Example 12.1:
In order to guarantee a lower failure rate of one important supervisory duty, a military control center wants to install several same kind of computers for the supervisory. Suppose that each computer will fail independently with the same probability $p = 0.01$. The supervisory is successful if there is at least one computer is in working order. Find a minimum n of computers which are required to be installed such that the failure rate is equal or less than 0.0001.

Solution: Suppose that there are n computers installed. We need to find this number n. Let X be the number of computers in working order. According to the question, we need to find n such that the following inequality

$$P(X = 0) \leq 0.0001$$

satisfied. Since $P(X = 0) = C_0^n(1-p)^0 p^n = p^n$, it just finds n such that $p^n \leq 0.0001$. Since

$$(0.01)^n \leq 0.0001 \iff n \geq 2$$

Therefore, $n = 2$.

Definition: Let X be a rv defined on a sample space Ω. For each real number $x \in \mathbb{R}$, we define

$$F(x) = P(X \leq x)$$

Thus in this way we have defined a function

$$F(x) : \mathbb{R} \rightarrow [0, 1]$$

This function is called the cumulative distribution function or simply distribution function of rv X.
Example: A company has five applicants for three positions: three women and two men. Suppose that the five applicants are equally qualified and that no preference is given for choosing either gender. Let \(X \) equal the number of women chosen to fill the three positions. Find the probability distribution table and cumulative distribution table of \(X \), respectively.

Solution:

The Prob. Dist. table of rv \(X \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(x))</td>
<td>(\frac{C_3^3C_2^2}{C_3^5} = \frac{3}{10})</td>
<td>(\frac{C_3^3C_1^2}{C_3^5} = \frac{6}{10})</td>
<td>(\frac{C_3^3C_0^2}{C_3^5} = \frac{1}{10})</td>
</tr>
</tbody>
</table>

The Cumulative Dist. table of rv \(X \)

| \(x \) | \(x < 1 \) | \(1 \leq x < 2 \) | \(2 \leq x < 3 \) | \(3 \leq x \) |
|---|---|---|---|
| \(F(x) \) | 0 | \(\frac{3}{10} \) | \(\frac{9}{10} \) | 1 |

Example: Let rv \(X \) have a density function

\[
f(x) = \begin{cases}
6x(1-x) & \text{if } x \in [0,1] \\
0 & \text{if } x \notin [0,1]
\end{cases}
\]

Find the cumulative dist. function \(F(x) \) of \(X \) and its graph.

Solution: Since for \(0 \leq y \leq 1 \)

\[
F(y) = \int_0^y 6x(1-x)dx = 3y^2 - 2y^3
\]

we have

\[
F'(y) = 6y(1-y) > 0
\]

Theorem: If \(F(x) \) is the cumulative distribution of rv \(X \), then

(a) \(\mathbb{P}(X > x) = 1 - F(x) \) for any \(x \in \mathbb{R} \);
(b) \(P(a < X \leq b) = F(b) - F(a) \) for any \(a, b \in \mathbb{R} \) and \(a < b \);
(c) If \(X \) is a continuous rv, then \(P(X = x) = 0 \) for any \(x \in \mathbb{R} \);
(d) If \(X \) is a continuous rv, then
\[
F'(x) = f(x)
\]
where \(f(x) \) is the density function of \(X \).

We have introduced single rv and its density and distribution. In many situations, one rv can’t handle the problems. We need to introduce random vectors.

Definition: Suppose that \(X : \Omega \to \mathbb{R} \) and \(Y : \Omega \to \mathbb{R} \) are two discrete rv’s if there is a two variable, non-negative function \(f(x, y) \geq 0 \) such that

1. \(f(x, y) > 0 \) for any \((x, y) \in \Lambda \subset \mathbb{R}^2 \);
2. \(\sum_{(x,y) \in \Lambda} f(x, y) = 1 \);
3. \(f(x, y) = P\{X = x, Y = y\} \) for any \((x, y) \in \mathbb{R}^2 \).

Then, \((X, Y)\) is called a discrete random vector, \(f(x, y) \) is called the probability density function of \((X, Y)\), and \(\Lambda \) is called the range space of \((X, Y)\).

Remark: Here each component, say \(X \), is a single rv.

Example: The experiment consists of flipping a fair coin and rolling a fair die. The sample space is
\[
\Omega = \{(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6),
(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)\}
\]
Define a rv \(X : \omega \in \Omega \to X(\omega) \in \mathbb{R} \) by
\[
X(\omega) = \begin{cases}
0 & \text{if } \omega = (H, i), i = 1, \ldots 6 \\
1 & \text{if } \omega = (T, i), i = 1, \ldots 6
\end{cases}
\]
and define a rv \(Y : \omega \in \Omega \rightarrow Y(\omega) \in \mathbb{R} \) by

\[Y(\omega) = i \quad \text{if} \ \omega = (x, i), x = H \text{ or } T \]

Define

\[\Lambda = \{(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), \]
\[(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)\} \]

and

\[f(x, y) = \begin{cases} \frac{1}{12} & \text{if } (x, y) \in \Lambda \\ 0 & \text{if } (x, y) \notin \Lambda \end{cases} \]

Then, \((X, Y)\) is a discrete random vector with range space \(\Lambda \) and density function \(f(x, y) \). (Check the definition!) Find the probability \(\mathbb{P}\{X \leq 0; 2 \leq Y < 5\} \).

\[
\mathbb{P}\{X \leq 0; 2 \leq Y < 5\} = \mathbb{P}((H, 2), (H, 3), (H, 4)) = 3/12
\]

Similarly we can define a continuous random vector as follows.

Definition: Suppose that \(X : \Omega \rightarrow \mathbb{R} \) and \(Y : \Omega \rightarrow \mathbb{R} \) are two continuous rv’s if there is a two variable, non-negative function \(f(x, y) \geq 0 \) such that

1. \(f(x, y) > 0 \) for any \((x, y) \in \Lambda \subset \mathbb{R}^2\);
2. \(\int \int_{(x,y) \in \Lambda} f(x, y) dx dy = 1 \);
3. \(\mathbb{P}(X, Y) \in [a, b] \times [c, d]) = \int_a^b \int_c^d f(x, y) dx dy \) for any interval \([a, b] \times [c, d] \in \mathbb{R}^2\).

Then, \((X, Y)\) is called a continuous random vector, \(f(x, y) \) is called the probability density function of \((X, Y)\), and \(\Lambda \) is called the range space of \((X, Y)\).

Remark: For a continuous rv or rv’s, usually a question only
describes the density function and range space. The sample space is not given.

Example: A continuous rv’s \((X, Y)\) has range space \(\Lambda = \{0 < x < 1, 0 < y < 1\}\) and density function as follows:

\[
f(x, y) = \begin{cases}
4xy & \text{if } (x, y) \in \Lambda \\
0 & \text{if } (x, y) \notin \Lambda
\end{cases}
\]

Find the probability \(\mathbb{P}(X \leq 1/2, Y < 1/4)\).

\[
\mathbb{P}(X \leq 1/2, Y < 1/4) = \int_0^{1/2} \int_0^{1/4} 4xy \, dx \, dy = \frac{1}{64}
\]
Example: A continuous rv’s \((X, Y)\) has range space \(\Lambda = \{0 < x, 0 < y\}\) and density function as follows:

\[
f(x, y) = \begin{cases}
 ye^{-xy-y} & \text{if } (x, y) \in \Lambda \\
 0 & \text{if } (x, y) \notin \Lambda
\end{cases}
\]

Find the probability \(P(X \leq 1, Y < 2)\).

Solution:

\[
P(X \leq 1, Y < 2) = \int_0^1 \int_0^2 ye^{-xy-y}dxdy
\]

\[
= \int_0^2 \left\{ \int_0^1 e^{-xy}dx \right\} ye^{-y}dy = \int_0^2 \left\{ \frac{e^{-xy}}{-y} \right\}_0^1 ye^{-y}dy
\]

\[
= \int_0^2 \left\{ \frac{-e^{-y}}{y} + \frac{1}{y} \right\} ye^{-y}dy = \int_0^2 \left\{ -e^{-2y} + e^{-y} \right\}dy
\]

\[
= \frac{e^{-2y}}{2} \bigg|_0^2 - e^{-y} \bigg|_0^2 = 0.5 + 0.5e^{-4} - e^{-2}
\]

Similar to the case of single rv, we can define the cumulative distribution function of rv’s.

Definition: For a given rv’s \((X, Y)\), define

\[
F(x, y) = P(X \leq x, Y \leq y)
\]

then, \(F(x, y)\) is called the joint cumulative distribution function of \(X\) and \(Y\). According to \((X, Y)\) is discrete or continuous, we have

\[
F(x, y) = \sum_{u \leq x} \sum_{v \leq y} f(u, v)
\]

or

\[
F(x, y) = \int_{-\infty}^x \int_{-\infty}^y f(u, v)dudv.
\]
The density function

\[f(x, y) = \frac{\partial^2}{\partial x \partial y} F(x, y) \]

Example: Suppose that rv’s \(X\) and \(Y\) vary in accordance with the joint pdf

\[f(x, y) = c(x + y) \quad 0 < x < y < 1 \]

Find \(c\).

Solution: Since

\[
1 = \mathbb{P}(\Omega) = \int_0^1 \left[\int_0^y c(x + y) \, dx \right] dy = \int_0^1 \left[c\left(\frac{x^2}{2} + xy\right)\right]_0^y dy = \int_0^1 c\left(\frac{y^2}{2} + y^2\right) dy = \left[c\frac{y^3}{6} \right]_0^1 = \frac{c}{2},
\]

we get \(c = 2\).