C (X ))P and let n ≥ 1 be an integer. For any ε > 0 and any
finite subset F ⊂ C , there exists δ > 0 and a finite subset H ⊂ Cs.a.

satisfying the following: Suppose that φ, ψ : C → C ([0, 1],Mn) are two
unital homomorphisms such that

φ∗0 = ψ∗0, |τ ◦ φ(g)− τ ◦ ψ(g)| < δ for all g ∈ H, (e 0.32)

and for all τ ∈ T (C ([0, 1],Mn)). Then there exists a unitary
u ∈ C ([0, 1],Mn) such that

‖u∗φ(f )u − ψ(f )‖ < ε for all f ∈ F . (e 0.33)
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Proof : Let δ > 0 be required by Cor. 1.2. for the given ε/16 and F and
n.

Let ε1 = min{ε/64, δ/16}. Let δ1 > 0 (in place of δ) and H ⊂ Cs.a. be
finite subset as required by Thm. 1.4. for given ε1 (in place of ε) and F
(as well as n). Choose η > 0 such that

‖φ(f )(t)− φ(f )(t ′)‖ < ε1 and ‖ψ(f )(t)− ψ(f )(t ′)‖ < ε1 (e 0.34)

for all f ∈ F , whenever |t − t ′| < η. Let 0 = t0 < t1 < · · · < tm = 1 be
a partition of [0, 1] with |ti − ti−1| < η for all i . By the assumption and
1.4, there is a unitary ui ∈ Mn such that

‖u∗i φ(f )(ti )ui − ψ(f )(ti )‖ < ε1 for all f ∈ F , i = 0, 1, 2, ...,m. (e 0.35)

It follows that

ui+1u∗i φ(f )(ti )uiu
∗
i+1 ≈ε1 ui+1ψ(f )(ti )u∗i+1

≈ε1 ui+1ψ(f )(ti+1)u∗i+1 ≈ε1 φ(f )(ti+1) ≈ε1 φ(f )(ti ).
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It follows that there exists a continuous path of unitaries
{wi (t) : t ∈ [ti , ti+1]} ⊂ Mn

such that wi (ti ) = 1Mn and
wi (ti+1) = ui+1u∗i and

‖wi (t)φ(f )(ti )− φ(f )(ti )wi (t)‖ < ε/16 for all f ∈ F , (e 0.36)

i = 0, 1, 2...,m. Define v(t) = wi (t)ui for t ∈ [ti , ti+1], i = 0, 1, 2...,m.
Then v(ti ) = ui and v(ti+1) = ui+1, i = 0, 1, 2, ...,m, and
v ∈ C ([0, 1],Mn). Moreover, for t ∈ [ti , ti+1],

v(t)∗φ(f )(t)v(t) ≈ε1 u∗i wi (t)∗φ(f )(ti )wi (t)ui ≈ε/16 u∗i φ(f )(ti )ui

≈ε1 ψ(t)(ti ) ≈ε1 ψ(f )(t)

for all f ∈ F . In other words,

‖v∗φ(f )v − ψ(f )‖ < ε for all f ∈ F . (e 0.37)
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Theorem 1.6.
Let X be a compact metric space which is locally path connected, let
P ∈ Mr (C (X )) be a projection and let C = PMr (C (X ))P.

Suppose that
φ : C → C ([0, 1],Mn), where n ≥ 1 is an integer. For any ε > 0 and any
finite subset F ⊂ C , there exists a set of mutually orthogonal rank
projections p1, p2, ..., pn ∈ C ([0, 1],Mn) such that

‖φ(f )−
n∑

i=1

f (αi )pi‖ < ε for all f ∈ F , (e 0.38)

where αi : [0, 1]→ X is a continuous map, i = 1, 2, ..., n.
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Proof : We will only prove the case that C = C (X ).

Let δ > 0 be
required by Lemma 1.3. for the given integer n and ε/4 (in place of ε).
Let d > 0 satisfying the following:

‖f (x)− f (x ′)‖ < ε/4 for all f ∈ F , if dist(x , x ′) < 2d , (e 0.39)

and if dist(x , y) < d/2, there exists an open ball B of radius < d which
contains a continuous path in B connecting x and y . Let δ1 > 0 (in place
of δ) and H ⊂ C be a finite subset required by Theorem 1.4 for the given
min{ε/4, δ/2} (in place of ε), F , n and d/2. There exists η > 0 such that

‖φ(g)(t)− φ(g)(t ′)| < min{ε/4, δ1/2, δ/2} for all f ∈ H (e 0.40)

whenever |t − t ′| < η. Let 0 = t0 < t1 < t2 < · · · < tm = 1 be a partition
with |ti − ti−1| < η, i = 1, 2, ...,m. We have

φ(f )(ti−1) =
n∑

j=1

f (xi−1,j)pi−1,j for all f ∈ C (X ), (e 0.41)

where xi−1,j ∈ X and {pi−1,1, pi−1,2, ..., pi−1,n} is a set of mutually
orthogonal rank one projections.
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It follows from Thm. 1.4 and (e 0.40) that there are unitaries ui ∈ Mn

such that

‖u∗i φ(f )(ti−1)ui − φ(f )(ti )‖ < min{δ/2, ε/4} for all f ∈ F , (e 0.42)

i = 1, 2, ...,m. Moreover, we may assume, without loss of generality, that
there is a permutation σi such that

u∗i pi−1,ju = pi ,σi (j) and dist(xi−1,j , xi ,σi (j)) < d/2, (e 0.43)

j = 1, 2, ..., n, i = 1, 2, ...,m. By (e 0.42) and (e 0.40),

‖φ(f )(ti−1)ui − uiφ(f )(ti−1)‖ < δ for all f ∈ F , (e 0.44)

i = 1, 2, ...,m. It follows from 1.1 that there exists a continuous path of
unitaries {v(t) : t ∈ [ti−1, ti ]} ⊂ Mn such that v(ti−1) = 1 and
v(ti ) = ui−1and

‖v(t)φ(f )(ti−1)− φ(f )(ti−1)v(t)‖ < ε/4 for all f ∈ F , (e 0.45)

i = 1, 2, ...,m.
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Define pj(t) = v(t)∗pi−1,jv(t) for t ∈ [ti−1, ti ], i = 1, 2, ...,m.

Then
pj(t0) = p0,j , pj(ti ) = pi ,σi (j), i = 1, 2, ...,m. Since
dist(xi−1,j , xi ,σi (j)) < d/2, there exists a continuous path
αj ,i−1 : [ti−1, ti ]→ Bi such that αj ,i−1(ti−1) = xi−1,j and
αj ,i−1(ti ) = xi ,σi (j), where Bi is an open ball with radius d which contains
both xi−1,j and xi ,σi (j). Define αj : [0, 1]→ X by αj(t) = αj ,i−1(t) if
t ∈ [ti−1, ti ], i = 1, 2, ...,m. Define

ψ(f ) =
n∑

i=1

f (αi )pi for all f ∈ C (X ). (e 0.46)
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On t ∈ [ti−1, ti ],

‖φ(f )(t)− ψ(f )(t)‖ = ‖φ(f )(t)−
n∑

j=1

f (xi−1,j)pi−1,j‖

+‖
n∑

j=1

f (xi−1,j)pi−1,j −
n∑

j=1

f (αj ,i−1(t))pj(t)‖

< ε/4 + ‖
n∑

j=1

f (xi−1,j)pi−1,j −
n∑

j=1

f (xi−1,j)v∗(t)pi−1,jv(t)‖+ ε/4

= ‖φ(f )(ti−1)− v∗(t)φ(f )(ti−1)v(t)‖+ ε/2 < ε/2 + ε/2

for all f ∈ F .
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Corollary

Let X be a compact metric space, let P ∈ Mr (C (X )) be a projection and
let C = PMr (C (X ))P.

Suppose that φ : C → C ([0, 1],Mn), where n ≥ 1
is an integer. For any ε > 0 and any finite subset F ⊂ C , there exists a
set of mutually orthogonal rank projections p1, p2, ..., pn ∈ C ([0, 1],Mn)
such that

‖φ(f )−
n∑

i=1

f (αi )pi‖ < ε for all f ∈ F , (e 0.47)

where αi : [0, 1]→ X is a continuous map, i = 1, 2, ..., n.

Proof.

C (X ) = limn→∞(C (Xn), ın), where Xn is a polygon and ın is an injective
homomorphism.
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Suppose that u, v ∈ Mn are two unitaries such that ‖uv − vu‖ < 1.

Then
‖v∗uvu∗ − 1‖ < 1. One has

(1/2πi)Tr(log(v∗uvu∗)) ∈ Z.

If there is a continuous path of unitaries {v(t) : t ∈ [0, 1]} ⊂ Mn such
that v(0) = v and v(1) = 1Mn and

‖v∗(t)uv(t)u∗ − 1‖ < 1,

then (1/2πi)Tr(log(v∗(t)uv(t)u∗) is continuous and is zero at t = 1.
Therefore

(1/2πi)Tr(log(v∗(t)uv(t)u∗) = 0 for all t ∈ [0, 1].
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Let

un =


e2πi/n 0 0 · · ·

0 e4πi/n 0 · · ·
. . .

e2nπi/n



vn =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0

. . .
. . .

1 0


This is the Voiculescu pair.
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One computes that

v∗nunvnu∗n =


e2πi/n 0 0 · · ·

0 e2πi/n 0 · · ·
. . .

e2πi/n .



In particular

lim
n→∞

‖unvn − vnun‖ = lim
n→∞

|e2πi/n − 1| = 0.

However,
Tr(log(v∗nunvnu∗n)) = 2πi .

In other words, there is No δ > 0 satisfying the following:
For any integer n ≥ 1, any pair of unitaries u, v ∈ Mn with ‖uv − vu‖ < δ,
there is a continuous path of unitaries {v(t) : t ∈ [0, 1]} ⊂ Mn such that
v(0) = v and v(1) = 1Mn and

‖uv(t)− v(t)u‖ < 1 for all t ∈ [0, 1].
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Let

f (e2πit) =

{
1− 2t, if 0 ≤ t ≤ 1/2;

−1 + 2t, if 1/2 < t ≤ 1,

g(e2πit) =

{
(f (e2πit)− f (e2πit)2)1/2, if 0 ≤ t ≤ 1/2;

0 if 1/2 < t ≤ 1,

and

h(e2πit) =

{
0. if 0 ≤ t ≤ 1/2;

(f (e2πit)− f (e2πit)2)1/2, if 1/2 < t ≤ 1

These are non-negative continuous functions defined on T. Suppose that
u and v are unitaries with uv = vu. Define

e(u, v) =

(
f (v) g(v) + h(v)u∗

g(v) + uh(v) 1− f (v)

)
.

Then e(u, v) is a projection.
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There exists a δ0 > 0

such that if ‖uv − vu‖ < δ0, then the spectrum of
positive element e(u, v) has a gap at 1/2. The bott element bott1(u, v)
as defined by Exel and Loring is

[χ[1/2,∞](e(u, v))]− [

(
1 0
0 0

)
].
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Let C be a unital C ∗-algebra C .

Denote by T (C ) the tracial state space
of C . Denote by Aff(T (C )) the space of all real continuous affine
functions on T (C ). Suppose that T (C ) 6= ∅. There is a map c 7→ ĉ from
Cs.a. → Aff(T (C )) defined by ĉ(τ) = τ(c) for all c ∈ Cs.a. and τ ∈ T (C ).

Denote by Cq
+ the image of C+ in Aff(T (C )) and Cq,1

+ the image of C+ in
the unit ball of C .

Let A and B be two unital C ∗-algebras and let L : A→ B be a linear map.
Let G ⊂ A be a subset and let δ > 0. We say L is G-δ-multiplicative, if

‖L(a)L(b)− L(ab)‖ < δ for all a, b ∈ G.
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Cs.a. → Aff(T (C )) defined by ĉ(τ) = τ(c) for all c ∈ Cs.a. and τ ∈ T (C ).

Denote by Cq
+ the image of C+ in Aff(T (C )) and Cq,1

+ the image of C+ in
the unit ball of C .

Let A and B be two unital C ∗-algebras and let L : A→ B be a linear map.
Let G ⊂ A be a subset and let δ > 0. We say L is G-δ-multiplicative, if

‖L(a)L(b)− L(ab)‖ < δ for all a, b ∈ G.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 28

/ 67



Let C be a unital C ∗-algebra C . Denote by T (C ) the tracial state space
of C . Denote by Aff(T (C )) the space of all real continuous affine
functions on T (C ).

Suppose that T (C ) 6= ∅. There is a map c 7→ ĉ from
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Now we will present the following theorem:

Theorem 2.1.
Let X be a compact metric space, P ∈ Mr (C (X )) be a projection and

C = PMr (C (X )). Let ∆ : Cq,1
+ \ {0} → (0, 1) be an order preserving

map. Let ε > 0 and let F ⊂ A be a finite subset.
There exists a finite subset H1 ⊂ A+ \ {0}, a finite subset G ⊂ A, δ > 0,
a finite subset P ⊂ K (A), a finite subset H2 ⊂ As.a. and σ > 0 satisfying
the following: Suppose that L1, L2 : A→ Mk (for some integer k ≥ 1) are
two unital G-δ-multiplicative contractive completely positive linear maps
such that

[L1]|P = [L2]|P ,
tr ◦ L1(h) ≥ ∆(ĥ), tr ◦ L2(h) ≥ ∆(ĥ) for all h ∈ H1

and |tr ◦ L1(h)− tr ◦ L2(h)| < σ for all h ∈ H2,

then there exists a unitary u ∈ Mk such that

‖Ad u ◦ L1(f )− L2(f )| < ε for all f ∈ F . (e 10.48)
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We begin with the following:

Theorem 2.2.
Let X be a connected compact metric space, P ∈ Mr (C (X )) be a
projection and C = PMr (C (X ))P.

Let F ⊆ C be a finite subset, and let
ε > 0 be a constant. There is a finite subset H1 ⊆ C + such that, for any
σ1 > 0, there is a finite subset H2 ⊆ Cs.a. and σ2 > 0 such that for any
unital homomorphisms φ, ψ : C → Mn (for a matrix algebra Mn)
satisfying

1 φ(h) > σ1 and ψ(h) > σ1 for any h ∈ H1, and

2 |tr ◦ φ(h)− tr ◦ ψ(h)| < σ2 for any h ∈ H2,

then there is a unitary u ∈ Mn such that

‖φ(f )− u∗ψ(f )u‖ < ε for any f ∈ F .

Proof.

The proof is just a modification of that of Theorem 1.4.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 30

/ 67



We begin with the following:

Theorem 2.2.
Let X be a connected compact metric space, P ∈ Mr (C (X )) be a
projection and C = PMr (C (X ))P. Let F ⊆ C be a finite subset, and let
ε > 0 be a constant.

There is a finite subset H1 ⊆ C + such that, for any
σ1 > 0, there is a finite subset H2 ⊆ Cs.a. and σ2 > 0 such that for any
unital homomorphisms φ, ψ : C → Mn (for a matrix algebra Mn)
satisfying

1 φ(h) > σ1 and ψ(h) > σ1 for any h ∈ H1, and

2 |tr ◦ φ(h)− tr ◦ ψ(h)| < σ2 for any h ∈ H2,

then there is a unitary u ∈ Mn such that

‖φ(f )− u∗ψ(f )u‖ < ε for any f ∈ F .

Proof.

The proof is just a modification of that of Theorem 1.4.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 30

/ 67



We begin with the following:

Theorem 2.2.
Let X be a connected compact metric space, P ∈ Mr (C (X )) be a
projection and C = PMr (C (X ))P. Let F ⊆ C be a finite subset, and let
ε > 0 be a constant. There is a finite subset H1 ⊆ C + such that, for any
σ1 > 0,

there is a finite subset H2 ⊆ Cs.a. and σ2 > 0 such that for any
unital homomorphisms φ, ψ : C → Mn (for a matrix algebra Mn)
satisfying

1 φ(h) > σ1 and ψ(h) > σ1 for any h ∈ H1, and

2 |tr ◦ φ(h)− tr ◦ ψ(h)| < σ2 for any h ∈ H2,

then there is a unitary u ∈ Mn such that

‖φ(f )− u∗ψ(f )u‖ < ε for any f ∈ F .

Proof.

The proof is just a modification of that of Theorem 1.4.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 30

/ 67



We begin with the following:

Theorem 2.2.
Let X be a connected compact metric space, P ∈ Mr (C (X )) be a
projection and C = PMr (C (X ))P. Let F ⊆ C be a finite subset, and let
ε > 0 be a constant. There is a finite subset H1 ⊆ C + such that, for any
σ1 > 0, there is a finite subset H2 ⊆ Cs.a. and σ2 > 0 such that

for any
unital homomorphisms φ, ψ : C → Mn (for a matrix algebra Mn)
satisfying

1 φ(h) > σ1 and ψ(h) > σ1 for any h ∈ H1, and

2 |tr ◦ φ(h)− tr ◦ ψ(h)| < σ2 for any h ∈ H2,

then there is a unitary u ∈ Mn such that

‖φ(f )− u∗ψ(f )u‖ < ε for any f ∈ F .

Proof.

The proof is just a modification of that of Theorem 1.4.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 30

/ 67



We begin with the following:

Theorem 2.2.
Let X be a connected compact metric space, P ∈ Mr (C (X )) be a
projection and C = PMr (C (X ))P. Let F ⊆ C be a finite subset, and let
ε > 0 be a constant. There is a finite subset H1 ⊆ C + such that, for any
σ1 > 0, there is a finite subset H2 ⊆ Cs.a. and σ2 > 0 such that for any
unital homomorphisms φ, ψ : C → Mn

(for a matrix algebra Mn)
satisfying

1 φ(h) > σ1 and ψ(h) > σ1 for any h ∈ H1, and

2 |tr ◦ φ(h)− tr ◦ ψ(h)| < σ2 for any h ∈ H2,

then there is a unitary u ∈ Mn such that

‖φ(f )− u∗ψ(f )u‖ < ε for any f ∈ F .

Proof.

The proof is just a modification of that of Theorem 1.4.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 30

/ 67



We begin with the following:

Theorem 2.2.
Let X be a connected compact metric space, P ∈ Mr (C (X )) be a
projection and C = PMr (C (X ))P. Let F ⊆ C be a finite subset, and let
ε > 0 be a constant. There is a finite subset H1 ⊆ C + such that, for any
σ1 > 0, there is a finite subset H2 ⊆ Cs.a. and σ2 > 0 such that for any
unital homomorphisms φ, ψ : C → Mn (for a matrix algebra Mn)
satisfying

1 φ(h) > σ1 and ψ(h) > σ1 for any h ∈ H1, and

2 |tr ◦ φ(h)− tr ◦ ψ(h)| < σ2 for any h ∈ H2,

then there is a unitary u ∈ Mn such that

‖φ(f )− u∗ψ(f )u‖ < ε for any f ∈ F .

Proof.

The proof is just a modification of that of Theorem 1.4.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 30

/ 67



We begin with the following:

Theorem 2.2.
Let X be a connected compact metric space, P ∈ Mr (C (X )) be a
projection and C = PMr (C (X ))P. Let F ⊆ C be a finite subset, and let
ε > 0 be a constant. There is a finite subset H1 ⊆ C + such that, for any
σ1 > 0, there is a finite subset H2 ⊆ Cs.a. and σ2 > 0 such that for any
unital homomorphisms φ, ψ : C → Mn (for a matrix algebra Mn)
satisfying

1 φ(h) > σ1 and ψ(h) > σ1 for any h ∈ H1,

and

2 |tr ◦ φ(h)− tr ◦ ψ(h)| < σ2 for any h ∈ H2,

then there is a unitary u ∈ Mn such that

‖φ(f )− u∗ψ(f )u‖ < ε for any f ∈ F .

Proof.

The proof is just a modification of that of Theorem 1.4.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 30

/ 67



We begin with the following:

Theorem 2.2.
Let X be a connected compact metric space, P ∈ Mr (C (X )) be a
projection and C = PMr (C (X ))P. Let F ⊆ C be a finite subset, and let
ε > 0 be a constant. There is a finite subset H1 ⊆ C + such that, for any
σ1 > 0, there is a finite subset H2 ⊆ Cs.a. and σ2 > 0 such that for any
unital homomorphisms φ, ψ : C → Mn (for a matrix algebra Mn)
satisfying

1 φ(h) > σ1 and ψ(h) > σ1 for any h ∈ H1, and

2 |tr ◦ φ(h)− tr ◦ ψ(h)| < σ2 for any h ∈ H2,

then there is a unitary u ∈ Mn such that

‖φ(f )− u∗ψ(f )u‖ < ε for any f ∈ F .

Proof.

The proof is just a modification of that of Theorem 1.4.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 30

/ 67



We begin with the following:

Theorem 2.2.
Let X be a connected compact metric space, P ∈ Mr (C (X )) be a
projection and C = PMr (C (X ))P. Let F ⊆ C be a finite subset, and let
ε > 0 be a constant. There is a finite subset H1 ⊆ C + such that, for any
σ1 > 0, there is a finite subset H2 ⊆ Cs.a. and σ2 > 0 such that for any
unital homomorphisms φ, ψ : C → Mn (for a matrix algebra Mn)
satisfying

1 φ(h) > σ1 and ψ(h) > σ1 for any h ∈ H1, and

2 |tr ◦ φ(h)− tr ◦ ψ(h)| < σ2 for any h ∈ H2,

then there is a unitary u ∈ Mn such that

‖φ(f )− u∗ψ(f )u‖ < ε for any f ∈ F .

Proof.

The proof is just a modification of that of Theorem 1.4.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 30

/ 67



We begin with the following:

Theorem 2.2.
Let X be a connected compact metric space, P ∈ Mr (C (X )) be a
projection and C = PMr (C (X ))P. Let F ⊆ C be a finite subset, and let
ε > 0 be a constant. There is a finite subset H1 ⊆ C + such that, for any
σ1 > 0, there is a finite subset H2 ⊆ Cs.a. and σ2 > 0 such that for any
unital homomorphisms φ, ψ : C → Mn (for a matrix algebra Mn)
satisfying

1 φ(h) > σ1 and ψ(h) > σ1 for any h ∈ H1, and

2 |tr ◦ φ(h)− tr ◦ ψ(h)| < σ2 for any h ∈ H2,

then there is a unitary u ∈ Mn such that

‖φ(f )− u∗ψ(f )u‖ < ε for any f ∈ F .

Proof.

The proof is just a modification of that of Theorem 1.4.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 30

/ 67



We begin with the following:

Theorem 2.2.
Let X be a connected compact metric space, P ∈ Mr (C (X )) be a
projection and C = PMr (C (X ))P. Let F ⊆ C be a finite subset, and let
ε > 0 be a constant. There is a finite subset H1 ⊆ C + such that, for any
σ1 > 0, there is a finite subset H2 ⊆ Cs.a. and σ2 > 0 such that for any
unital homomorphisms φ, ψ : C → Mn (for a matrix algebra Mn)
satisfying

1 φ(h) > σ1 and ψ(h) > σ1 for any h ∈ H1, and

2 |tr ◦ φ(h)− tr ◦ ψ(h)| < σ2 for any h ∈ H2,

then there is a unitary u ∈ Mn such that

‖φ(f )− u∗ψ(f )u‖ < ε for any f ∈ F .

Proof.

The proof is just a modification of that of Theorem 1.4.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 30

/ 67



Theorem 2.3.
Let X be a compact metric space, P ∈ Mr (C (X )) be a projection and

C = PMr (C (X ))P

and let ∆ : Aq,1
+ \ {0} → (0, 1) be an order preserving

map. For any ε > 0, any finite subset F ⊂ A, there exists a finite subset
P of projections in C , a finite subset H1 ⊂ A1

+ \ {0}, a finite subset
H2 ⊂ As.a. and δ > 0 satisfying the following: If φ1, φ2 : A→ Mn (for
some integer n ≥ 1) are two unital homomorphisms such that

[φ1]|P = [φ2]|P ,
τ ◦ φ1(h) ≥ ∆(ĥ) for all h ∈ H1 and

|τ ◦ φ1(g)− τ ◦ φ2(g)| < σ for all g ∈ H2,

then, there exist a unitary u ∈ Mn such that

‖Ad u ◦ φ1(f )− φ2(f )‖ < ε for all f ∈ F . (e 10.49)
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Proof.

In the case that X is connected, then it follows immediately from the
previous theorem.

Then it is clear that the case X has finitely many
connected components follows. Ṫhe general case follows from the fact
that C (X ) = limn→∞(C (Xn), ın), where Xn is a polygon and ın is
injective.

Remark: P can be chosen to be a set of mutually orthogonal projections
which corresponds to a set of disjoint clopen subsets with union X .
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Lemma 2.4.
Let X be a compact metric space

and let A = PMr (C (X ))P, where

P ∈ C (X ,Mn) is a projection. Let ∆ : Aq,1
1 \ {0} → (0, 1) be an order

preserving map. For any ε > 0, any finite subset F ⊂ A and any σ > 0,
there exists a finite subset H1 ⊂ A1

+ \ {0}, a finite subset H2 ⊂ As.a. and
δ > 0 satisfying the following: If φ1, φ2 : A→ Mn (for some integer
n ≥ 1) are two unital homomorphisms such that

τ ◦ φ1(h) ≥ ∆(ĥ) for all h ∈ H1 and

|τ ◦ φ1(g)− τ ◦ φ2(g)| < σ for all g ∈ H2,

then, there exist a projection p ∈ Mn, a unital homomorphism
H : A→ pMnp, unital homomorphisms h1, h2 : A→ (1− p)Mn(1− p)
and a unitary u ∈ Mn such that

‖Ad u ◦ φ1(f )− (h1(f ) + H(f ))‖ < ε,

‖φ2(f )− (h2(f ) + H(f )‖ < ε for all f ∈ F
and τ(1− p) < σ,

where τ is the tracial state of Mn.
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τ ◦ φ1(h) ≥ ∆(ĥ) for all h ∈ H1 and

|τ ◦ φ1(g)− τ ◦ φ2(g)| < σ for all g ∈ H2,

then, there exist a projection p ∈ Mn, a unital homomorphism
H : A→ pMnp, unital homomorphisms h1, h2 : A→ (1− p)Mn(1− p)
and a unitary u ∈ Mn such that

‖Ad u ◦ φ1(f )− (h1(f ) + H(f ))‖ < ε,

‖φ2(f )− (h2(f ) + H(f )‖ < ε for all f ∈ F
and τ(1− p) < σ,

where τ is the tracial state of Mn.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 33

/ 67



Lemma 2.4.
Let X be a compact metric space and let A = PMr (C (X ))P, where

P ∈ C (X ,Mn) is a projection. Let ∆ : Aq,1
1 \ {0} → (0, 1) be an order

preserving map. For any ε > 0, any finite subset F ⊂ A and any σ > 0,
there exists a finite subset H1 ⊂ A1

+ \ {0}, a finite subset H2 ⊂ As.a. and
δ > 0 satisfying the following: If φ1, φ2 : A→ Mn (for some integer
n ≥ 1) are two unital homomorphisms such that
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Idea of the proof

We may write

φi (f ) =
K∑

k=1

f (xk,i )qk,i for all f ∈ Mr (C (X )),

where {qk,i : 1 ≤ k ≤ K} is a set of mutually orthogonal rank r
projections. Therefore we may write

φi = φi ,0 ⊕ φi ,1.

where φi .0 : A→ PiMnPi and φi ,1 : A→ (1− Pi )Mn(1− Pi ), i = 1, 2,
such that tr(Pi ) < σ and [φ1,1]|P = [φ2,1]|P . We then have

Ad u ◦ φ1,1 ≈ε/2 φ2,1.

Let H = φ2,1.
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Proof : We will only prove the case that A = Mr (C (X )).

Let
∆1 = (1/2)∆. Let P ∈ A be a finite subset of mutually orthogonal
projections, H′1 ⊂ A1

+ \{0} (in place of H1) be a finite subset, H′2 ⊂ As.a.

(in place of H2) be a finite subset and δ1 > 0 (in place of δ) required by
Theorem 2.3 for ε/2 (in place of ε), F and ∆1. Without loss of generality,
we may assume that 1A ∈ F , 1A ∈ H′1 ⊂ H′2 and H′2 ⊂ A1

+ \ {0}. Put

σ0 = min{∆1(ĝ) : g ∈ H′2}. (e 10.50)

We may write P = {p1, p2, ..., pk1}. Without loss of generality, we may
assume that {pi : 1 ≤ i ≤ k1} is a set of mutually orthogonal projections
such that 1A =

∑k1
i=1 pi . Let H1 = H′1 ∪ {pi : 1 ≤ i ≤ k1} ∪ H′′1 and

H2 = H′2 ∪H1. Let σ1 = min{∆(ĝ) : g ∈ H2}. Choose
δ = min{σ0 · σ/4k1, σ0 · δ1/4k1, σ1/16k1}. Suppose now that
φ1, φ2 : A→ Mn are two unital homomorphisms described in the lemma
for the above H1, H2 and ∆.
We may write φj(f ) =

∑n
k=1 f (xk,j)qk,j for all f ∈ Mr (C (X )), where

{qk,j : 1 ≤ k ≤ n} (j = 1, 2) is a set of mutually orthogonal rank r
projections and xk,j ∈ X .
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We have

|τ ◦ φ1(pi )− τ ◦ φ2(pi )| < δ, i = 1, 2, ..., k1, (e 10.51)

where τ is the tracial state on Mn. Therefore, there exists a projection
P0,j ∈ Mn such that

τ(P0,j) < k1δ < σ0 · σ, j = 1, 2, (e 10.52)

rank(P0,1) = rank(P0,2), unital homomorphisms φ1,0 : A→ P0,1MnP0,1,
φ2,0 : A→ P0,2MnP0,2, φ1,1 : A→ (1− P0,1)Mn(1− P0,1) and
φ1,2 : A→ (1− P0,2)Mn(1− P0,2) such that

φ1 = φ1,0 ⊕ φ1,1, φ2 = φ2,0 ⊕ φ2,1, (e 10.53)

τ ◦ φ1,1(pi ) = τ ◦ φ1,2(pi ), i = 1, 2, ..., k1. (e 10.54)
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By replacing φ1 by Ad v ◦ φ1, simplifying the notation, without loss of
generality, we may assume that P0,1 = P0,2. It follows (see ??) that

[φ1,1]|P = [φ2,1]|P . (e 10.55)

By (e 10.52) and choice of σ0, we also have

τ ◦ φ1,1(g) ≥ ∆1(ĝ) for all g ∈ H′1 and (e 10.56)

|τ ◦ φ1,1(g)− τ ◦ φ1,2(g)| < σ0 · δ1 for all g ∈ H′2. (e 10.57)

Therefore

t ◦ φ1,1(g) ≥ ∆1(ĝ) for all g ∈ H′1 and (e 10.58)

|t ◦ φ1,1(g)− t ◦ φ1,2(g)| < δ1 for all g ∈ H′2, (e 10.59)

where t is the tracial state on (1− P1,0)Mn(1− P1,0). By applying ??,
there exists a unitary v1 ∈ (1− P1,0)Mn(1− P1,0) such that

‖Ad v1 ◦ φ1,1(f )− φ2,1(f )‖ < ε/16 for all f ∈ F . (e 10.60)

Put H = φ2,1 and p = P1,0. The lemma for the case that A = Mr (C (X ))
follows.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 37

/ 67



Corollary 2.5.
Let X be a compact metric space and let A = PC (X ,Mn)P,

where

P ∈ C (X ,F ) is a projection. Let ∆ : Aq,1
+ \ {0} → (0, 1) be an order

preserving map and let 1 > α > 1/2.
For any ε > 0, any finite subset F ⊂ A, any finite subset H0 ⊂ A1

+ \ {0}
and any integer K ≥ 1. There is an integer N ≥ 1, a finite subset
H1 ⊂ A1

+ \ {0}, a finite subset H2 ⊂ As.a., δ > 0 satisfying the following:
If φ1, φ2 : A→ Mn (for any integer n ≥ N) are two unital homomorphisms
such that

τ ◦ φ1(h) ≥ ∆(ĥ) for all h ∈ H1 and

|τ ◦ φ1(g)− τ ◦ φ2(g)| < δ for all g ∈ H2,

then, there exists a unitary u ∈ Mn such that
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Corollary

‖Ad u ◦ φ1(f )− (h1(f ) + diag(

K︷ ︸︸ ︷
ψ(f ), ψ(f ), ..., ψ(f )))‖ < ε,

‖φ2(f )− (h2(f ) + diag(

K︷ ︸︸ ︷
ψ(f ), ψ(f ), ..., ψ(f )))‖ < ε for all f ∈ F ,

and τ ◦ ψ(g) ≥ α∆(ĝ)

K
for all g ∈ H0,

τ ∈ T (Mn), h1, h2 : A→ e0Mne0, ψ : A→ e1Mne1 are unital
homomorphisms, e0, e1, e2, ..., eK ∈ Mn are mutually orthogonal non-zero
projections, e1, e2, ..., eK are equivalent, e0 . e1 and e0 +

∑K
i=1 ei = 1Mn .

Remark: If X has infinitely many points, then there is no need to mention
the integer N. The integer n will be large when H0 is large.
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Idea of the proof

We can write
H ≈ε φ+ diag(ψ,ψ, · · · , ψ).
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Proof : We prove the case that C = C (X ).

By applying Lemma 2.4, it is
easy to see that it suffices to prove the following statement:
Let X ,F ,P A and α be as in the corollary.
Let ε > 0, let F ⊂ A be a finite subset, let H0 ⊂ A1

+ \ {0} and let K ≥ 1.
There is an integer N ≥ 1, a finite subset H1 ⊂ A1

+ \ {0} satisfying the
following: Suppose that H : A→ Mn (for some n ≥ N) is a unital
homomorphism such that

τ ◦ H(g) ≥ ∆(ĝ) for all g ∈ H0. (e 10.61)

Then there are mutually orthogonal projections e0, e1, e2, ..., eK ∈ Mn, a
unital homomorphism φ : A→ e0Mne0 and a unital homomorphism
ψ : A→ e1Mne1 such that

‖H(f )− (φ(f )⊕ diag(

K︷ ︸︸ ︷
ψ(f ), ψ(f ), ..., ψ(f )))‖ < ε for all f ∈ F ,

τ ◦ ψ(g) ≥ α∆(ĝ) for all g ∈ H0.
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τ ◦ H(g) ≥ ∆(ĝ) for all g ∈ H0. (e 10.61)

Then there are mutually orthogonal projections e0, e1, e2, ..., eK ∈ Mn, a
unital homomorphism φ : A→ e0Mne0 and a unital homomorphism
ψ : A→ e1Mne1 such that

‖H(f )− (φ(f )⊕ diag(

K︷ ︸︸ ︷
ψ(f ), ψ(f ), ..., ψ(f )))‖ < ε for all f ∈ F ,
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Put

σ0 = ((1− α)/4) min{∆(ĝ) : g ∈ H0} > 0. (e 10.62)

Let ε1 = min{ε/16, σ0} and let F1 = F ∪H0. Choose d0 > 0 such that

|f (x)− f (x ′)| < ε1 for all f ∈ F1, (e 10.63)

provided that x , x ′ ∈ X and dist(x , x ′) < d0.
Choose ξ1, ξ2, ..., ξm ∈ X such that ∪mj=1B(ξj , d0/2) ⊃ X , where
B(ξ, r) = {x ∈ X : dist(x , ξ) < r}. There is d1 > 0 such that d1 < d0/2
and

B(ξj , d1) ∩ B(ξi , d1) = ∅ (e 10.64)

if i 6= j . There is, for each j , a function hj ∈ C (X ) with 0 ≤ hj ≤ 1,
hj(x) = 1 if x ∈ B(ξj , d1/2) and hj(x) = 0 if x 6∈ B(ξj , d1). Define
H1 = H0 ∪ {hj : 1 ≤ j ≤ m} and put

σ1 = min{∆(ĝ) : g ∈ H1}. (e 10.65)

Choose an integer N0 ≥ 1 such that 1/N0 < σ1 · (1− α)/4 and
N = 4m(N0 + 1)2(K + 1)2.
Now let H : C (X )→ Mn be a unital homomorphism with n ≥ N
satisfying the assumption (e 10.61).
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σ1 = min{∆(ĝ) : g ∈ H1}. (e 10.65)

Choose an integer N0 ≥ 1 such that 1/N0 < σ1 · (1− α)/4 and
N = 4m(N0 + 1)2(K + 1)2.
Now let H : C (X )→ Mn be a unital homomorphism with n ≥ N
satisfying the assumption (e 10.61).

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 42

/ 67



Put
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Let Y1 = B(ξ1, d0/2) \ ∪mi=2B(ξi , d1),

Y2 = B(ξ2, d0/2) \ (Y1 ∪ ∪mi=3B(ξi , d1),

Yj = B(ξj , d0/2) \ (∪j−1
i=1Yi ∪ ∪mi=j+1B(ξi , d1)), j = 1, 2, ...,m. Note that

Yj ∩ Yi = ∅ if i 6= j and B(ξj , d1) ⊂ Yj . We write that

H(f ) =
n∑

i=1

f (xi )pi =
m∑
j=1

(
∑
xi∈Yj

f (xi )pi ) for all f ∈ C (X ), (e 10.66)

where {p1, p2, ..., pn} is a set of mutually orthogonal rank one projections
in Mn, {x1, x2, ..., xn} ⊂ X . Let Rj be the cardinality of {xi : xi ∈ Yj}.
Then, by (e 10.61),

Rj ≥ Nτ ◦ H(hj) ≥ N∆(ĥj) ≥ (N0 + 1)2Kσ1 ≥ (N0 + 1)K 2, (e 10.67)

j = 1, 2, ...,m. Write Rj = SjK + rj , where Sj ≥ N0Km and 0 ≤ rj < K ,
j = 1, 2, ...,m. Choose xj ,1, xj ,2, ..., xj ,rj ⊂ {xi ∈ Yj} and denote
Zj = {xj ,1, xj ,2, ..., xj ,rj}, j = 1, 2, ...,m.
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Therefore we may write

H(f ) =
m∑
j=1

(
∑

xi∈Yj\Zj

f (xi )pi ) +
m∑
j=1

(

rj∑
i=1

f (xj ,i )pj ,i ) (e 10.68)

for f ∈ C (X ). Note that the cardinality of {xi ∈ Yj \ Zj} is KSj ,
j = 1, 2, ...,m. Define

Ψ(f ) =
m∑
j=1

f (ξj)Pj =
K∑

k=1

(
m∑
j=1

f (ξj)Qj ,k) for all f ∈ C (X ), (e 10.69)

where Pj =
∑

xi∈Yj\Zj
pi =

∑K
k=1 Qj ,k and rankQj ,k = Sj , j = 1, 2, ...,m.

Put e0 =
∑m

i=1(
∑rj

i=1 pj ,i ), ek =
∑m

j=1 Qj ,k , k = 1, 2, ...,K . Note that

rank(e0) =
m∑
j=1

rj < mK and rank(ek) = Sj (e 10.70)

Sj ≥ N0mK > mK , j = 1, 2, ..,K . (e 10.71)

It follows that e0 . e1 and ei is equivalent to e1.
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Moreover, we may write

Ψ(f ) = diag(

K︷ ︸︸ ︷
ψ(f ), ψ(f ), ..., ψ(f )) for all f ∈ A, (e 10.72)

where ψ(f ) =
∑m

j=1 f (ξj)Qj ,1 for all f ∈ A. We also estimate that

‖H(f )− (φ(f )⊕ diag(

K︷ ︸︸ ︷
ψ(f ), ψ(f ), ..., ψ(f )))‖ < ε1 for all f ∈ F1.(e 10.73)

We also compute that

τ ◦ ψ(g) ≥ (1/K )(∆(ĝ) : g ∈ H0} − ε1 −
mK

N0Km
) ≥ α∆(ĝ)

K
(e 10.74)

for all g ∈ H0.
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Cor(CorA) Let A0 = PMr (C (X ))P, A = A0 ⊗ C (T), let ε > 0

and let

F ⊂ A be a finite subset. Let ∆ : (A0)q,1+ \ {0} → (0, 1) be an order
preserving map.
Suppose that H1 ⊂ (A0)1+ \ {0} is a finite subset, σ > 0 is positive number
and n ≥ 1 is an integer. There exists a finite subset H2 ⊂ (A0)1+ \ {0}
satisfying the following: Suppose that φ : A = A0 ⊗ C (T)→ Mk (for some
integer k ≥ 1) is a unital homomorphism and

tr ◦ φ(h ⊗ 1) ≥ ∆(ĥ) for all h ∈ H2. (e 10.75)

Then there exist mutually orthogonal projections e0, e1, e2, ..., en ∈ Mk

such that e1, e2, ..., en are equivalent and
∑n

i=0 ei = 1, and there exists a
unital homomorphisms ψ0 : A = A0 ⊗ C (T)→ e0Mke0 and
ψ : A = A0 ⊗ C (T)→ e1Mke1 such that one may write that

‖φ(f )− diag(ψ0(f ),

n︷ ︸︸ ︷
ψ(f ), ψ(f ), ..., ψ(f ))‖ < ε (e 10.76)

and tr(e0) < σ (e 10.77)

for all f ∈ F , where tr is the tracial state on Mk .

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 46

/ 67



Cor(CorA) Let A0 = PMr (C (X ))P, A = A0 ⊗ C (T), let ε > 0 and let

F ⊂ A be a finite subset.

Let ∆ : (A0)q,1+ \ {0} → (0, 1) be an order
preserving map.
Suppose that H1 ⊂ (A0)1+ \ {0} is a finite subset, σ > 0 is positive number
and n ≥ 1 is an integer. There exists a finite subset H2 ⊂ (A0)1+ \ {0}
satisfying the following: Suppose that φ : A = A0 ⊗ C (T)→ Mk (for some
integer k ≥ 1) is a unital homomorphism and
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Moreover,

tr(ψ(g ⊗ 1)) ≥ ∆(ĝ)

2n
for all g ∈ H1. (e 10.78)
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Lemma 2.6.
Let X be a compact metric space, P ∈ Mr (C (X )) be a projection and let

A = PMr (C (X ))P

and let ∆ : Aq,1
+ \ {0} → (0, 1) be an order preserving

map. For any ε > 0 and any finite subset F ⊂ A, there exists δ > 0, a
finite subset G ⊂ A, a finite subset P ⊂ K (A), a finite subset
H ⊂ A1

+ \ {0} and an integer K ≥ 1 satisfying the following: For any two
unital δ-G-multiplicative contractive completely positive linear maps
φ1, φ2 : A→ Mn (for some integer n) and any unital homomorphism
ψ : A→ Mm with m ≥ n such that

τ ◦ ψ(g) ≥ ∆(ĝ) for all g ∈ H and [φ1]|P = [φ2]|P , (e 10.79)

there exists a unitary U ∈ MKm+n such that

‖AdU ◦ (φ1 ⊕Ψ)(f )− (φ2 ⊕Ψ)(f )‖ < ε for all f ∈ A, (e 10.80)

where

Ψ(f ) = diag(

K︷ ︸︸ ︷
ψ(f ), ψ(f ), ..., ψ(f )) for all f ∈ A.
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The above follows from the following:

Theorem 2.7.
Let A be a unital separable amenable C ∗-algebra and let B be a unital
C ∗-algebra.

Suppose that h1, h2 : A→ B are two homomorphisms such
that

[h1] = [h2] in KL(A,B).

Suppose that h0 : A→ B is a unital full monomorphism. Then, for any
ε > 0 and any finite subset F ⊂ A, there exits an integer n ≥ 1 and a
unitary W ∈ Mn+1(B) such that

‖W ∗diag(h1(a), h0(a), ..., h0(a))W − diag(h2(a), h0(a), ..., h0(a))‖ < ε

for all a ∈ F and W ∗pW = q, where

p = diag(h1(1A), h0(1A), ..., h0(1A)) and q = diag(h2(1A), h0(1A), ..., h0(1A)).

In particular, if h1(1A) = h2(1A), W ∈ U(pMn+1(B)p).
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Lemma 2.8.
Let A be a unital C ∗-algebra whose irreducible representations have
bounded dimension.

Let T be a finite subset of tracial states on A. For
any finite subset F ⊂ A and for any ε > 0 and σ > 0, there is an ideal
J ⊂ A such that ‖τ |J‖ < σ for all τ ∈ T , a finite dimensional
C ∗-subalgebra C ⊂ A/J and a unital homomorphism π0 from A such that

dist(π(x),C ) < ε for all a ∈ F , (e 10.81)

π0(A) = π0(C ) ∼= C and kerπ0 ⊃ J, (e 10.82)

where π : A→ A/J is the quotient map.
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Proof : We prove the case that A arising from a locally trivial continuous
field of Mn over a compact metric space X .

We may assume that there is
δ0 > 0 such that for any x ∈ X , A|B̄(x ,δ0)

∼= Mn(C (B̄(x , δ0))), where

B̄(x , δ0) = {y ∈ X : dist(x , y) ≤ δ0}.
Let ε > 0. There exists δ1 > 0 such that

‖f (x)− f (x ′)‖ < ε/16 for all f ∈ F ,

provided that dist(x , x ′) < δ1. We may assume that δ1 < δ0.
For each x ∈ X , since T is finite, there is δx with δ1/2 < dx < δ1 such
that

µτ ({y : dist(x , y) = dx}) = 0 for all τ ∈ T , (e 10.83)

where µτ is the probability measure on X induced by τ. Note that
∪x∈XO(x , δx) = X . Suppose that ∪mi=1O(xi , δxi ) = X . Define

F =
m∑
i=1

{y : dist(y , xi ) = δxi}.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 51

/ 67



Proof : We prove the case that A arising from a locally trivial continuous
field of Mn over a compact metric space X . We may assume that there is
δ0 > 0 such that

for any x ∈ X , A|B̄(x ,δ0)
∼= Mn(C (B̄(x , δ0))), where

B̄(x , δ0) = {y ∈ X : dist(x , y) ≤ δ0}.
Let ε > 0. There exists δ1 > 0 such that

‖f (x)− f (x ′)‖ < ε/16 for all f ∈ F ,

provided that dist(x , x ′) < δ1. We may assume that δ1 < δ0.
For each x ∈ X , since T is finite, there is δx with δ1/2 < dx < δ1 such
that

µτ ({y : dist(x , y) = dx}) = 0 for all τ ∈ T , (e 10.83)

where µτ is the probability measure on X induced by τ. Note that
∪x∈XO(x , δx) = X . Suppose that ∪mi=1O(xi , δxi ) = X . Define

F =
m∑
i=1

{y : dist(y , xi ) = δxi}.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 51

/ 67



Proof : We prove the case that A arising from a locally trivial continuous
field of Mn over a compact metric space X . We may assume that there is
δ0 > 0 such that for any x ∈ X , A|B̄(x ,δ0)

∼= Mn(C (B̄(x , δ0))),

where

B̄(x , δ0) = {y ∈ X : dist(x , y) ≤ δ0}.
Let ε > 0. There exists δ1 > 0 such that

‖f (x)− f (x ′)‖ < ε/16 for all f ∈ F ,

provided that dist(x , x ′) < δ1. We may assume that δ1 < δ0.
For each x ∈ X , since T is finite, there is δx with δ1/2 < dx < δ1 such
that

µτ ({y : dist(x , y) = dx}) = 0 for all τ ∈ T , (e 10.83)

where µτ is the probability measure on X induced by τ. Note that
∪x∈XO(x , δx) = X . Suppose that ∪mi=1O(xi , δxi ) = X . Define

F =
m∑
i=1

{y : dist(y , xi ) = δxi}.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 51

/ 67



Proof : We prove the case that A arising from a locally trivial continuous
field of Mn over a compact metric space X . We may assume that there is
δ0 > 0 such that for any x ∈ X , A|B̄(x ,δ0)

∼= Mn(C (B̄(x , δ0))), where

B̄(x , δ0) = {y ∈ X : dist(x , y) ≤ δ0}.

Let ε > 0. There exists δ1 > 0 such that

‖f (x)− f (x ′)‖ < ε/16 for all f ∈ F ,

provided that dist(x , x ′) < δ1. We may assume that δ1 < δ0.
For each x ∈ X , since T is finite, there is δx with δ1/2 < dx < δ1 such
that

µτ ({y : dist(x , y) = dx}) = 0 for all τ ∈ T , (e 10.83)

where µτ is the probability measure on X induced by τ. Note that
∪x∈XO(x , δx) = X . Suppose that ∪mi=1O(xi , δxi ) = X . Define

F =
m∑
i=1

{y : dist(y , xi ) = δxi}.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 51

/ 67



Proof : We prove the case that A arising from a locally trivial continuous
field of Mn over a compact metric space X . We may assume that there is
δ0 > 0 such that for any x ∈ X , A|B̄(x ,δ0)

∼= Mn(C (B̄(x , δ0))), where

B̄(x , δ0) = {y ∈ X : dist(x , y) ≤ δ0}.
Let ε > 0. There exists δ1 > 0 such that

‖f (x)− f (x ′)‖ < ε/16 for all f ∈ F ,

provided that dist(x , x ′) < δ1. We may assume that δ1 < δ0.
For each x ∈ X , since T is finite, there is δx with δ1/2 < dx < δ1 such
that

µτ ({y : dist(x , y) = dx}) = 0 for all τ ∈ T , (e 10.83)

where µτ is the probability measure on X induced by τ. Note that
∪x∈XO(x , δx) = X . Suppose that ∪mi=1O(xi , δxi ) = X . Define

F =
m∑
i=1

{y : dist(y , xi ) = δxi}.

Huaxin Lin Basic Homotopy Lemmas Introduction
June 8th, 2015, RMMC/CBMS University of Wyoming 51

/ 67



Proof : We prove the case that A arising from a locally trivial continuous
field of Mn over a compact metric space X . We may assume that there is
δ0 > 0 such that for any x ∈ X , A|B̄(x ,δ0)

∼= Mn(C (B̄(x , δ0))), where

B̄(x , δ0) = {y ∈ X : dist(x , y) ≤ δ0}.
Let ε > 0. There exists δ1 > 0 such that

‖f (x)− f (x ′)‖ < ε/16 for all f ∈ F ,

provided that dist(x , x ′) < δ1.

We may assume that δ1 < δ0.
For each x ∈ X , since T is finite, there is δx with δ1/2 < dx < δ1 such
that

µτ ({y : dist(x , y) = dx}) = 0 for all τ ∈ T , (e 10.83)
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Then F is closed and µτ (F ) = 0 for all τ ∈ T .

There is an open set
O ⊃ F such that

µτ (O) < σ.

Let
J = {a ∈ A : a|F = 0}.

Then A/J =
⊕K

i=1 Di , where Di = A|Gi
∼= Mn(C (Gi )) and Gi ⊂ X is a

compact subset with diameter < δ1 and Gi ∩ Gj = ∅, i 6= j . Fix ξi ∈ Gi ,

let Ci = {f ∈ Di : f (t) = f (ξi )}, i = 1, 2, ...,K . Define C =
⊕K

i=1 Ci . So
C ⊂ A/J. By the choice of δ, we estimate that, for any f ∈ F ,

dist(f |Gi
,Ci ) < ε/16.

It follows that dist(π(f ),C ) < ε for all f ∈ F . Let π0 : A→
⊕K

i=1 Mn

be defined by π0(f ) = ⊕K
i=1f (ξi ) for all f ∈ A. Then kerπ0 ⊃ J and

π0(A) = π0(C ) ∼= C .
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A unital C ∗-algebra B has real rank zero, if every self-adjoint element is a
norm limit of those self-adjoint elements with finite spectrum.

If A is not
unital, then A has real rank zero if Ã has real rank zero.

A projection in p ∈ A∗∗ is open if there exists a sequence of positive
elements an ∈ A such that 0 ≤ an ≤ an+1 ≤ p and limn→∞ an = p in
weak topology of A∗∗. A projection q ∈ A∗∗ is closed, if 1− q is open.
A closed projection q ∈ A∗∗ is compact, if there exists an element a ∈ A+

such that q ≤ a.

Theorem 2.9. (L. G. Brown–1991)
Let A be a C ∗-algebra, p and q are two closed projections (in A∗∗) such
that pq = 0 and p is compact. Then there exists a projection e ∈ A such
that

p ≤ e ≤ (1− q).

The converse also holds.
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Theorem 2.10. (S. Zhang, Pedersen and Brown)
Let

0→ J → A→ C → 0

be a short exact sequence of C ∗-algebras.

Suppose that C and J have
real rank zero. Suppose also that every projection ē ∈ C can be lifted,
i.e., there is a projection e ∈ A such that π(e) = ē, where π : A→ C is
the quotient map. Then A has real rank zero.

Theorem 2.11. (L–2000)
Let

0→ J → A→ C → 0

be a short exact sequence of C ∗-algebras, where A and C are unital, J
and C have real rank zero. Suppose A ⊂ D and J is a hereditary
C ∗-subalgebra of D, where D also has real rank zero. Then A has real
rank zero.
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Proof : For any r > 0, define f ∈ C0((0,∞))+ as follows.

fr (t) = 1 if
t ∈ [r ,∞), fr (t) = 0 if t ∈ [0, r/2] and f (t) = 2(t − r/2)/r if t ∈ (r/2, r).
(We will use this later).
Let ē ∈ C be a projection. We will show that there is a projection e ∈ A
such that π(e) = ē, where π : A→ C is the quotient map. By Zhang’s
theorem, this implies A has real rank zero.
There is a positive element a ∈ A such that 0 ≤ a ≤ 1 and π(a) = ē.
Define hn ∈ C0((0, 1])+ by hn(t) = 1 if t ∈ [0, 1/8− 1/2n], hn(t) = 0 if
t ∈ [1/8, 1] and hn(t) is linear in (1/8− 1/2n, 1/8), n = 1, 2, .... Note
0 ≤ hn(a) ≤ hn+1(a), n = 1, 2, .... Let h = limn→∞ hn(a) in A∗∗ which
corresponds to the open interval (−∞, 1/8). h is an open projection. Let
p = 1− h (= χ[1/8,1](a)). Since p ≤ f1/8(a), p is compact. Let 1− q be
the open projection corresponds to (1/16,∞), i.e.,
1− q = limn→∞(f1/16(a))1/n. So q is closed and pq = 0.
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Let ē ∈ C be a projection. We will show that there is a projection e ∈ A
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such that π(e) = ē, where π : A→ C is the quotient map. By Zhang’s
theorem, this implies A has real rank zero.
There is a positive element a ∈ A such that 0 ≤ a ≤ 1 and π(a) = ē.
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Let ē ∈ C be a projection. We will show that there is a projection e ∈ A
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Let ē ∈ C be a projection. We will show that there is a projection e ∈ A
such that π(e) = ē, where π : A→ C is the quotient map. By Zhang’s
theorem, this implies A has real rank zero.
There is a positive element a ∈ A such that 0 ≤ a ≤ 1 and π(a) = ē.
Define hn ∈ C0((0, 1])+ by hn(t) = 1 if t ∈ [0, 1/8− 1/2n], hn(t) = 0 if
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p = 1− h (= χ[1/8,1](a)). Since p ≤ f1/8(a), p is compact. Let 1− q be
the open projection corresponds to (1/16,∞), i.e.,
1− q = limn→∞(f1/16(a))1/n. So q is closed and pq = 0.
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It follows Brown interpolation lemma that there is a projection e ∈ D such
that

p ≤ e ≤ 1− q. (e 10.84)

We have

f1/4(a) ≤ e ≤ f1/32(a). (e 10.85)

Let g ∈ C0((0, 1])+ be defined as follows: g(t) = 0 if
t ∈ [0, 1/64] ∪ [1/4, 1], g(t) = 1 in [1/32, 1/8] and g(t) is linear in
(1/64, 1/32) and in (1/8, 1/4). Then e − f1/4(a) ≤ g(a). Since a ∈ A,
g(a) ∈ A. However, π(g(a)) = g(π(a)) = 0. Therefore g(a) ∈ J.
Consequently, e − f1/4(a) ∈ J, since J is hereditary C ∗-subalgebra of D.
But f1/4(a) ∈ A, it follows that e ∈ A. The inequality
f1/4(a) ≤ e ≤ f1/32(a) implies that π(e) = ē.
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Lemma 2.12.
Let A be a unital C ∗-algebra whose irreducible representations have
bounded dimensions.

Let ε > 0, let F ⊂ A be a finite subset and let
σ0 > 0. There exist δ > 0 and a finite subset G ⊂ A satisfying the
following: Suppose that φ : A→ Mn (for some integer n ≥ 1) is a
δ-G-multiplicative contractive completely positive linear map. Then, there
exists a projection p ∈ Mn and a unital homomorphism φ0 : A→ pMnp
such that

‖pφ(a)− φ(a)p‖ < ε for all a ∈ F ,
‖φ(a)− [(1− p)φ(a)(1− p) + φ0(a)]‖ < ε for all a ∈ F and

tr(1− p) < σ0,

where tr is the normalized trace on Mn.
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Lemma 2.12.
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Proof : We assume that the lemma is false.

Then there exists ε0 > 0, a
finite subset F0, a positive number σ0 > 0, an increasing sequence of
finite subsets Gn ⊂ A such that Gn ⊂ Gn+1 and such that ∪n=1Gn is dense
in A, a sequence of decreasing positive numbers {δn} with

∑∞
n=1 δn <∞,

a sequence of integers {m(n)} and a sequence of unital
Gn-δn-multiplicative contractive completely positive linear maps
φn : A→ Mm(n) satisfying the following:

inf{max{‖φn(a)− [(1− p)φn(a)(1− p) + φ0(a)‖ : a ∈ F0}} ≥ ε0,(e 10.86)

where infimun is take among all projections p ∈ Mm(n) with
trn(1− p) < σ0, where trn is the normalized trace on Mm(n) and all
possible homomorphisms φ0 : A→ pMm(n)p. One may also assume that
m(n)→∞ as n→∞.
Note that {trn ◦ φn} is a sequence of (not necessary tracial) states of A.
Let t0 be a weak limit of {trn ◦ φn}. Since A is separable, there is a
subsequence (instead of subnet) of {trn ◦ φn} converging to t0.
Without loss of generality, we may assume that trn ◦ φn converges to t0.
By the δn-Gn-multiplicativity of φn, we know that t0 is a tracial state on A.
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Denote by
⊕∞

n=1({Mm(n)}) the ideal

∞⊕
n=1

({Mm(n)}) = {{an} : an ∈ Mm(n) and lim
n→∞

‖an‖ = 0}.

Denote by Q the quotient
∏∞

n=1({Mm(n)}/
⊕∞

n=1({Mm(n)}). Let
πω :

∏∞
n=1({Mm(n)})→ Q be the quotient map.

Let A0 = {πω({φn(f )}) : f ∈ A} which is a subalgebra of Q. Then Ψ is a
unital homomorphism from A to

∏∞
n=1(Mm(n))/

⊕
({Mm(n)}) with

Ψ(A) = πω(A0). If a ∈ A has zero image in πω(A0), that is, φn(a)→ 0,
then t0(a) = limn→∞ trn(φn(a)) = 0. So we may view t0 as a state on
πω(A0) = Ψ(A).
It follows from Lemma 2.8 that there is a (two-sided closed) ideal
I ⊂ Ψ(A) and a finite dimensional C ∗-subalgebra B ⊂ Ψ(A)/I and a
unital homomorphism π00 : Ψ(A)/I → B such that

dist(πI ◦Ψ(f ),B) < ε0/16 for all f ∈ F0, (e 10.87)

‖(t0)|I‖ < σ0/2 (e 10.88)

π00|B = id. (e 10.89)
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Note that π00 can be regarded as map from A to B, then kerπ00 ⊃ I .

There is, for each f ∈ F0, an element bf ∈ B such that

‖πI ◦Ψ(f )− bf ‖ < ε0/16. (e 10.90)

Put C ′ = B + I and I0 = Ψ−1(I ) and C1 = Ψ−1(C ′). For each f ∈ F0,
there exists af ∈ C1 ⊂ A such that

‖f − af ‖ < ε0/16 and πI ◦Ψ(af ) = bf . (e 10.91)

Let a ∈ (I0)+ be a strictly positive element and let J = Ψ(a)QΨ(a) be
the hereditary C ∗-subalgebra of Q generated by Ψ(a). Put
C2 = Ψ(C1) + J. Then J is an ideal of C2. Denote by πJ : C2 → B the
quotient map. Since Q and J have real rank zero and C2/J has finite
dimensional, C2 has real rank zero. It follows that

0→ J → C2 → B → 0

is a quasidiagonal extension.
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One then concludes there is a projection P ∈ J and a unital
homomorphism ψ0 : B → (1− P)C2(1− P) such that

‖PΨ(af )−Ψ(af )P‖ < ε0/8 and (e 10.92)

‖Ψ(af )− [PΨ(af )P + ψ0 ◦ πJ ◦Ψ(af )]‖ < ε0/8 (e 10.93)

for all f ∈ F0. Let H : A→ ψ0(B) be defined by H = ψ0 ◦ π00 ◦ πI ◦Ψ.
One estimates that

‖PΨ(f )−Ψ(f )P‖ < ε0/2 and (e 10.94)

‖Ψ(f )− [PΨ(f )P + H(f )]‖ < ε0/2 (e 10.95)

for all f ∈ F0. Note that dimH(A) <∞, and that H(A) ⊂ Q.
There is a homomorphism H1 : H(A)→

∏∞
n=1({Mm(n)}) such that

π ◦ H1 ◦ H = H. One may write H1 = {hn}, where each
hn : H(A)→ Mm(n) is a (not necessary unital) homomorphism,
n = 1, 2, .... There is also a sequence of projections qn ∈ Mm(n) such that
π({qn}) = P. Let pn = 1− qn, n = 1, 2, ....
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Then, for sufficiently large n, by (e 10.94) and (e 10.95),

‖(1− pn)φn(f )− φn(f )(1− pn)‖ < ε0, (e 10.96)

‖φn(f )− [(1− pn)φn(f )(1− pn) + hn ◦ H(f )]‖ < ε0 (e 10.97)

for all f ∈ F0. Moreover, since P ∈ J, for any η > 0, there is b ∈ I0 with
0 ≤ b ≤ 1 such that

‖Ψ(b)P − P‖ < η.

However, by (e 10.88),

0 < t0(Ψ(b)) < σ0/2 for all b ∈ I0 with 0 ≤ n ≤ 1. (e 10.98)

By choosing sufficiently small η, for all sufficiently large n,

trn(1− pn) < σ0.

This contradicts with (e 10.86).
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Corollary 2.13.
Let A be a unital C ∗-algebra whose irreducible representations have
bounded dimensions.

Let η > 0, let E ⊂ A be a finite subset and let
η0 > 0. There exist δ > 0 and a finite subset G ⊂ A satisfying the
following: Suppose that φ, ψ : A→ Mn (for some integer n ≥ 1) are two
G-δ-multiplicative contractive completely positive linear maps. Then,
there exist projections p, q ∈ Mn with rank(p) = rank(q) and unital
homomorphisms φ0 : A→ pMnp and ψ0 : A→ qMnq such that

‖pφ(a)− φ(a)p‖ < η, ‖qψ(a)− ψ(a)q‖ < η, a ∈ E ,
‖φ(a)− [(1− p)φ(a)(1− p) + φ0(a)]‖ < η,

‖ψ(a)− [(1− q)ψ(a)(1− q) + ψ0(a)]‖ < η, a ∈ E
and tr(1− p) = tr(1− q) < η0,

where tr is the normalized trace on Mn.
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Lemma 2.14.
Let A be an infinite dimensional unital sub-homogeneous C ∗-algebra ,

let
ε > 0 and let F ⊂ A be a finite subset. let ε0 > 0 and let G0 ⊂ A be a
finite subset., Let ∆ : Aq,1

+ \ {0} → (0, 1) be a positive map.
Suppose that H1 ⊂ A1

+ \ {0} is a finite subset, ε1 > 0 is a positive
number and K ≥ 1 is an integer. There exists δ > 0, σ > 0 and a finite
subset G ⊂ A and a finite subset H2 ⊂ A1

+ \ {0} satisfying the following:
Suppose that L1, L2 : A→ Mn (for some integer n ≥ 1) are unital
δ-G-multiplicative contractive completely positive linear maps

tr ◦ L1(h) ≥ ∆(ĥ) and tr ◦ L2(h) ≥ ∆(ĥ) for all h ∈ H2, and

|tr ◦ L1(h)− tr ◦ L2(h)| < σ for all h ∈ H2. (e 10.99)
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Lemma

Then there exist mutually orthogonal projections e0, e1, e2, ..., eK ∈ Mn

such that e1, e2, ..., eK are equivalent, e0 . e1, tr(e0) < ε1 and
e0 +

∑K
i=1 ei = 1, and there exist a unital ε0-G0-multiplicative contractive

completely positive linear maps ψ1, ψ2 : A→ e0Mke0, a unital
homomorphism ψ : A→ e1Mke1, and unitary u ∈ Mn such that one may
write that

‖L1(f )− diag(ψ1(f ),

K︷ ︸︸ ︷
ψ(f ), ψ(f ), ..., ψ(f ))‖ < ε and (e 10.100)

‖uL2(f )u∗ − diag(ψ2(f ),

K︷ ︸︸ ︷
ψ(f ), ψ(f ), ..., ψ(f ))‖ < ε (e 10.101)

for all f ∈ F , where tr is the tracial state on Mn. Moreover,

tr(ψ(g)) ≥ ∆(ĝ)

3K
for all g ∈ H1. (e 10.102)
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Theorem 2.1. Let X be a compact metric space, P ∈ Mr (C (X )) be a

projection and C = PMr (C (X )).

Let ∆ : Cq,1
+ \ {0} → (0, 1) be an order

preserving map. Let ε > 0 and let F ⊂ A be a finite subset.
There exists a finite subset H1 ⊂ A+ \ {0}, a finite subset G ⊂ A, δ > 0,
a finite subset P ⊂ K (A), a finite subset H2 ⊂ As.a. and σ > 0 satisfying
the following: Suppose that L1, L2 : A→ Mk (for some integer k ≥ 1) are
two unital G-δ-multiplicative contractive completely positive linear maps
such that

[L1]|P = [L2]|P ,
tr ◦ L1(h) ≥ ∆(ĥ), tr ◦ L2(h) ≥ ∆(ĥ) for all h ∈ H1

and |tr ◦ L1(h)− tr ◦ L2(h)| < σ for all h ∈ H2,

then there exists a unitary u ∈ Mk such that

‖Ad u ◦ L1(f )− L2(f )| < ε for all f ∈ F . (e 10.103)
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It follows from a combination of Lemma 2.14 and Lemma 2.6.
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