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Abstract

We introduce a new class of solutions to nonlinear forward-looking models called near-
rational sunspot equilibria (NRSE). NRSE are natural nonlinear extensions of the usual sunspot
equilibria associated with the linearized version of the economy, and are near-rational in that
agents use the optimal linear forecasting model when forming expectations. Generic results for
existence and stability under learning are established. NRSE in indeterminate nonlinear mod-
els are found to be stable under learning provided that the corresponding linearized model’s
minimal state variable solution is E-stable. NRSE are readily computable, and our results make
it possible to use the standard linear tools to search for stable NRSE. We illustrate our results
using a canonical nonlinear New Keynesian model.

1 Introduction

Dynamic macroeconomic models that include forward-looking agents may exhibit equilibrium
multiplicity. In these cases there may exist rational expectations equilibria (REE) that depend
upon extrinsic stochastic processes, that is, a sequence of shocks that influences the economy
only because agents condition expectations on these shocks. Importantly, this dependency is self-
fulfilling: it exists only because agents think it exists. Equilibria that depend upon such extrinsic
shocks are called sunspot equilibria, with the shocks themselves referred to as the sunspots.

The possibility that competitive rational expectations models can have self-fulfilling solutions
driven by extraneous stochastic processes was demonstrated by various authors. Following the
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early literature, which we discuss in Section 2, models with multiple REE have been found in
many areas of applied macroeconomics and finance. For example, Farmer, Benhabib and coauthors
developed an entire research program devoted to explaining business cycle co-movements through
the incorporation of non-convexities into competitive DSGE models and through the analysis of
the sunspot equilibria associated with the linearized versions of these models: see, for example,
Farmer and Guo (1994) and Benhabib and Farmer (1994). Separately, a literature emerged warning
of the dangers of sunspot equilibria resulting from poorly designed policy in DSGE models with
price frictions, e.g. Clarida, Gali, and Gertler (2000) argued that passive monetary policy pre-1980
may have allowed for self-fulfilling sunspot fluctuations. Simultaneously, Sims (2001) provided a
convenient took-kit to characterize the set of sunspot solutions in indeterminate linear models, and
Lubik and Schorfheide (2004) developed techniques for testing for indeterminacy econometrically.

More recently, following the Great Recession, discussions of neo-Fisherian policies have raised
the issues of indeterminacy and equilibrium selection in New Keynesian models when policy fol-
lows an interest-rate peg; see Cochrane (2017), Evans and McGough (2018b), Evans and McGough
(2018a) and Garcia-Schmidt and Woodford (2019). The multiplicity generated by the zero lower
bound to interest rates, emphasized by Benhabib, Schmitt-Grohe, and Uribe (2001), has also re-
cently highlighted the potential relevance of sunspot equilibria, e.g. Mertens and Ravn (2014).
In finance a recent strand of research relating to excess volatility due to asset price bubbles has
stressed the possibility of stationary asset price bubbles driven by an extraneous exogenous pro-
cess, which are in effect sunspots: see Martin and Ventura (2012), Gali (2014) and Miao, Shen,
and Wang (2019). The possibility of multiplicity is also well-known in several other prominent
areas, including labor search and monetary search models.1

While the issue of multiple equilibria in macroeconomics is salient and acute, reactions vary
considerably. Multiplicity is viewed by some as awkward because it begs the issue of equilibrium
selection. The implications of a model with indeterminacy, e.g. policy implications, may then
depend critically on which equilibria are selected. Sunspot equilibria have an additional dimension
of indeterminacy based on the selection of the exogenous sunspot variable itself.

One possible reaction to indeterminacy is to treat models with multiple equilibria as defec-
tive and thus to impose assumptions on models that shut down any multiplicity. However, since
multiplicities frequently arise from market distortions that are plausibly present in the economy,
we think that a better approach is to embrace multiplicity when it arises naturally and to study its
implications for the behavior of the economy and for policy. At the same time, we believe sig-
nificant discipline can and should be imposed following the adaptive learning literature. Stability
of REE under least-squares learning provides a natural equilibrium-selection mechanism: see, for
example, Bray and Savin (1986), Marcet and Sargent (1989), Evans (1985), Evans (1989) and
Evans and Honkapohja (2001). Under the adaptive learning approach agents estimate and update
statistical models for forecasting key variables relevant to their decision-making. When the model
is determinate, for a wide range of models, though not in all cases, the unique nonexplosive REE

1Sunspots may appear to be closely related to “sentiments.” In the literature sentiments has a range of interpreta-
tions that depend on the precise model under consideration. See, for example, Benhabib, Wang, and Wen (2015) and
Xiong and Yan (2010).
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will be stable under learning.2 This naturally raises the question of whether sunspot equilibria can
be stable under adaptive learning in the indeterminate case.

Woodford (1990) showed, for a nonlinear overlapping generations model with an indeterminate
steady state, that if agents thought certain finite state Markov sunspot processes might be relevant
for forecasting, these agents would learn that the sunspots are relevant: Woodford showed that
under real-time adaptive learning the economy converged, in an appropriate sense, to the associated
sunspot equilibrium. However, there are other models in which sunspot equilibria are not stable
under learning; thus stability under learning of sunspot equilibria cannot be, in general, assumed,
and techniques are needed for the assessment of their stability in particular models.

The stability under learning of an REE is generally governed by the E-stability principle em-
phasized in Evans and Honkapohja (2001). In many cases these stability conditions are straight-
forward to compute, and stability under learning then provides a selection criterion among the set
of REE. Furthermore the set of stable sunspot equilibria, when they exist, will of course satisfy
specific time-series properties.3 This procedure to equilibrium selection thus provides consider-
able discipline in the cases of indeterminate models: (i) attention is restricted to sunspot equilibria
that agents could plausibly coordinate on using an adaptive learning process, and (ii) these sunspot
equilibria will satisfy autocorrelation restrictions – and in the multivariate case cross-equation re-
strictions. As with REE in the determinate case, under indeterminacy stable sunspot equilibria
impose strong conditions on the data.

E-stability, together with its implication for adaptive learning, has played an important role
recently in several strands of applied work. Milani (2007) and Slobodyan and Wouters (2012)
have found that the implementation of adaptive learning in New Keynesians improves empirical
fit. Adam, Marcet, and Nicolini (2016) show that adaptive learning models in finance can be used
to explain a number of financial-market puzzles. Benhabib, Evans, and Honkapohja (2014) argue
that with strong pessimistic expectations shocks, adaptive learning can lead to unstable dynam-
ics, which require aggressive monetary and fiscal policy to avoid. Evans and McGough (2018b)
criticize the neo-Fisherian view by exposing the instability under adaptive learning of interest-rate
pegs. For new-Keynesian models more generally, the importance of adaptive learning for monetary
policy has been emphasized in the survey paper by Eusepi and Preston (2018).

The current paper advances this literature in several key ways. Although Woodford (1990)
and Evans and Honkapohja (1994) used a univariate nonlinear set-up satisfied by simple overlap-
ping generations models, most of the results for stability under learning in stochastic multivariate
settings are for linearized models. In addition, for technical reasons, Woodford (1990), Evans
and Honkapohja (1994) and Evans and Honkapohja (2003) focused on nonlinear models without
intrinsic exogenous shocks and with sunspots taking the form of a 2-state Markov process. How-
ever, most DSGE models include continuously measured AR(1) or VAR(1) exogenous stochastic
shocks, and the sunspot equilibria usually considered in these models are driven by variables with

2See, for example, Bullard and Mitra (2002) and Bullard and Eusepi (2014).
3The E-stability Principle in effect identifies E-stability and stability under adaptive learning. Throughout the paper

we will frequently use the generic term “stability” to refer to both notions.
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continuous support. Meanwhile, the current trend in macroeconomic research for determinate
models is to retain the nonlinear features of DSGE models and to study approximations more ac-
curate than first order to the REE. In the approach of this paper, we retain the economic model’s
nonlinear structure and allow for continuously measured exogenous stochastic shocks. After pre-
senting the theory we illustrate the power of our techniques by examining monetary policy in a
simple, non-linear New-Keynesian model.

The principal goal of our paper is to point the way to how one can model and obtain results on
adaptive learning in nonlinear models in which indeterminacy is present and agents may be coordi-
nating on a continuously valued AR(1) or VAR(1) stationary sunspot variable. The key assumption
required for our analysis is that agents form expectations using a linear forecasting equation.4 We
regard this as plausible: linear models comprise the benchmark forecasting technique used in ap-
plied econometrics, and so it seems natural to impose this restriction on the forecasting models
used by our boundedly rational agents. Given this assumption we can then study near-rational
sunspot equilibria, i.e. stochastic processes generated in our nonlinear model by agents using a
linear forecast rule that depends on an observed sunspot variable. These solutions are equilibria in
the sense that the forecast coefficients used by each agent are optimal provided that all other agents
are using the same forecast coefficients.

The paper is organized as followed. Following discussion in Section 2 of existing issues and
open questions, Section 3 provides a complete analysis of a generic forward-looking univariate
nonlinear model, in which we obtain conditions for existence and stability under learning of near-
rational sunspot equilibria (NRSE). The model is tractable: generic existence and E-stability con-
ditions for NRSEs are easily checked, and we show that NRSEs resolve the outstanding issues
listed in Section 2. In doing so we show how to link the properties of NRSEs to simple proper-
ties of the linearized model, and we illustrate the results for a standard overlapping generations
model. In Section 4 we then show how it is possible to extend our procedure to handle implicit
formulations, intrinsic stochastic shocks, multivariate settings, and models with lags. This Section
thus strongly suggests that our approach has a range of application sufficient to include most cur-
rent nonlinear DSGE models. Finally, in Section 5 we illustrate the generality of our approach by
showing the existence of stable NRSE in a canonical bivariate nonlinear New Keynesian model.
We conclude that our approach provides the tools for analyzing and assessing sunspot equilibria in
modern macroeconomic settings.

2 Existing Results, Questions and Issues

The existence of rational sunspot equilibria in macroeconomic environments was first established
by Shell (1977), Azariadis (1981), Cass and Shell (1983), Azariadis and Guesnerie (1986) and
Guesnerie (1986).5 These existence results were originally obtained in simple stylized models,

4The assumption that agents use a linear forecasting model is not as restrictive as it appears: the forecasting model
is assumed to be linear in its parameters, but in principle it could condition on nonlinear functions of observables.

5See the extensive survey in Guesnerie and Woodford (1992).
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such as the overlapping generations model of money, and the sunspot drivers were typically taken
to be finite-state Markov processes; but generic results providing criteria for local equilibrium
uniqueness have also been established. Blanchard and Kahn (1980) present a practical technique
for determining whether a linear model is “determinate,” i.e. has a unique non-explosive equilib-
rium, or “indeterminate,” i.e. has multiple such solutions including sunspot equilibria. Woodford
(1986) shows that local equilibrium uniqueness in a nonlinear model is implied by uniqueness in
the linearized model. As emphasized in the introduction, subsequent research has established the
possibility of sunspot equilibria in a wide range of DSGE models.

Before proceeding to our formal analysis, we situate our approach within the context of exist-
ing results and the apparent impediments to the general analysis of sunspot equilibria in nonlinear
models. As foreshadowed in the Introduction, there is a tension in the literature between results
obtained in linear versus nonlinear models, and this has led to several issues, including concerns
about the plausibility of sunspot equilibria in linear models and the lack of general techniques in
nonlinear models. We will show that our approach resolves these concerns, and in doing so we
are able to link our findings to known results on existence and stability of sunspot equilibria in lin-
earized models. A particularly important finding is that appropriate analysis of a linearized model
provides useful information on existence and stability of the associated NRSEs in the correspond-
ing nonlinear models. Because the analysis of linearized models is relatively straightforward, our
approach provides a powerful tool for assessing the existence of stable NRSE in nonlinear models.

The methods of Blanchard and Kahn (1980) and Sims (2001) can be used to establish the exis-
tence of sunspot equilibria in linear models. Importantly, these existence results are constructive:
the equilibria present in an easily analyzed VAR form; and, the extrinsic processes – the sunspots –
characterizing the sunspot equilibria in these linear models have (or, at least, can have) continuous
support, and are thus more general than the finite-state equilibria examined in Woodford (1990) and
Evans and Honkapohja (1994). Some general results establishing the existence of sunspot equilib-
ria in nonlinear models are also available: Woodford (1986) showed that equilibrium multiplicity
in the linearized model implies local equilibrium multiplicity in the nonlinear model. Unlike their
linearized counterparts, however, the sunspot equilibria associated with the nonlinear models are
not easily analyzed: the existence result relies on an implicit function theorem and is not construc-
tive in nature; indeed, given a nonlinear model, there is no general technique for establishing a
closed-form representation, or even a numerical approximation of an equilibrium associated to a
sunspot with continuous support.

Subsequent research on the stability under learning of constructible sunspot equilibria asso-
ciated with specific linearized models has obtained varying results. While certain linear(ized)
models are known to have stable sunspot equilibria, Evans and Honkapohja (2001) showed that
the sunspot equilibria associated with the model examined by Farmer and Guo (1994), at least for
the particular calibration used, were not stable under learning. Evans and McGough (2005a) and
Duffy and Xiao (2007) extended this instability result to a host of non-convex RBC-type models.

Stability in linear models also depends upon the stochastic properties of the sunspot process
associated with the equilibrium. For example, in a model previously thought to have no stable
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sunspot equilibria, Evans and McGough (2005c) found that the equilibria may be stable provided
that the associated sunspot process exhibited the appropriate serial correlation, known as the “res-
onance frequency.” Using this insight, Evans and McGough (2005b) established the existence of
stable sunspot equilibria in a variety of New Keynesian specifications.

This research on sunspot equilibria and their stability under learning has raised a number of
concerns, including three important issues we catalog here.

1. No nonlinear equilibrium recursions. The challenge of constructing and analyzing contin-
uous support sunspot equilibria in nonlinear models is problematic not only for the modeler,
but also (indeed, even more so) for the model’s agents. If we, as theoretical economists, are
unable to recursively represent a particular equilibrium and thereby capture the conditional
distributions of the endogenous variables, how then do we imagine agents making optimal
forecasts? And even if we wish to adopt a learning perspective, what forecasting model do
we provide our agents?

2. The knife-edge of resonance. The discovery of resonance frequency sunspots has greatly
expanded the literature’s catalog of models exhibiting stable sunspot equilibria; however,
some researchers have questioned reliance on the existence of extrinsic processes meeting
the knife-edge resonance frequency condition.

3. No general stability results. Woodford’s stability result has been extended to the gen-
eral univariate, forward-looking case by Evans and Honkapohja (2003), provided that the
sunspots are finite state. No stability results are available for equilibria in nonlinear models
associated with sunspots that have continuous support. In particular, it is not known whether
sunspot stability in a linearized model is, in general, even related to stability of sunspot
equilibria in the nonlinear model.

In this paper, we develop a new equilibrium concept designed to simultaneously address the
above questions and concerns. We take our cue from the literature on bounded rationality and
embrace the possibility that our agents have insufficient information and/or cognitive capacity to
uncover the economy’s endogenous distributions. Instead, we assume agents use simple, linear
forecasting models when forming expectations. If the linear forecasting model used by agents
is optimal among all similarly specified linear models then the economy is in a near-rational
equilibrium. If the linear model includes a conditional dependency upon a sunspot process then
the economy is in a near-rational sunspot equilibrium.

While in a near-rational equilibrium the forecasting model used by agents is optimal within a
restricted class, it is misspecified in the sense that superior forecasting models exist. How easy
it would be for agents to detect this misspecification depends the specific circumstances. If, as is
commonly assumed, the economic model’s shocks have small support, then the linear forecasting
models used by agents will be quite accurate; consequently, detecting the misspecification would
require both considerable sophistication and a large sample size. Also, as noted above, in gen-
eral the forecasting models need only be linear in parameters: our methods would allow agents to
regress on nonlinear functions of observables, in particular on polynomial terms that might bet-
ter approximate the nonlinear dynamics of the data-generating process implied by agents’ beliefs.
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While our equilibrium concept extends naturally to accommodate forecast models that are non-
linear in observables, for simplicity and tractability we do not pursue their analysis here. Finally,
we note that the well-known trade-off between fit and precision may in any event incline agents to
prefer parsimonious specifications for their forecasting models.

To show how the NRSE approach can address the enumerated concerns we first study in de-
tail a univariate nonlinear model in which all three issues arise. Within this set-up, we establish
in Section 3 a generic existence result: if the linearized model is indeterminate then NRSE ex-
ist. Importantly, while the existence result itself relies on a bifurcation argument and is thus not
constructive in nature, NRSE are identified as fixed points of finite dimensional functions and
thus easily computed; furthermore the associated equilibrium process has a computable, recursive
structure and so is amenable to detailed analysis. This addresses point one.

The sunspot processes associated with NRSE are found to be natural generalizations of the
linearized model’s resonance frequency sunspots: the processes are serially correlated, with the
required correlation converging to the associated resonance frequency as the model’s curvature
(nonlinearity) vanishes. However, for given curvature there is an open set of serial correlations
corresponding to NRSEs. We conclude that the knife-edge resonance frequency condition is an
artifact of the linearization, and point two is addressed.

The linear forecasting structure of an NRSE makes it amenable to stability analysis: sim-
ply provide agents with a linear perceived law of motion that precisely includes the conditioning
variables in the NRSE. We find that if the linearized model is indeterminate and the steady state
solution is stable under learning, then the NRSE are also stable under learning. In Evans and Mc-
Gough (2011) we showed that, in this linearized model, indeterminacy together with stability of
the steady state solution is equivalent to the existence of stable sunspot equilibria. This provides a
link between the linear and nonlinear models: stable sunspot equilibria in the linear model imply
stable NRSE in the nonlinear model. This addresses point three.

In summary, for a univariate forward-looking model we establish that all three concerns are ad-
dressed using the NRSE approach. Of course, realistic microfounded general equilibrium macroe-
conomic models go beyond the framework of Section 3 in several significant ways, raising the
question of whether our results will generalize to applied DSGE models. To study this issue, we
establish in Section 4 that our results appear to be quite general.

It is not our intention to develop our results within the broadest possible framework in part
because of the tediousness of the exercise, and also in part because it not clear what the most
useful framework is for applied work where tractability is critical. Instead, we extend our results
along different dimensions separately, thus providing an architecture for future extensions should
they become needed.

In particular, in Section 4 we provide results establishing the existence of NRSE when the
endogenous variable is implicitly defined, when the model has fundamental stochasticity, and when
the model is multivariate – each of these results is demonstrated using the same proof strategy as
the non-stochastic, univariate case, but each also holds its own special nuances. The remaining
natural extension – the inclusion of a lagged endogenous variable – involves a significant technical
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barrier, so we consider this case numerically.

Our results suggest that there is a broader principle at work that governs whether stable NRSE
will arise. When a linear model is determinate, the unique nonexplosive solution takes the form
of a minimal state variable (MSV) solution, and MSV solutions also exist for linear models that
are indeterminate.6 Taken together, the theoretical results obtained in Sections 3 and 4 can be
summarized as follows: if the linearized model is indeterminate and has an MSV solution that
is stable under learning, then (generically) there exist NRSE that are stable under learning. We
call this the MSV Principle, and we conjecture that it applies quite generally. This principle is
important because it is straightforward both to check for indeterminacy of a linear model and to
check for E-stability of an MSV solution.

In Section 5 we illustrate the MSV principle using a standard microfounded nonlinear bivariate
New Keynesian model with a forward-looking interest-rate rule. Because the model is both multi-
variate and implicit, and because of the specific form of the interest-rate rule, the model does not fit
into any of the specific extensions of Section 4; however, appealing to the MSV principle, we first
examine the linearized model. As shown in Evans and McGough (2005b), we may pick policy pa-
rameters that generate an indeterminate steady state with an MSV solution of the linearized model
that is E-stable and thus stable under learning. We may then construct a suitable sunspot variable
and study numerically whether under learning there is convergence to an NRSE. The numerical
findings indicate that there is indeed such convergence, consistent with the MSV principle. Our
results confirm that the techniques provided in this paper make it possible to use standard tools
for assessing indeterminacy and E-stability in linear models to assess the existence of learnable
near-rational solutions for nonlinear models, in which economic fluctuations are driven in part by
extraneous variables. These results appear scalable, in the sense that they could be extended and
applied to larger computational macro models.

3 Near-rational Sunspot Equilibria (NRSE)

We start the formal analysis by developing our ideas in the simplest possible framework: a uni-
variate nonlinear one-step-ahead forward-looking model with no exogenous shocks. This simple
framework, consistent with the overlapping generations model of money, was used in the early the-
oretical literature to establish conditions for the existence of finite-state Markov sunspot equilibria
and to study their stability under adaptive learning, e.g. Azariadis and Guesnerie (1986), Guesnerie
(1986), Woodford (1990), Evans and Honkapohja (1994) and Evans and Honkapohja (2003). In
revisiting this framework we are able to establish our main results: when the steady state is inde-
terminate, so that sunspot equilibria must exist, NRSE that depend on a stationary AR(1) sunspot
process, must also exist; and that when the E-stability condition is also satisfied, which is easily
determined, the NRSE are stable under adaptive learning; and, furthermore, all of the concerns

6We are using MSV in the sense of the primary criterion originally specified by McCallum (1983) for linear RE
models: an MSV solution is one that depends linearly on a set of variables, and which is such that there does not exist
a solution that depends linearly on a strict subset of those variables. See also Evans and Honkapohja (2001).
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described in the preceding Section are readily addressed.

We examine the univariate case with considerable care in order to provide intuition for our
results. Throughout we take as primitive a complete probability space (Ω,µ). Let F : R→ R be
Ck for k ≥ 4, with an isolated fixed point normalized to be zero, i.e. F(0) = 0 and F ′(0) = β 6= 0.
Unless otherwise noted, |β |> 1. The abstract economy is taken as characterized by the following
sequence of reduced-form equations:

yt = E∗t F(yt+1). (1)

Here E∗t denotes the representative agent’s subjective expectation based on their time t forecasting
model of yt+1. Given the specification of E∗, we are interested in solutions {yt} to (1) satisfying
yt ∈ L∞(Ω), and supt ‖yt‖∞ < ∞.

When agents satisfy the rational expectations hypothesis a rational expectations equilibrium
(REE) of the model is any appropriately bounded stochastic process yt satisfying (1) for E∗t =
Et , where Et denotes the true time t conditional expectation.7 By the assumption F(0) = 0, it
follows that yt = 0 is a perfect foresight solution, which, clearly, is an MSV solution. Because we
have assumed |β | > 1, we know from Woodford (1986) that the model is locally indeterminate:
given any open neighborhood V of the origin, there is a non-MSV equilibrium (and in particular
a sunspot equilibrium) with support in V ; however, as noted in Section 2, these sunspot equilibria
are, in general, difficult to characterize or even numerically approximate. Major attractions of the
NRSE approach are that NRSE exist when sunspot equilibria exist and that it is straightforward
to characterize NRSE and to assess their stability under adaptive learning. We begin with some
preliminaries.

3.1 NRSE: Preliminaries

Our construction of near-rational sunspot processes for the nonlinear model (1) is motivated by
the corresponding sunspots in the rational linear model. The linearized model associated to (1) is
given by yt = βE∗t yt+1. We define an REE of this model to be any stationary process yt satisfying
yt = βEtyt+1, and we observe that yt = 0 is the MSV solution. Now let εt be a zero-mean iid
process, and with λ = β−1, set ηt = ληt−1 + εt . Then ηt is stationary provided that |β | > 1.
Further, if ŷt = ηt then Et ŷt+1 = ληt , so that ŷt is a solution to the linearized model. The stochastic
process ηt is usually referred to as a “sunspot” and the solution ŷt = ηt as a sunspot equilibrium;
ŷt is an REE associated with the serially correlated sunspot process ηt . We note that ŷt can be
viewed as the sum of the MSV solution and a sunspot process with appropriate serial correlation.
We conclude with the well-known result that if |β | > 1 then sunspot equilibria exist within the
linearized model.

Returning to the nonlinear model (1) we now define our new equilibrium notion couched in
the language and paradigms of bounded rationality. Similar to rational sunspot equilibria, the

7Our framework thus does not cover the “explosive” bubbles case.
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equilibrium processes we identify will also depend upon extrinsic noise in a self-fulfilling manner:
the dependence exists only if agents believe it exists. Unlike sunspot equilibria, however, the new
equilibria are easily characterized, and amenable to both numerical and analytical examination.

We assume agents form expectations using linear forecasting models; and to impart discipline,
we require in an NRSE that each agent’s forecasting model is optimal among similarly specified
linear models.

Let {εt}t∈Z be an iid process in L∞(Ω) with zero mean and σ2
ε > 0. We assume further that, as

a random variable, εt has compact support. Assume ξ ∈R is such that λ (ξ ) = β−1 +ξ ∈ (−1,1).
It follows that

η
ξ

t = ∑
k≥0

λ (ξ )k
εt−k ∈ L∞(Ω).

The agents’ Perceived Law of Motion (PLM), that is, the linear forecasting model used to form
expectations, is given as

yt = a+bη
ξ

t (2)

η
ξ

t = λ (ξ )η
ξ

t−1 + εt . (3)

Observe that since η
ξ

t ∈ L∞(Ω), we have that for any continuous f : R→ R, f ◦η
ξ

t (·) ∈ L∞(Ω);
further, since η

ξ

t is stationary, it follows that for any s and t,∫
Ω

f ◦η
ξ

t (ω)dµ(ω) =
∫

Ω

f ◦η
ξ
s (ω)dµ(ω) =

∫
Ω

f
(

η
ξ (ω)

)
dµ(ω),

which exploits the time-invariant nature of the distribution against which the integral is taken.
We will use this and similar observations repeatedly in the computations below, without further
comment.

The PLM specifies E∗, yielding the following Actual Law of Motion (ALM):

yt =
∫

Ω

F(a+bλ (ξ )η
ξ

t +bεt+1(ω))dµ(ω)≡ F̂(a,b,ξ ,ηξ

t ). (4)

The ALM is the stochastic process (or “data generating process”) that arises when agents form
expectations based on a specified PLM.8

We may define the T-map T (·, ·,ξ ) : R2→ R2 as the least squares projection of the ALM onto
the span of {1,ηξ

t }:(
a

b

)
T=T (a,b,ξ )
−−−−−−−−→

 ∫
Ω

F̂(a,b,ξ ,ηξ (ω))dµ(ω)
1

σ2
ηξ

∫
Ω

ηξ (ω)F̂(a,b,ξ ,ηξ (ω))dµ(ω)

≡ (T a(a,b,ξ )
T b(a,b,ξ )

)
, (5)

8The properties of F̂ , including its differentiability in a and b, as well as the properties of the many related functions,
such as the various T-maps (e.g. equation (5)) are discussed in the Appendix and derived in the On-line Appendix.
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where
σ

2
ηξ =

∫
Ω

(
η

ξ (ω)
)2

dµ(ω).

Observe that T (0,0,ξ ) = (0,0)′.

Definition (NRSE). A non-trivial fixed point
(
ā, b̄
)

of the T-map, i.e. with b̄ 6= 0, is a near-rational
sunspot equilibrium.

This definition is natural because T (ā, b̄,ξ ) =
(
ā, b̄,ξ

)
implies that in the equilibrium in which

all agents use a linear forecast rule with parameters (ā, b̄), any other choice of coefficients (a,b)
would lead to forecasts with a larger mean square forecast error.

The NRSE concept can be viewed as a specific type of Restricted Perceptions Equilibrium
(RPE). In an RPE agents use the optimal forecasting model within a pre-specified class. If this
class does not include a forecasting model consistent with an REE then the RPE is not a rational
expectations equilibrium. The RPE approach is quite general in the sense that it can be applied
to PLMs characterized by omitted variables, omitted lags or misspecified functional forms: for
its relation to adaptive learning see Evans and Honkapohja (2001) and for a general survey see
Branch (2006).9 In the current context the class of models is restricted to linear forecasting rules
depending on a serially correlated sunspot.

We note that other authors have focused on the implications of linear forecasts in a nonlinear
world. Hommes and Sorger (1998) consider a non-stochastic non-linear cobweb model in which
agents use (linear) AR(1) models for forecasting, and require, in equilibrium, that the autocorrel-
ogram of forecast models match the implied data. Hommes, Sorger, and Wagener (2013) extend
these results to a stochastic environment by introducing white-noise shocks into the model. Branch
and McGough (2005) demonstrate the existence of RPE in a non-linear forward model. The con-
tribution of our paper is to extend the tractable analysis of self-fulfilling equilibrium dynamics
to general nonlinear macroeconomic environments by leveraging adaptive learning and the RPE
approach.

3.2 Illustrative special case: the simple cubic

The general examination of existence and stability of NRSE even in the univariate case requires a
thorough and somewhat tedious two-dimensional bifurcation analysis. Before tackling the generic
specification we provide intuition by restricting attention to the case in which F is cubic and sym-
metric about the origin:

F(y) = βy+φy3. (6)

We also assume here that µε
3 = µ

ηξ

3 = 0, where µx
n is the nth-moment of x for n > 2. All of these

assumptions will be relaxed in the general case examined below in Section 3.3.
9Hommes and Zhu (2014) show the possibility of multiple RPE arising when dynamics are underparamerized.

Branch, McGough, and Zhu (2017) find that stable “sunspot RPE” exist in linear models for which no sunspot REE
exist.
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Recall λ (ξ )= β−1+ξ . Assuming that agents use (2)-(3), a straightforward computation yields
the following formulae for the T-map:

T a (a,b,ξ ) = βa+φa3 +3φσ
2
ηξ ab2

T b (a,b,ξ ) = βλ (ξ )b+3φλ (ξ )a2b+φθ(ξ )b3,where

θ(ξ ) =
λ (ξ )3µ

ηξ

4
σ2

ηξ

+3λ (ξ )σ2
ε .

Fixed points of the T-map correspond either to steady-state MSV solutions or to NRSE. The solu-
tion to T a = a is given by the line a = 0 and the (possibly empty) set Ea, and the solution T b = b
is given by the line b = 0 and the (possibly empty) set Eb, where

Ea :
a2

φ−1 (1−β )
+

b2(
3φσ2

ηξ

)−1
(1−β )

= 1

Eb :
a2

−(3φλ (ξ ))−1
βξ

+
b2

−(φθ(ξ ))−1
βξ

= 1.

Observing that for each of these equations the denominators have the same sign, it follows that
when Ea and Eb are nonempty they are ellipses.

From the above it can be seen that the set of fixed points always includes the MSV solution
(0,0), and, when they exist, also includes the MSV solutions

(
±
√

φ−1 (1−β ),0
)

and/or the

NRSE given by
(

0,±
√
−(φθ(ξ ))−1

βξ

)
. Additional solutions in which both components are

nonzero may also exist. Recalling that the sunspot η is stationary when |β |> 1 and ξ is sufficiently
small, and observing that the perturbation parameter ξ may be chosen to be either positive or
negative, we conclude that |β | > 1 is in fact sufficient to guarantee existence of NRSE in this
model. Importantly, there is an open set of “resonance frequencies” near β−1 for which NRSE
exist: the “knife-edge of resonance” is indeed an artifact of the linearization. Of course our work
allows us to conclude much more. We know exactly what the associated sunspots look like, and
given the map F , we know how to compute the NRSE.

The T-maps defined above also allow us to address stability under learning. The precise con-
nection will be made in Section 3.4 below. Here we simply note that the learning dynamics are
characterized by the following differential equation system:

γ̇ = T (γ)− γ, (7)

where γ = (a,b)′ and T =
(
T a,T b)′. It is worth observing that NRSE correspond to fixed points of

this dynamic system, and this correspondence, together with bifurcation analysis, will be exploited
to establish both existence and stability in the general case. To determine local stability of the
NRSE for the case at hand we compute the eigenvalues of DT evaluated at the corresponding fixed
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points
(

0,±
√
−(φθ(ξ ))−1

βξ

)
. An elementary calculation shows that the eigenvalues are given

by
β −1−3βξ σ

2
ηξ θ(ξ )−1 and −2βξ .

Since these eigenvalues are necessarily real, a sufficient condition for stability is that they be nega-
tive. Noting that for ξ near zero the quantity σ2

ηξ
θ(ξ )−1 is bounded and does not change sign, we

see that for β < 1 the first term is negative for any small perturbation ξ . It follows that for small
positive ξ , both eigenvalues are negative when β < 1. Finally, recalling that |β |> 1 is needed for
existence of NRSE, we conclude that β < −1 is necessary and sufficient for existence of stable
NRSE.

This stability result vindicates the MSV principle within the context of this simple cubic model.
To see the connection, note that the linearized version of this model coincides with the linear
model yt = βE∗t yt+1 considered in Section 3.1. In the linearized model, the MSV solution is given
by yt = 0. Assessment of stability of this solution can be conducted by assuming agents use the
PLM yt = a when forming forecasts. The associated T-map is easily seen to be given by a→ βa,

-2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 1. Cubic model with β <−1. Stable NRSE corresponding to
fixed points with a = 0,b 6= 0.

and the learning dynamics are characterized by ȧ = (β −1)a. This yields the well-known result
that β < 1 guarantees stability of the MSV solution in the linearized model. Observing that the
linearized model is indeterminate when |β | > 1, it follows that, according to the MSV principle,
stable NRSE should exist in the cubic model when β < −1, which is precisely what we have
established.
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Global dynamics can be illustrated numerically. Figure 1 provides an example when β < −1.
We observe five fixed points including, as expected, two stable NRSE. The remaining three fixed
points, which all lie on the horizontal axis, correspond to fixed points of the cubic F , and thus to
distinct perfect foresight steady-state equilibria of the cubic model. As is evident from the figure,
these equilibria are not stable. Their instability in part reflects the inclusion of the sunspot variable
in the PLM. In fact, if agents used the PLM yt = a then the steady state yt = 0 is stable, as is
evidenced in the figure by restricting attention to the dynamics on the horizontal axis.

-2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

Figure 2. Cubic model with β > 1. Stable perfect foresight steady states
corresponding to fixed points with a 6= 0,b = 0.

Figure 2 illustrates the case β > 1. As expected, neither the fixed points corresponding to
NRSE, nor the steady state yt = 0, are stable. However, the two non-zero perfect foresight steady-
state equilibria are stable. This suggests the possibility of a more general phenomenon: in complex
economic environments, agents may learn to coordinate on equilibria that are far from their initial
priors (and perhaps not known to the economic modelers/policymakers).

3.3 Existence of NRSE

While the simple cubic of the preceding section conveys the key insights, it is of course important
to show how these central results apply to the general nonlinear model (1). An economic example
covered by this setup is given in Section 3.7.
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The following is our main existence result, and is stated to emphasize the open set of resonance
frequencies consistent with NRSE.

Theorem 1 (Existence of NRSE) Assume that |β | > 1 and that either of the following two regu-
larity conditions are met:

Condition 1.1 F ′′(0) 6= 0 and µ
ε
3 6= 0

Condition 1.2 BC ≡ F ′′′(0)

(
3σ2

ε

β
+

µ
ηξ

4
β 3σ2

ηξ

)
+

(
3(F ′′(0))2

(1−β )β

)
σ2

ηξ
6= 0

Then NRSE exist: there exists a neighborhood V of β−1 such that given any open set W ⊂ V
containing β−1 there exist λ (ξ ) ∈W and (a,b) ∈ R2 with b 6= 0 satisfying T (a,b,ξ ) = (a,b)′.

The proof of Theorem 1 proceeds by conducting bifurcation analysis on the system (7). The
argument is discussed in the Section A.2 of the Appendix, and the detailed proof of the result, as
well as the proofs of all results in this paper, is contained in the On-line Appendix.

Theorem 1 generically addresses the first two concerns raised in the introduction and identified
as motivating this effort. We now know when NRSE exist and what they look like. Further, we
know that the resonance frequency restriction is an artifact of the linearization procedure: in fact,
the sunspot’s serial correlation acts a bifurcation parameter in the general case. Finally, and perhaps
most interestingly, existence of NRSE obtains if and only if rational sunspot equilibria exist. This
observation is particularly important from a practical perspective: assessing whether a given model
may exhibit NRSE requires no new analytic tools.

Having established the generic existence of NRSE in the case |β | > 1, we now turn to the
question of stability under learning.

3.4 Stability of NRSE

The existence of NRSE does not necessarily imply their importance. Can they arise in practice?
This been a recurring issue in the sunspot literature and it is important to address it for NRSE. We
follow the most widely used approach to assess the plausibility of sunspot equilibria by looking at
whether they can emerge adaptively through statistical learning procedures. As is standard in the
literature and natural given our assumptions regarding the forecasting behavior of agents, we have
agents update their beliefs over time using recursive least squares: see Marcet and Sargent (1989)
and Evans and Honkapohja (2001).

Let γt = (at ,bt)
′ represent agents’ beliefs conditional on information dated t and earlier. These
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beliefs evolve according to the following recursions:

γt = γt−1 +ψtR−1
t

(
1

η
ξ

t

)(
F̂
(

at−1,bt−1,ξ ,η
ξ

t

)
− γ
′
t−1

(
1

η
ξ

t

))
(8)

Rt = Rt−1 +ψt

((
1

η
ξ

t

)(
1 η

ξ

t

)
−Rt−1

)
,

where Rt captures the sample second-moments matrix. Here ψt is referred to as the “gain” se-
quence and under least-squares learning we set ψt = t−1. In many cases, including empirical
applications, a constant gain 0 < ψt = ψ < 1 is used.

The asymptotic behavior of this system may be analyzed by considering the differential equa-
tion system

γ̇ = R−1
∫

Ω

((
1

ηξ (ω)

)
F̂
(

a,b,ξ ,ηξ (ω
))

dµ(ω)−R−1Mγ

Ṙ = M−R,

where

M =
∫

Ω

((
1

ηξ (ω)

)(
1 ηξ (ω)

))
dµ(ω)

is the a.e. limit of Rt by the law of large numbers. It can be shown that the stability of this
system at a given rest point (γ∗,M) is determined by the stability of the system (7), with the T-
map given by equation (5). Since γ∗ ≡ (a∗,b∗)′ corresponds to a fixed point of the T-map, it
identifies an NRSE when b∗ 6= 0. The theory of stochastic recursive algorithms tells us that if this
fixed point is a Lyapunov stable rest point of (7), then an appropriately modified version of (8)
will converge to it:10 the associated NRSE is stable under learning. We note that the ordinary
differential equation (ode) given by (7) corresponds to the usual E-stability differential equation,
and thus, in the remainder of the paper, we will rely on E-stability when assessing the stability
NRSE under learning.

If the model is linear then, as noted above, NRSE correspond to resonance frequency sunspot
equilibria: λ = β−1. Assuming agents know λ , it follows that E∗t yt+1 = a+ bληt , so that the
actual law of motion is given by

yt = βa+bηt .

We find that T (a,b) = (βa,b)′, so that the eigenvalues of DT are β and 1. We conclude that for
the linear model sunspot stability obtains provided that β < −1.11 An additional observation is
warranted: if agents do not condition on the sunspot then the map from PLM to ALM is given

10To guarantee almost sure convergence, learning algorithms may, in some cases, require a projection facility: see
Evans and Honkapohja (2001) for details.

11It is standard, in the stability analysis of sunspot equilibria associated to linear models, for the T-map to have at
least one unit eigenvalue. This neutral stability reflects the (artificial) fact that, in a linear environment, any scalar
multiple of a sunspot is again a sunspot. For a discussion, see Evans and McGough (2005a).
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by a→ βa, so that the MSV solution is also E-stable exactly when β < −1. It is thus natural to
view the sunspot equilibria as inheriting the stability of the MSV solution. This observation is an
instance of the MSV principle in the linearized case.

Theorem 2 (Stability of NRSE) Assume that β < −1 and that either condition 1.1 holds or that
condition 1.2 holds with BC < 0. Then there exist NRSE that are stable under adaptive learning.

When β < −1, the coefficients of σ2
ηξ

and F ′′′(0), in the expression BC , are negative. This
observation leads to the following corollary:

Corollary 1 (Simple conditions for presence of stable NRSE) If β <−1 and either F ′′(0) 6= 0 or
F ′′′(0)> 0 then stable NRSE exist.

This result should be understood to mean that if the conditions of the corollary are met then stable
NRSE exist for suitable choices of sunspot processes. More specifically, if F ′′′(0) > 0 then Con-
dition 2 is met for any sunspot process with ξ near and on the appropriate side of β−1, while if
F ′′(0) 6= 0 then Condition 1 will be met for sunspots with ξ near and on the appropriate side of
β−1 and µε

3 6= 0.

Returning now to the case of the simple cubic in Section 3.2, note that F ′′(0) = 0 and F ′′′(0) =
6. Thus if |β |> 1, condition 2 of Theorem 1 will be met for suitable sunspot processes ηξ . Hence
NRSE exist, and, by Corollary 1, they are stable if β <−1.

Theorems 1 and 2 provide vindication for resonance frequency sunspot equilibria: the knife-
edge requirement needed in linear models is an artifact of the linearization and the tendency of
resonance frequency sunspot equilibria to inherit the stability of the MSV solutions prevails in the
nonlinear world. Put differently, by Theorem 2, E-stability of resonance frequency sunspot equi-
libria in the linear model guarantees the existence of stable NRSE in the nonlinear model (provided
F ′′(0) 6= 0), which is a striking demonstration of the deep and broad reach of the E-stability princi-
ple. Theorem 2 also establishes the MSV principle in the context of the univariate forward-looking
models studied in this Section: if β <−1 then the linearized model is indeterminate and its MSV
solution is E-stable; theorem 2 shows that in this case stable NRSE exist.

3.5 Near-rational MSV solutions

The previous two subsections validate the MSV principle as it speaks to the existence of stable
NRSE. In fact, in stochastic nonlinear models the MSV principle extends to near-rational solutions
that only depend on the fundamentals. Specifically, if the MSV solution of the linear model is
stable, then in the nonlinear model there are stable restricted perceptions equilibria associated with
forecasting models that are linear in the fundamentals. We refer to these types of equilibria as near-
rational MSV solutions, and we establish their existence and stability here within the context of a
univariate model. This result is of interest in its own right, since boundedly-rational agents may
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plausibly use linear forecasting rules even in determinate nonlinear models, and it also provides a
backdrop to our results on NRSE in stochastic models, which we study below in Section 4.2.

Let F : R2→ R be Ck (k ≥ 4), with F(0,0) = 0 and β = DFy(0,0). Let ζt ∈ L∞(Ω) be an iid
process, let 0 < ρ < 1, and let

vσ
t (ω) = ρvσ

t−1(ω)+σζt(ω) = σ ∑
k≥0

ρ
k
ζt−k(ω) ∈ L∞(Ω),

for σ ∈ R. The model is given by yt = E∗t F(yt+1,vσ
t+1). Given the specification of E∗, we are

interested in solutions {yt} satisfying yt ∈ L∞(Ω), and supt ‖yt‖∞ < ∞.

For notational simplicity, we will suppress the dependence of vt on σ . We assume agents use a
PLM of the form yt = a+bvt , which yields the following ALM:

yt =
∫

Ω

F(a+bρvt +bσζt+1(ω),ρvt +σζt+1(ω))dµ(ω)≡ F̃(a,b,σ ,vt). (9)

The corresponding T-map is given by(
a

b

)
T=T (a,b,σ)

−−−−−−−−→

( ∫
Ω

F̃(a,b,σ ,v(ω))dµ(ω)(
σ2

v (σ)
)−1 ∫

Ω
v(ω)F̃(a,b,σ ,v(ω))dµ(ω)

)
≡
(

T a(a,b,σ)
T b(a,b,σ)

)
,

where
σ

2
v (σ) =

∫
Ω

(v(ω))2 dµ(ω).

A fixed point of the T-map provides a near-rational MSV solution of this nonlinear model, and the
stability of this solution is assessed by the associated differential equation system as above. We
have the following existence and stability result.

Theorem 3 (Near-rational MSV solutions) Assume DFv(0,0) 6= 0 and β 6= 1 or ρ−1.

1. For given |σ | sufficiently small, there exists a unique near-rational MSV solution, i.e. there
exists unique (a∗(σ),b∗(σ))′ ∈ R2, with b∗(σ) 6= 0, such that

T (a∗(σ),b∗(σ),σ) = (a∗(σ),b∗(σ))′.

2. If, in addition, β < 1 then this near-rational MSV solution is stable under adaptive learning.

This result shows that the near-rational equilibrium approach is of interest beyond the study
of sunspot equilibria. If agents use linear forecasting rules within a nonlinear set-up, and if the
E-stability condition for the linearized model β < 1 is met, then the near-rational MSV solution is
stable under least-squares learning whether or not the linearized model is determinate or indeter-
minate.
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3.6 NRSE and REE

While we regard near-rational sunspot equilibria as a stand-alone equilibrium concept, it is natural
to wonder about their connection to rational expectations equilibria. Establishing a formal connec-
tion requires taking a stand on the metric used for comparison, and is further complicated by the
concepts’ inherent multiplicities: even with a selected metric, which NRSE should be compared to
which REE?

To make progress, we first characterize, to the extent possible, the REE local to the (indeter-
minate) steady state y∗ = 0 of our model (1). Fix a martingale difference sequence (mds) ε̂t with
small support, and interpret it as the following rational forecast error: ε̂t = F(yt)−Et−1F(yt). It
follows that the associated REE yt must satisfy F(yt) = yt−1 + ε̂t . Since ε̂t has small support and
F ′(0) 6= 0, provided that |yt−1| is small, there is an open neighborhood U of the origin in R2, and
a function h : U → R so that yt = h(yt−1, ε̂t). Furthermore, expanding h, we have that

yt = β
−1yt−1 +β

−1
ε̂t +O

(
‖(yt−1, ε̂t)‖2) ,

which, by indeterminacy (i.e. |β | > 1) guarantees that |yt−1| will remain small if initialized near
the origin. We conclude that the function h characterizes the REE associated to the mds ε̂t .12

Conversely, all REE local to the steady state can be represented in this fashion: simply note that if
yt is an REE local to the steady state then, by setting ε̂t = F(yt)−Et−1F(yt). we may construct a
function h so that yt = h(yt−1, ε̂t).

The characterization of REE by the function h provides the connection between REE and
NRSE. In particular, note that, to first order, any mds ε̂t induces an REE with serial correlation
given by β−1, and the serial correlation of any NRSE is a perturbation of this same value β−1.
Thus, to-first-order/up-to-perturbation, the correlograms of all REE and all NRSE are the same.

3.7 A simple economic example

Here, to provide an illustration of how to apply our results, we develop a simple economy that fits
the hypotheses of Theorems 1 and 2.

Consider an overlapping-generations environment in which there is a continuum of agents born
at each time t indexed by υt ∈ ϒ. Each agent lives two periods, works when young and consumes
when old. The population is constant at unit mass. Each agent owns a production technology that
is linear in labor and produces a common, perishable consumption good. The agent can sell his
produced good in a competitive market for a quantity of fiat currency, anticipating that he will be
able to use this currency when old to purchase goods for consumption.

While we will focus on the homogeneous case, it remains important, especially in models with
boundedly rational decision-making, to distinguish agent-level and aggregate variables. For this

12Note that, provided F is sufficiently smooth, h can be approximated to arbitrarily high order by expanding each
side of F (h(yt−1, ε̂t)) = yt−1 + ε̂t around (0,0) and equating coefficients.
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reason, we will retain agent-specific indexes for our initial analysis. Thus let υt ∈ ϒ be the index
of an agent born in time t. His problem is given by

max
ct+1(υt ),nt (υt )

Mt (υt )

E∗(υt)(u(ct+1(υt))−χ(nt(υt)) (10)

subject to nt(υt) = qtMt(υt) and ct+1(υt) = qt+1Mt(υt)

Here, nt(υt) is the agent’s labor supply when young as well as his output. Also, qt is the time t
goods price of money and ct+1(υt) is the agent’s planned consumption when old. The expectations
operator E∗(υt)(·) denotes the expectation of agent υt at time t, taken with respect to his subjective
beliefs conditional on the information available to him. This information includes nt(υt), Mt(υt)
and current and lagged values of qt .

The first order condition is given by

χ
′(nt(υt)) = E∗ (υt)

(
qt+1

qt
u′ (ct+1(υt))

)
, (11)

and to make our model particularly tractable, we assume that χ ′ = 1 and u(c) = 1
1−σ

(
c1−σ −1

)
.

With simplification, we obtain agent υt’s decision rules:

nt(υt) =
(
qσ−1

t E∗(υt)
(
q1−σ

t+1
)) 1

σ

Mt(υt) =

(
1
qt

E∗(υt)
(
q1−σ

t+1
)) 1

σ

;

and we note that, as is natural, the quantity of money demanded by agent υt at time t, depends on,
among other things, the price at time t.

Assuming a constant (unit) supply of money, we obtain the market-clearing condition∫
ϒ

Mt(υt)dυt = 1,

which yields

qt =

(∫
ϒ

(
E∗(υt)

(
q1−σ

t+1
)) 1

σ dυt

)σ

. (12)

Equation (12) characterizes the equilibrium price path.

If agents are homogeneous, the model reduces to qt = E∗t q1−σ

t+1 , which is consistent with the
framework considered in Section 3. If all agents have rational expectations then q = 1 is the
unique, non-autarky, perfect-foresight steady state. The system may be log-linearized around this
steady state to yield logqt = (1− σ)Et logqt+1. The steady state is indeterminate if σ > 2: in
this case the expectational feedback parameter is negative and sunspot equilibria exist in both the
linearized and nonlinear models.
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Figure 3. NRSE learning dynamics in the overlapping generations model
PLM: yt = a+bηt , convergence to an NRSE

To apply our theorems, let F(y) = (y+1)1−σ −1, so that the model becomes yt = EtF(yt+1),
with y = q−1. We compute F ′(0) = 1−σ and F ′′(0) = σ(σ −1), so that, by Corollary 1, stable
NRSE exist provided σ > 2.

To assess this claim numerically, we calibrate the model by setting σ = 2.5, and, since F ′′(0)>
0, we select a negative perturbation (ξ < 0), so that the NRSE is stable. Then, choosing an asym-
metric iid martingale difference sequence εt , we simulate the real-time learning dynamics corre-
sponding to a variety of initial conditions: see Figure 3, which plots the dynamics of bt , the time
t-value of the sunspot coefficient in the agent’s forecasting model.13 We observe convergence to
the estimated NRSE value of b∗ = .195.14

4 Stable NRSE: extensions

The reduced form model (1) served as a platform to discuss and provide intuition for our main
existence and stability results; however, most applied macro models do not present so simply.
Ideally, the theory of NRSE should be developed against a sequence of reduced-form equations of

13For this Figure we use the following specification for the sunspot process: εt ∈ {−.475, .025} is iid with
Pr(εt = .025) = .95, and ξ =−.0175. Since β =−1.5 this gives λ (ξ ) =−.684. We use a constant gain of ψ = 0.015.

14It can be shown that if 2 < σ < 1
4

(
5+
√

17
)
≈ 2.28 then the sunspot’s stochastic driver εt can be taken as

symmetric.
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the form
E∗t F(yt ,yt+1,yt−1,vt) = 0, (13)

where yt ∈Rn is endogenous, vt ∈Rm is a stationary exogenous process, and F : R3n⊕Rm→Rn is
Ck for k ≥ 4; however, results for models at this level of generality are not yet available. To make
some progress, and to show how modifications of our underlying framework and arguments apply
in more general settings, in this Section we consider, separately, a variety of extensions suggested
by the model (13). Because the development and argument structure are similar to the work done
in Section 3, our discussions here will be considerably more brief.

4.1 Stable NRSE: the implicit case

In many modeling environments, the time t endogenous variable is defined only implicitly in terms
of expectations of future variables. For example, in some set-ups Euler equations cannot easily or
naturally be transformed into explicit equations, and it is important to know if our results extend
to implicit equation frameworks.

To consider this case, let F : R2→ R be Ck (k ≥ 4), with F(0,0) = 0, F1(0,0) 6= 0, and β =
−F2(0,0)/F1(0,0), where, in this section, Fi is the partial of F with respect to the i-th variable.
The sequence of reduced-form equations is given by

E∗t F(yt ,yt+1) = 0. (14)

Given the specification of E∗, we are interested in solutions {yt} to (14) satisfying yt ∈ L∞(Ω), and
supt ‖yt‖∞ < ∞.

As in the previous section, let {εt} ⊂ L∞(Ω) be a zero-mean iid process with compact support,
and assume ξ ∈ R is such that λ (ξ ) = β−1 +ξ ∈ (−1,1). The agents’ PLM is given as

yt = a+bη
ξ

t

η
ξ

t = λ (ξ )η
ξ

t−1 + εt ,

which, by specifying E∗, gives the following implicitly defined ALM:

F̃
(

yt ,a,b,ξ ,η
ξ

t

)
≡
∫

Ω

F
(

yt ,a+bλ (ξ )η
ξ

t +bε(ω)
)

dµ(ω) = 0.

Noting that F̃(0,0,0,ξ ,ηξ

t ) = 0 and that, evaluated at yt = a = b = 0, we have F̃y = F1(0,0) 6= 0,

the implicit function theorem implies that locally the ALM may be written yt = F̂
(

a,b,ξ ,ηξ

t

)
,

where we are now assuming that the support of εt is such that ηξ remains in the domain of F̂ for
small ξ .

With F̂ so defined, we may proceed just as in the previous case by defining the T-map T (·, ·,ξ ) :
R2→ R2 as the projection of the ALM onto the span of {1,ηξ

t }. This again yields the formula in
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equation (5). Again observe that T (0,0,ξ ) = (0,0)′. An NRSE of this model is a non-trivial fixed
point of this T-map.

The following result provides conditions for existence and stability. The complicated expres-
sion corresponding to I C is given by equation (46f) in the Online Appendix. All derivatives are
evaluated at zero.

Theorem 4 (Extension: implicit case) Assume that |β |> 1.

• Existence. Assume that either of the following two regularity conditions is met:

Condition 4.1 (2βF12 +F22)µ
ε
3 6= βF112µ

ηξ

4

Condition 4.2 I C 6= 0

Then NRSE exist. Specifically, there exists a neighborhood V of β−1 such that given any
open set W ⊂ V containing β−1 there is a λ (ξ ) ∈W and (a,b) ∈ R2 with b 6= 0 satisfying
T (a,b,ξ ) = (a,b)′.

• Stability. Assume that β < −1 and that either condition 4.1 holds or that condition 4.2
holds with I C < 0. Then the NRSE are stable under adaptive learning.

We observe that existence, and stability in case β < −1, are generic in the sense that they
obtain for appropriate εt if F112 6= 0. We note also that setting F1 = −1 and F1∗ = 0 corresponds
to the previous case in which yt = E∗t F̆(yt+1) (for appropriate F̆); and, the conditions we obtain
here reduce to the conditions found in Theorems 1 and 2. In summary, apart from the specific
regularity assumptions needed to rule out non-generic cases, our results on NRSEs extend to the
implicit case.

4.2 Stable NRSE: the stochastic case

The benchmark set-up of Section 3 does not include intrinsic stochastic shocks. Most modern
macroeconomic models include exogenous stochastic shocks to variables such as productivity,
preferences and policy, and RE solutions will then depend on the realized shocks. Near-rational
solutions depending on these shocks were already briefly considered in Section 3.5. We now turn
to existence and stability of NRSE associated with the near-rational MSV solution of the stochastic
model presented in that Section and reproduced here for convenience: yt = E∗t F(yt+1,vt+1).

Agents are assumed to use a PLM of the form yt = a+ bvt + cη
ξ

t . In what follows, unless
otherwise specified, derivatives are evaluated at

(a,b,c,ξ ) = (a∗,b∗,0,0).

As argued in the proof of Theorem 5, by choosing |σ | small we may assume that DF? (y,v) ≈
DF?(0,0) for ?= y,v,yy, etc. Thus, we may assume, for the remainder of this section, that |β |> 1,
whence we may choose σ small enough that |DFy|> 1.
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Turning first to expectations, the PLM is given by

yt = a+bvt + cη
ξ

t

vt = ρvt−1 +σζt

η
ξ

t = λ (ξ )η
ξ

t−1 + εt ,

where 0 < ρ < 1 and λ (ξ ) = β−1 + ξ ∈ (−1,1). We further assume that ζt ⊥ εs for all t,s. For
fixed small σ , the ALM is given by yt = F̂

(
a,b,c,ξ ,vt ,η

ξ

t

)
where

F̂ =
∫

Ω

F(a+bρvt +bσζt+1(ω)+ cλ (ξ )η
ξ

t + cεt+1(ω),ρvt +σζt+1(ω))dµ(ω). (15)

Exploiting independence, the T-map is given by

a
T a(a,b,c,ξ )
−−−−−−−−→

∫
Ω

F̂
(

a,b,c,ξ ,v(ω),ηξ (ω)
)

dµ(ω)

b
T b(a,b,c,ξ )
−−−−−−−−→ 1

σ2
v

∫
Ω

v(ω)F̂
(

a,b,c,ξ ,v(ω),ηξ (ω)
)

dµ(ω)

c
T c(a,b,c,ξ )
−−−−−−−−→ 1

σ2
ηξ

∫
Ω

η
ξ (ω)F̂

(
a,b,c,ξ ,v(ω),ηξ (ω)

)
dµ(ω)

Finally, let (a∗(σ),b∗(σ)) = (a∗,b∗) be the near-rational MSV solution corresponding to σ , and
note, using (15), that

T (a∗,b∗,0,ξ ) = (a∗,b∗,0)′.
A non-trivial (i.e. c 6= 0) fixed point of the T-map is an NRSE.

Theorem 5 (Extension: intrinsic stochasticity) Assume DFv(0,0) 6= 0 , |β |> 1, βρ 6= 1, and that
|σ | is sufficiently small.

• Existence. Assume that either of the following two regularity conditions are met:

Condition 5.1 DFyy 6= 0 and µ
ε
3 6= 0

Condition 5.2 S C ≡ DFyyy

(
3σ2

ξ

β
+

µ
ηξ

4
β 3σ2

ηξ

)
+

3(DFyy)
2
(

σ2
ηξ

+β 2σ2
ξ

)
(1−β )β 3 6= 0

Then NRSE exist. Specifically, there exists a neighborhood V of β−1 so that given any open
set W ⊂ V containing β−1 there is a λ (ξ ) ∈W and (a,b,c) ∈ R3 with c 6= 0 satisfying
T (a,b,c,ξ ) = (a,b,c)′.

• Stability. Assume further that β <−1 and that either condition 5.1 holds or that condition
5.2 holds with S C < 0. Then the NRSE are stable under adaptive learning.

Theorem 5 tells us that our existence and stability results for NRSEs also hold when funda-
mental exogenous shocks are present. In particular provided β <−1, so that the linearized model
is indeterminate and the E-stability condition is satisfied, then generically stable NRSE exist in a
stochastic set-up.
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4.3 Stable NRSE: the multivariate case

Modern macroeconomic models are essentially multivariate, i.e. they have multiple endogenous
variables. Even the simplest canonical textbook New Keynesian framework specifies a bivariate
model of output and inflation, and medium-scale DSGE models include many endogenous vari-
ables.

In principle, there is no difficulty conducting the above analysis in higher dimensions, though in
practice the work is somewhat more tedious; and, two distinct cases arise, depending on the nature
of the model’s roots. Let F : Rn→ Rn be Ck where k ≥ 4. Assume F(0) = 0 and DF(0) ∈ Rn×n

is diagonalizable. Write DF(0) = S · ⊕n
i=1βi · S−1, with βi ∈ C the eigenvalues of DF(0). The

economic model is given by
yt = E∗t F(yt+1). (16)

Given the specification of E∗, we are interested in solutions {yt} to (16) satisfying yit ∈ L∞(Ω),
and supt ‖yit‖∞ < ∞.

So that the model is indeterminate, we assume at least one root, which we label as βn, lies
outside the unit circle. We make the further assumption that βn ∈ R. This is for simplicity, as
the analysis is considerably more involved if all roots that lie outside S1 are complex: the sunspot
is necessarily a two-dimensional VAR(1) process, and co-dimension-2 bifurcation analysis is re-
quired.15

Working as before, assume ξ ∈ R is such that λ (ξ ) = β−1
n +ξ ∈ (−1,1). The agents’ PLM is

given as

yt = a+bη
ξ

t

η
ξ

t = λ (ξ )η
ξ

t−1 + εt ,

with a,b ∈ Rn. Writing F = (F1, . . . ,Fn)′, the ALM is given by

yit =
∫

Ω

F i
(

a+bλ (ξ )η
ξ

t +bεt+1(ω)
)

dµ(ω)≡ F̂ i
(

a,b,ξ ,ηξ

t

)
.

The T-map is given by

ai →
∫

Ω

F̂ i
(

a,b,ξ ,ηξ (ω)
)

dµ(ω)

bi →
1

σ2
ηξ

∫
Ω

η
ξ (ω)F̂ i

(
a,b,ξ ,ηξ (ω)

)
dµ(ω).

It is immediate that (a,b) = (0,0) ∈Rn⊕Rn is a fixed point of the T-map. A fixed point with non-
zero b is an NRSE. The next theorem establishes existence and stability of NRSE in the simpler,

15Preliminary results indicate that, in the complex case, appropriate perturbation of the sunspot process’s covariance
matrix results in a Bogdanov-Takens bifurcation, from which a stable NRSE emerges. We also note that if DF(0) has
m≤ n eigenvalues lying outside the unit circle, then sunspot processes up to dimension m may exist. We are developing
these results in current work.
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transcritical case, which occurs when µε
3 6= 0. As notation, let Sn be the nth-column of S (i.e. an

eigenvector associated to βn), S−1 = (Si j) and D2F i the Hessian of F i evaluated at zero.

Theorem 6 (Extension: multivariate case) Let DF(0) = S ·⊕n
i=1βi ·S−1 with βn ∈R and |βn|> 1.

• Existence. Assume the following regularity conditions hold:

Condition 6.1 µ
ε
3 6= 0

Condition 6.2 ∑
n
i=1 Sni (S′n ·D2F i ·Sn

)
6= 0

Then NRSE exist. Specifically, there exists a neighborhood V of β−1
n so that given any open

set W ⊂ V containing β−1
n there is a λ (ξ ) ∈W and (a,b) ∈ Rn⊕Rn with b 6= 0 satisfying

T (a,b,ξ ) = (a,b)′.

• Stability. Assume further that Re(βi) < 1 for all i = 1, . . . ,n and Re(βi)
βn

< 1 for all i =
1, . . . ,n−1. Then the NRSE are E-stable.

We remark that the second regularity condition for existence (above) can be viewed as generic
in the following sense: S is invertible (and thus the Si j and Si j are not all zero) and S is a first-order
term whereas the D2F i are second-order. Also, we note that the stability condition provided in this
theorem is sufficient, but not necessary: indeed in this multivariate setting stable NRSE exist under
many other constellations of conditions.

Theorem 6 demonstrates that it is possible to extend existence and stability results to multivari-
ate models.

4.4 Stable NRSE: the case with lags

As a final extension, we consider a univariate reduced-form model with an endogenous lag. This,
too, is an important extension because many macroeconomic models, and all serious DSGE mod-
els, are both forward-looking and backward-looking. Lagged effects arise, for example, from cap-
ital accumulation, adjustment costs, indexation and policy inertia. To investigate this in a simple
set-up we revert to a univariate non-stochastic model.

Let F : R2→R be Ck (k≥ 4), with F(0,0) = 0, F1(0,0) = β 6= 0, and F2(0,0) = δ 6= 0, where,
in this section, Fi is the partial of F with respect to the i-th variable. The sequence of reduced-form
equations is given by

yt = E∗t F(yt+1,yt−1), (17)

and we assume the model is subject to an initial condition yt = y0 at t = 0. Given the specification
of E∗, we are interested in solutions {yt} to (17) satisfying yt ∈ L∞(Ω), and supt ‖yt‖∞ < ∞.

The linearized, RE version of this model is given by

yt = βEtyt+1 +δyt−1. (18)
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It can be shown that the model (18) is determinate when |β + δ | < 1 and that the nonexplosive
solution takes the form yt = ϕ1yt−1 where ϕ1 is given below and |ϕ1|< 1. Clearly this is an MSV
solution.

The model (18) is indeterminate and has real roots provided |β +δ |> 1, |δ |< |β | and βδ < 1
4 ,

and we assume these conditions hold throughout the rest of this section. In this case both roots

ϕ1 =
1−
√

1−4βδ

2β
and ϕ2 =

1+
√

1−4βδ

2β

of the associated quadratic βϕ2−ϕ +δ = 0 have absolute values less than one and there are two
MSV solutions yt = ϕiyt−1 for i = 1,2. Under the information assumptions provided below, it can
be shown that the solution yt = ϕ1yt−1 is E-stable when β < 0, while the solution yt = ϕ2yt−1 is
never E-stable.

As in previous sections, let {εt} ⊂ L∞(Ω) be a zero-mean iid process with compact support.
Evans and McGough (2005c) showed that the process given by

yt = ϕ1yt−1 +ηt

ηt = ϕ2ηt−1 + εt

is a stationary sunspot equilibrium of (18); and further, if β < 0 then this REE is stable under
adaptive learning.

As we did in Section 3, we use perturbations of sunspots in the linear model to generate NRSE
in the nonlinear model. Let ξ ∈ R be such that λ2(ξ ) = ϕ2 + ξ ∈ (−1,1). The agents’ PLM is
given as

yt = a+byt−1 + cη
ξ

t

η
ξ

t = λ2(ξ )η
ξ

t−1 + εt ,

which, by specifying E∗, gives the following ALM:

yt =
∫

Ω

F
(
(1+b)a+b2yt−1 + c(λ2(ξ )+b)η

ξ

t + cε(ω),yt−1

)
dµ(ω). (19)

Here we are assuming, as in common in the literature, that when agents form expectations their in-
formation set includes yt−1 and ηt , but not yt . Note that the PLMs used by the agents for forecasting
are linear and take the form of the MSV solution plus the serially correlated sunspot variable.

The next step in the analysis would normally be to define the T-map, but this requires knowl-
edge of the asymptotic distribution of the regressors for fixed beliefs (a,b,c). Unfortunately, given
the presence of yt−1, this distribution is endogenous to beliefs, which appears to be a formidable
technical impediment. Based on our work thus far, and invoking the MSV principle, the following
conjecture seems reasonable:

Conjecture 1 (Extension: lagged case) Assume that |β +δ |> 1, |δ |< |β | and βδ < 1
4 .
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• Existence. NRSE generically exist.

• Stability. If, in addition, β < 0, then E-stable NRSE generically exist.

To provide support for this conjecture, we present numerical results. First, observe that a
“sample-version” of a T-map may be defined. Specifically, for fixed beliefs (a,b,c), we may draw

a sequence of N shocks
{

η
ξ

t

}N

t=0
, and using quadrature to evaluate (19), compute the associated

endogenous realizations {yt}N
t=0, where y0 and η

ξ

0 are taken as given. The sample T-map is given
by simply using these data to regress yt on yt−1, η

ξ

t and a constant. If the sample size N is large
enough (and if the associated asymptotic distributions exist, etc.) then the sample T-map should
well-approximate the true T-map, which means a fixed point of the sample T-map should well-
approximate an NRSE. Finally, if the NRSE is E-stable, it is expected that iteration of the sample
T-map, possibly modified to include a damping factor, should converge to a fixed point.

Figure 4. NRSE in a model with lags. PLM: yt = a+byt−1 + cηt .
Iterations of the T-map converging toward an NRSE.

Precisely this experiment is carried out in Figure 4. The map F used to construct this figure
has linear terms β = −1.5 and δ = .2 and an ad-hoc quadratic form to capture the nonlinearity.
Thus the linear model is indeterminate, and, according to the conjecture, we expect stable NRSE to
exist. Sample size is set at 3000, and the shock εt is uniformly distributed on [−.1, .1]. The initial
conditions for beliefs, as indicated by the red, dashed lines, correspond to the linear REE values,
with c set arbitrarily at 6. The sample T-map is then iterated, and the “time-plot” is provided in
the Figure. We see convincing evidence of rapid convergence to non-REE values, suggesting the
presence of a stable NRSE.16

We may also conduct the analogous real-time learning simulation – See Figure 5. In this case,
as new data become available, beliefs are updated over time using recursive least squares. As
above, the dynamics are initialized at the linear REE values, and for this simulation a decreasing
gain algorithm is used.17 The red, dashed lines in the first two panels identify the fixed point of

16That the sample T-map never settles down to a fixed point is a reflection of the finite sample properties of the map.
17We use a decreasing gain sequence with ψt = t−0.8 rather than γ = t−1 in order to increase the speed of conver-

gence. The sunspot process is symmetric and sets ξ =−0.02 so that λ =−0.85.
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Figure 5. NRSE in a model with lags. PLM: yt = a+byt−1 + cηt . Real
time adaptive learning of NRSE.

the sample T-map, and in the last panel, the red, dashed line corresponds to the initial condition
for beliefs c. We note that convergence appears to obtain to the fixed point of the sample T-
map identified in Figure 4, thus supporting our conjecture. Thus, while the presence of lagged
endogenous variables seriously complicates the theoretical analysis, we conjecture that the MSV
principle extends to this case.

5 Example: NRSE in a New Keynesian Model

We examine the existence and stability of near-rational sunspot equilibria in a standard model of
monopolistic competition with Rotemberg-style price frictions. We assume a policy rule specifying
that the nominal interest rate respond to expectations of inflation and output gap. The model’s
reduced-form equations may be written

y−σ
t = β ·RtE∗t π

−1
t+1y−σ

t+1 (20)

γ ·πt(πt−π
∗) = β · γ ·E∗t πt+1(πt+1−π

∗)+
(

ν

α

)
y

1+χ

α

t +(1−ν)y1−σ
t (21)

Rt = R∗
(

E∗t
(

πt+1

π∗

))απ ·π∗
(

E∗t

(
yt+1

y∗

))αy·y∗

evt , (22)

vt = ρvt−1 +ut , (23)

where 0 < ρ < 1 and ut is white noise. Here equation (20) is the nonlinear IS relation, equation
(21) is the nonlinear Phillips curve, and (22) is the Taylor rule, with policy shock vt . Also, y∗ is
steady-state output, and R∗ is the interest-rate target, chosen to satisfy βR∗ = π∗. The details are
provided in the On-line Appendix. The MSV solution posits a dependence of yt , πt and Rt only on
vt . If the steady state (y∗,π∗,R∗) is determinate then this MSV solution is locally the unique REE
of the model; if the steady state is indeterminate there are also local stationary sunspot equilibria.

To assess existence and stability NRSE associated with this model, we simplify the reduced-
form system. Letting x = (y,π)′, we can write (20)-(22) as

F(xt ,vt) = G1 (E∗t xt+1) ·G2 (E∗t xt+1) ·E∗t G3(xt+1), (24)
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for appropriate F and Gi. In doing so, however, we see that none of our results directly applies to
(24); and further, there is no obvious way to manipulate the model so that our results would apply.

One way to proceed would be to work out the existence and stability results that do apply
to systems of the form (24), and we anticipate that, using the techniques developed in this paper,
establishing the desired results would be straightforward, if quite tedious. We suggest an alternative
approach based on the MSV principle. Specifically, for a given calibration, we assess whether the
linearized model is indeterminate and whether its minimal state variable solution is E-stable; if
both of these conditions are met then the MSV principle suggests that then there are stable near-
rational sunspot equilibria of the nonlinear model. We can then use simulations to examine the
veracity of the principle for the case at hand.

We adopt a standard calibration, with R∗ = β−1 and π∗ = 1, and with the policy parameters
set aggressively to induce stable indeterminacy. In the On-line Appendix, we show that under this
calibration the linearized model is indeterminate and the MSV solution is stable under adaptive
learning; therefore, the MSV principle applies: stable near-rational sunspot equilibria should exist.
To assess existence via simulation, we compute the model’s resonance frequency λ , i.e. the serial
correlation which, when perturbed, excites the existence of stable near-rational sunspots – see
the On-line Appendix for this computation, as well as for the stochastic properties of the sunspot
process used for our numerical work. We assume that the policy shock is observable and, when
making forecasts, agents in the economy use a PLM of the form

xt = a+bηt + cvt , where ηt = (λ +ξ )ηt−1 + εt , (25)

where εt is mean-zero white noise. Here the 2× 1 vectors a = (ay,aπ)
′, b = (by,bπ)

′ and c =
(cy,cπ)

′ capture agents beliefs, and they are assumed updated by recursive least-squares. A com-
plete description of the model’s dynamics is provided in the On-line Appendix.18

Figure 6 shows the results of a simulation in which agents do not believe in sunspots. As
expected, the MSV solution is stable under learning: if agents do not condition on a sunspot
then the estimated coefficients converge to their near-rational MSV values identified as dashed
horizontal lines.

If, on the other hand, agents think that the sunspot may be relevant, and thus include it in their
PLM, then the economy converges to an NRSE, as is evidenced in Figure 7.19 Here we extend
the simulation in order to illustrate convergence. Note that the sunspot equilibrium obtains even
though agents are initially skeptical that sunspots have any forecasting value and thus place initially
no weight on the sunspot, i.e. we set their initial estimates b equal to zero.

18For our calibration we set β = .96,ν = 1.5,γ = 5,απ = 5,αy = 5,χ = .25,α = .75,ρ = 0.5, and σ = 1.For
the learning algorithm we choose constant gain ψ = 0.1. The intrinsic innovation ut is uniform on [−0.1,0.1].
The serial correlation of the sunspot λ (ξ ) = −0.632, and the mds εt is mean zero with asymmetric support
[−0.0000825,0.0004125].

19To save space we only show the trajectory for the estimates of b; the trajectories for (a,c) are very similar to those
of Figure 6.

30



0 20 40 60 80 100
0.432

0.434

0.436

0.438

0.440

0.442

0 20 40 60 80 100

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0 20 40 60 80 100
0.9985

0.9990

0.9995

1.0000

1.0005

1.0010

0 20 40 60 80 100

-0.15

-0.10

-0.05

0.00

0.05

Figure 6. Stable near-rational MSV in New Keynesian model.
PLMs: yt = ay + cyvt and πt = aπ + cπvt .
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Figure 7. Stable NRSE in New Keynesian model.
PLMs: yt = ay +byηt + cyvt and πt = aπ +bπηt + cπvt .

To illustrate the economic effects of coordination on an NRSE we compare the densities of
output for the near-rational MSV and NRSE based on 20,000 observations drawn from the asymp-
totic distributions. See Figure 8, where we have normalized the densities to have maximum height
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Figure 8. Comparison of output densities of near-rational MSV and
NRSE in New Keynesian model.

equal to one. As might be anticipated, output in an NRSE exhibits greater volatility. Inflation and
interest-rate volatility (not shown) also display greater volatility in the NRSE. Finally, it is worth
observing that the standard advice for policymakers still applies: by guarding against indetermi-
nacy they can eliminate the excess volatility associated with NRSE.

6 Conclusion

According to Blanchard, “. . . the world economy is pregnant with multiple equilibria – self-fulfilling
outcomes of pessimism or optimism, with major macroeconomic implications.”20 This conclusion,
and others like it, makes imperative understanding when and how sunspot equilibria, which rep-
resent and characterize the class of stationary multiple equilibria, are consistent with the dynamic
stochastic general equilibrium modeling paradigm of the macroeconomic literature.

Investigations of sunspot equilibria in mainstream models have met with a variety of obstacles.
Most notably, and as indicated in the Introduction, sunspot equilibria in nonlinear models have
complicated stochastic structure, making them difficult for researchers and economic agents to
model, and thus rendering stability analysis impossible.

Our embrace of a linear-forecasting framework allows us to circumvent this obstacle while pre-
serving natural, agent-level behavior. We establish the existence of (near-rational) sunspot equi-
libria that have simple recursive stochastic structure. By providing agents an understanding of this

20IMF blog, http://blog-imfdirect.imf.org/2011/12/21/2011-in-review-four-hard-truths/
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structure, we are then able to assess stability under adaptive learning, and indeed establish generic
stability results.

Importantly, our results provide methods for assessing existence and stability of NRSE in non-
linear models using determinacy and E-stability tools for linear models. Furthermore, the MSV
principle provides a convenient computational method for searching for stable NRSE in nonlinear
models: simply look for stable MSV solutions to associated indeterminate linearized models.
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Appendix

In this Appendix we discuss the generalization of Leibniz’s rule needed for our analysis and the
bifurcation argument underlying the proofs of Theorems 1 and 2 (as well as all other bifurcation-
based results). All formal proofs are provided in the On-line Appendix.

A.1 Leibniz’s Rule

We need to be able to differentiate a variety of functions defined in terms of Lesbesgue integrals.
For this, we require the following simple generalization of Leibniz’s rule.

Lemma 1 (Leibniz’s Rule) Let k ≥ 4, U ⊂ Rn be open and h : U ×Ω→ R have the following
properties:

1. For all x ∈U, h(x, ·) ∈ L∞(Ω)

2. For almost all ω ∈Ω, h(·,ω) ∈Ck(U)

3. There exists G ∈ L1(Ω) so that for all x ∈U, |Dxih(x,ω)| ≤ G(ω) for almost all ω ∈Ω.

If H : U → R is given by H(x) =
∫

Ω
h(x,ω)dµ(ω) then H ∈Ck(U) and

DxiH(x) =
∫

Ω

Dxih(x,ω)dµ(ω).

While surely well known, for completeness, we present the proof of this Lemma in the On-line
Appendix. Here, we outline the simple argument for the application of Lemma 1 in our analysis.
Consistent with the notation from the main text, consider the following ALM, as given by F̂ :

yt =
∫

Ω

F(a+bλ (ξ )η
ξ

t +bεt+1(ω))dµ(ω)≡ F̂(a,b,ξ ,ηξ

t ).

Since F is continuous, it follows that F̂(a,b,ξ ,ηξ

t (·)) ∈ L∞(Ω) for all t. Further, the analysis
below will be local to the steady state (0,0,0)′, thus we may assume the existence of an open
neighborhood U ⊂ R3 of the steady state, with compact closure, so that F̂ : U ×Ω→ R; and
since F̂(·,ηξ

t (ω)) is C4(U), the compact closure of U provides the uniform bounds on the various
partials needed to apply Lemma 1.

A.2 Outline of the bifurcation argument

The bifurcation argument used to establish many of the existence and stability results in this
paper is standard, and outlined here. Recall that we let γ = (a,b)′. Write H(γ,ξ ) = T (γ,ξ )− γ .
The first step involves the decomposition of H into first and higher-order terms. We require the
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following derivatives, which are all evaluated at the origin:

F̂a =
∫

Ω

F ′dµ(ω) = β

F̂b =
∫

Ω

F ′ · (λ (ξ )ηξ + ε(ω))dµ(ω) = βλ (ξ )ηξ

T a
a =

∫
Ω

F̂adµ(ω) = β

T a
b =

∫
Ω

F̂bdµ(ω) =
∫

Ω

η
ξ (ω)dµ(ω) = 0

T b
a = 1

σ2
ηξ

∫
Ω

η
ξ (ω)F̂adµ(ω) = 0

T b
b = 1

σ2
ηξ

∫
Ω

η
ξ (ω)F̂bdµ(ω) = βλ (ξ )

σ2
ηξ

∫
Ω

(ηξ (ω))2dµ(ω) = βλ (ξ ).

Noting that DH = DT − I2 and that βλ (ξ )−1 = βξ we have that

H(γ,ξ ) =

(
β −1 0

0 βξ

)(
a
b

)
+

(
f (a,b,ξ )

g(a,b,ξ )

)
, (26)

where f and g are O
(
‖(a,b,ξ )‖2).

As noted in Sections 3.3 and 3.4, the system γ̇ = H(γ,ξ ) is central to our analysis. It is evident
that this system bifurcates at ξ = 0. To assess the nature of this bifurcation, we appeal to the
center manifold theorem. This theorem guarantees the existence of a sufficiently smooth function
h : R2 → R characterizing an invariant, parameter-dependent manifold, that is, a differentiable
subset Wc(ξ ) of R2, tangent to the b-axis, so that

• For ξ and b near zero, Wc(ξ ) is the graph of a = h(b,ξ ).

• Wc(ξ ) is invariant under the action of H, that is, the trajectory of γ implied by γ̇ = H(γ,ξ )
remains in Wc(ξ ) if it is initialized in Wc(ξ ).

The invariance of the center manifold may be used to specify a functional equation charac-
terizing h. Specifically, by definition, ȧ = (β − 1)a+ f (a,b,ξ ); and, on Wc(ξ ), a = h(b,ξ ), so
that

ȧ = hb(b,ξ ) · ḃ = hb(b,ξ )(βξ b+g(a,b,ξ )) .

We conclude that h must satisfy the functional equation

(β −1)h(b,ξ )+ f (h(b,ξ ),b,ξ ) = hb(b,ξ )(βξ b+g(h(b,ξ ),b,ξ )) .

Using this equation together with the implicit function theorem allows for the computation of the
Taylor expansion of h to arbitrary order.
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The importance of the manifold Wc(ξ ) follows from a corollary to the center manifold theorem
which states that the dynamic behavior of the two-dimensional system γ̇ = H(γ) is locally equiv-
alent in a natural sense to its behavior on Wc(ξ ); and, using h, this behavior is captured by the
univariate system

ḃ = βξ b+g(h(b,ξ ),b,ξ ).

The proofs in the On-line Appendix involve fleshing out the details of this analysis.
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On-line Appendix

Proof of Lemma 1. Fix x ∈U , i ∈ {1, . . . ,n}, and let ∆m be a real sequence converging to zero
such that

x(∆m) = (x1, . . . ,xi−1,xi +∆m,xi+1, . . . ,xn) ∈U.

Define hn(x,ω) = ∆−1
m (h(x(∆m)−h(x)). Since L∞(Ω)⊂ L1(Ω) it follows that hn(x, ·) ∈ L1(Ω) and

hn(x, ·)→ Dxih(x, ·) almost everywhere. By the mean-value theorem, for almost all ω ∈ Ω, there
is a δm with |δm|< |∆m| such that

|hn(x,ω)|= |Dxih(x(δm),ω)| ≤ G(ω).

We may compute

DxiH(x) = lim
m→∞

∆
−1
m (H(x(∆m))−H(x)) = lim

m→∞

∫
Ω

hm(x,ω)dµ(ω)

=
∫

Ω

lim
m→∞

hm(x,ω)dµ(ω) =
∫

Ω

Dxih(x,ω)dµ(ω),

where the third equality follows from the dominated convergence theorem. The proof is completed
by induction, recognizing that Dxih(·,ω) ∈Ck−1(U).

In the work below we will repeatedly be required to differentiate functions of the form H, con-
structed from functions of the form h, as defined in the lemma above. Our analysis will be local to
a steady state, so that our sets U will have compact closure, thus giving the needed uniform bounds
on Dxh, which themselves are assumed continuous.

Proof of Theorems 1 and 2. This analysis requires the computation of a host of derivatives, and
we proceed with these computations now. Importantly, all derivatives of F are evaluated at zero
and all partials (first and higher orders) of F̂ and T are evaluated at a = b = ξ = 0. For notational
ease, we will often omit the arguments. Note that when computing derivatives of F̂ , the variable
ηξ is taken as fixed.
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Derivatives of F̂(a,b,ξ ,ηξ ) =
∫

Ω
F(a+bλ (ξ )ηξ +bε(ω))dµ(ω)

F̂a =
∫

Ω

F ′dµ(ω) = β (27a)

F̂b =
∫

Ω

F ′ · (β−1
η

ξ + ε(ω))dµ(ω) = η
ξ (27b)

F̂ξ =
∫

Ω

F ′bη
ξ dµ(ω) = 0, since b = 0. (27c)

F̂aa =
∫

Ω

F ′′dµ(ω) = F ′′(0) (27d)

F̂ab =
∫

Ω

λ (ξ )ηξ F ′′dµ(ω) = β
−1

η
ξ F ′′(0) (27e)

F̂bb =
∫

Ω

F ′′(λ (ξ )ηξ + ε(ω))2dµ(ω) = (β−2
(

η
ξ

)2
+σ

2
ε )F

′′(0) (27f)

F̂ξ ξ =
∫

Ω

F ′′(bη
ξ )2dµ(ω) = 0 (27g)

F̂aξ =
∫

Ω

F ′′bη
ξ dµ(ω) = 0 (27h)

F̂bξ =
∫

Ω

(ηξ F ′+bη
ξ F ′′)dµ(ω) = βη

ξ (27i)

F̂bbb =
∫

Ω

F ′′′(λ (ξ )ηξ + ε(ω))3dµ(ω) = F ′′′(0)((β−1
η

ξ )3 +3β
−1

η
ξ

σ
2
ε ) (27j)

Derivatives of T a(a,b,ξ ) =
∫

Ω
F̂(a,b,ξ ,ηξ (ω))dµ(ω)

T a
a =

∫
Ω

F̂adµ(ω) = β (28a)

T a
b =

∫
Ω

F̂bdµ(ω) =
∫

Ω

η
ξ (ω)dµ(ω) = 0 (28b)

T a
ξ
=
∫

Ω

F̂ξ dµ(ω) = 0 (28c)

T a
aa =

∫
Ω

F̂aadµ(ω) = F ′′(0) (28d)

T a
ab =

∫
Ω

F̂abdµ(ω) =
∫

Ω

λ (ξ )F ′′ηξ (ω)dµ(ω) = 0 (28e)

T a
bb =

∫
Ω

F̂bbdµ(ω) =
∫

Ω

(β−2(ηξ (ω))2 +σ
2
ε )F

′′(0)dµ(ω) = σ
2
η F ′′(0) (28f)

T a
ξ ξ

=
∫

Ω

F̂ξ ξ dµ(ω) = 0 (28g)

T a
ξ a =

∫
Ω

F̂ξ adµ(ω) = 0 (28h)

T a
ξ b =

∫
Ω

F̂ξ bdµ(ω) =
∫

Ω

βη
ξ (ω)dµ(ω) = 0 (28i)
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Derivatives of T b(a,b,ξ ) = 1
σ2

ηξ

∫
Ω

ηξ (ω)F̂(a,b,ξ ,ηξ (ω))dµ(ω)

T b
a = 1

σ2
ηξ

∫
Ω

η
ξ (ω)F̂adµ(ω) = 0 (29a)

T b
b = 1

σ2
ηξ

∫
Ω

η
ξ (ω)F̂bdµ(ω) = 1

σ2
ηξ

∫
Ω

(ηξ (ω))2dµ(ω) = 1 (29b)

T b
ξ
=
(

σ
2
ηξ

)−2
[

σ
2
ηξ

∫
Ω

(
F̂

∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂ξ

)
dµ(ω)− ∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂dµ(ω)

]
= 0 (29c)

T b
bb =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂bbdµ(ω) =

∫
Ω

η
ξ (ω)(β−2(ηξ (ω))2 +σ

2
ε )F

′′(0)dµ(ω) =
F ′′(0)µηξ

3

β 2σ2
η

(29d)

T b
ab =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂abdµ(ω) = 1

σ2
ηξ

∫
Ω

β
−1F ′′(ηξ (ω))2 = β

−1F ′′(0) (29e)

T b
aa =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂aadµ(ω) = 0 (29f)

T b
ξ ξ

=
(

σ
2
ηξ

)−4
{(

σ
2
η

)2
[

σ
2
ηξ

∫
Ω

(
2F̂ξ

∂

∂ξ
η

ξ (ω)+ F̂
∂ 2

(∂ξ )2 η
ξ (ω)+ F̂ξ ξ η

ξ (ω)

)
dµ(ω)

+
∂

∂ξ
σ

2
ηξ

∫
Ω

(
F̂

∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂ξ

)
dµ−

∫
Ω

∂

∂ξ
η

ξ (ω)F̂
∂

∂ξ
σ

2
ηξ dµ(ω)

−
∫

Ω

η
ξ (ω)F̂ξ

∂

∂ξ
σ

2
ηξ dµ(ω)−

∫
Ω

η
ξ (ω)F̂

∂ 2

(∂ξ )2 σ
2
ηξ dµ(ω)

]
−σ

2
ηξ

∫
Ω

(
F̂

∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂ξ

)
∂

∂ξ
(σ2

ηξ )
2dµ(ω)+

∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂

∂

∂ξ
(σ2

ηξ )
2dµ(ω)

}
= 0 (29g)

T b
bξ

=
(

σ
2
ηξ

)−2
[

σ
2
ηξ

∫
Ω

(
∂

∂ξ
η

ξ (ω)F̂b +η
ξ (ω)F̂bξ

)
dµ(ω)− ∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂bdµ(ω)

]
= β

(
β 2−2
β 2−1

)
(29h)

T b
bbb =

1
σ2

ηξ

∫
Ω

F̂bbbη
ξ (ω)dµ(ω) =

F ′′′(0)
σ2

η

(
β
−3

σ
4
η +3β

−1
σ

2
η σ

2
ε

)
. (29i)

Equation (29h) requires elaboration. Since

∂

∂ξ
η

ξ (ω) = λ (ξ )−1
∑

m≥0
mλ (ξ )m

εm(ω), and (30)

F̂b(ω) ≡ F̂b(a,b,ξ ,ηξ (ω)) = βλ (ξ )ηξ (ω) = βλ (ξ ) ∑
k≥0

λ (ξ )k
εk(ω),
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it follows that∫
Ω

F̂b(ω)
∂

∂ξ
η

ξ (ω)dµ(ω) = β

∫
Ω

(
∑
k≥0

λ (ξ )k
εk(ω)

)(
∑

m≥0
mλ (ξ )m

εm(ω)

)
dµ(ω)

= β

∫
Ω

∑
k≥0

k
(
λ (ξ )2)k

εk(ω)2dµ(ω) = βλ (ξ )2
∑
k≥0

k
(
λ (ξ )2)k−1

σ
2
ε

= βλ (ξ )2
σ

2
ε

∂

∂λ (ξ )2 ∑
k≥0

(
λ (ξ )2)k

=

= βλ (ξ )2
σ

2
ε

∂

∂λ (ξ )2

(
1−λ (ξ )2)−1

= β

(
λ (ξ )2

1−λ (ξ )2

)
σ

2
ηξ .

Next, ∫
Ω

η
ξ (ω)F̂bξ dµ(ω) = β

∫
Ω

(
η

ξ (ω)
)2

dµ(ω) = βσ
2
ηξ .

Finally,

∂

∂ξ
σ

2
ηξ =

∂

∂ξ

(
σ2

ε

1−λ (ξ )2

)
=

2λ (ξ )σ2
ε

(1−λ (ξ )2)
2 = 2

(
λ (ξ )

1−λ (ξ )2

)
σ

2
ηξ ,

so that

∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂bdµ(ω) = 2

(
λ (ξ )

1−λ (ξ )2

)(
σ

2
ηξ

)2
.

Thus

T b
bξ

=
(

σ
2
ηξ

)−2
[

σ
2
ηξ

(
β

(
λ (ξ )2

1−λ (ξ )2

)
σ

2
ηξ +βσ

2
ηξ

)
−2
(

λ (ξ )

1−λ (ξ )2

)(
σ

2
ηξ

)2
]

=
β −2λ (ξ )

1−λ (ξ )2 = β

(
β 2−2
β 2−1

)
.

This completes our computation of the needed derivatives.

We now turn to the body of the argument, which requires bifurcation analysis of the following
dynamic system:  ȧ

ḃ
ξ̇

=

 T a(a,b,ξ )
T b(a,b,ξ )

0

−
 a

b
0

≡ H(a,b,ξ ). (31)

We may write decompose this system in to first, and higher-order terms:

H(a,b,ξ ) =

 β −1 0 0
0 0 0
0 0 0

 a
b
ξ

+

 f (a,b,ξ )
g(a,b,ξ )

0

 ,
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where f and g are O
(
‖(a,b,ξ )‖2) , and given by f = T a− βa and g = T b− b. By the center

manifold theorem, the orbit structure of the dynamic system determined by (31) is topologically
equivalent to the projection of the system on to the parameter-dependent center manifold, which
may be expressed by a C4(V ) function: a = h(b,ξ ), where V ⊂ R2 is an open region containing
the rest point. The remainder of the proof involves two steps: computing the center manifold; and
conducting bifurcation analysis of the projected system.

Computing the center

A closed form representation of h is not available, but we may use the invariance of the center
manifold together with a Taylor expansion of h to establish a sufficient approximation. By (31),
we have that

ȧ = (β −1)h(b,ξ )+ f (h(b,ξ ),b,ξ ).

Differentiating a = h(b,ξ ) with respect to time, we get ȧ = hbḃ+hξ ξ̇ . Using (31) and that ξ̇ = 0,
we also have

ȧ = hb(b,ξ )g(h(b,ξ ),b,ξ ).

Thus h is characterized by the functional equation

L(b,ξ )≡ (β −1)h(b,ξ )+ f (h(b,ξ ),b,ξ ) = hb(b,ξ )g(h(b,ξ ),b,ξ )≡ R(b,ξ )

This functional equation, together with the implicit function theorem, may be used to approximate
h: simply compute the Taylor expansions of L and R, equate like terms, and solve the coefficients
in the Taylor expansion of h.

Since the center manifold is tangent to the eigenspaces of the linear component of H, it follows
that hb(0,0) = hξ (0,0) = 0. Also, the origin is a steady state: h(0,0) = 0. Thus, we may write

h(b,ξ ) = 1
2 · (hbb ·b2 +hξ ξ ·ξ 2)+hbξ ·ξ ·b+O

(
‖(b,ξ )‖3) .

Here, all derivatives are evaluated at (0,0). As notation, we also write

L(b,ξ ) = Lb ·b+Lξ ·ξ + 1
2 · (Lbb ·b2 +Lξ ξ ·ξ 2)+Lbξ ·b ·ξ +O

(
‖(b,ξ )‖3) ,

R(b,ξ ) = Rb ·b+Rξ ·ξ + 1
2 · (Rbb ·b2 +Rξ ξ ·ξ 2)+Rbξ ·b ·ξ +O

(
‖(b,ξ )‖3) .

Noting that, for example, ∂

∂b f = fa ·hb + fb, we compute

Lb = (β −1)hb + fa ·hb + fb (32a)
Lbb = (β −1)hbb +hbb · fa +hb · fab +hb · fab + fbb (32b)
Rb = hbb ·g+hb · (ga ·hb +gb) (32c)

Rbb = hbbb ·g+2hbb · (ga ·hb +gb)+hb · ∂

∂b(ga ·hb +gb). (32d)

Since f ,g, and h are zero at the origin and have no first order terms, we see hbb =
fbb

1−β
. Further,

since fbb = T a
bb, it follows from (28f) that

hbb =

(
F ′′(0)
1−β

)
σ

2
ηξ .

44



As we will determine below, other second-order terms of h are not needed for the bifurcation
analysis, and so our computation of the center manifold approximation is complete.

Bifurcation analysis

The local dynamics of (31) are topologically equivalent to the suspension of the projected
system by the associated saddle. Intuitively this means that the dynamic system (31) may be
decomposed into hyperbolic and center components; and, locally, the orbits of the decomposed
systems, appropriately joined, are appropriately isomorphic to the orbits of the original system. In
particular, if the projected system undergoes a particular bifurcation then so too does the system
(31). The projected system is given by

ḃ = g(h(b,ξ ),b,ξ )≡ G(b,ξ ). (33)

To conduct bifurcation analysis, the higher-order derivatives of G are needed. That G(0,0) = 0 is
immediate. Since g = T b−b we have that

gaa = T b
aa = 0 (34a)

gab = T b
ab = β

−1F ′′(0) (34b)

gbb = T b
bb =

F ′′(0)µηξ

3

β 2σ2
ηξ

(34c)

gbξ = T b
bξ

= β

(
β 2−2
β 2−1

)
(34d)

gbbb = T b
bbb =

F ′′′(0)
σ2

ηξ

(
β
−3

µ
ξ

4 +3β
−1

σ
2
ηξ σ

2
ε

)
. (34e)

Using our information about h, we compute

Gb = ga ·hb +gb = 0 (35a)
Gξ = ga ·hξ +gξ = 0 (35b)

Gbb = ga ·hbb +hb · (gaa ·hb +gab)+gab ·hb +gbb = gbb (35c)
Gbξ = hb · ∂

∂ξ
ga +ga ·hbξ +gba ·hξ +gbξ = gbξ (35d)

Gbbb = gahbbb +2hbb · (gaa ·hb +gab)+hb · ∂

∂b(gaa ·hb +gab)

+ gab ·hbb +hb · ∂

∂b gab +hb ·gbba +gbbb = 3hbb ·gab +gbbb, (35e)

where, in each computation, the second equality follows from the work just above and that h and
g have no first order terms.

Since G = Gb = Gξ = 0, and Gbξ is generically non-zero, we can assess the type of bifurcation
by looking at the higher order terms in b. In particular, the type of bifurcation experienced by
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the system (33) depends on whether Gbb = 0. Noting gbb is proportional to µ
ηξ

3 F ′′(0), assuming
non-trivial second-order curvature in F , we see whether gbb = 0 depends, generically, on whether
E(ε3

t ) = 0.

Case 1: E(ε3
t ) = 0.

Since Gb, Gξ and Gbb = 0, and Gbξ 6= 0 the system undergoes a pitchfork bifurcation as ξ crosses
zero provided that Gbbb 6= 0. Simplifying Gbbb, we get the following regularity condition:

Gbbb = F
′′′
(0)

3σ2
ε

β
+

µ
ηξ

4
β 3σ2

ηξ

+

(
3(F ′′(0))2

(1−β )β

)
σ

2
ηξ , (36)

where we note that under the assumptions of the proposition, Gbbb is generically non-zero in that
the set of all such parameters for which the condition (36) is not satisfied has Lebesgue measure
zero in parameter space. We conclude that if E(ε3

t ) = 0 then the projected system undergoes a
pitchfork bifurcation as ξ crosses zero, indicating the emergence of two additional fixed points:
see chapter 3 of Wiggins (1990) for the relevant results in bifurcation theory used here and below.

Case 2: E(ε3
t ) 6= 0.

In this case we have Gb = 0, Gξ = 0, and Gbξ 6= 0. Since

Gbb =
F ′′(0)µηξ

3

β 2σ2
ηξ

is generically non-zero, we conclude that if E(ε3
t ) 6= 0 then the projected system undergoes a

transcritical bifurcation as ξ crosses zero, indicating the emergence of two additional fixed points.

The proof of existence is completed by noting that in both cases, non-trivial fixed points of
the projected system emerge as a result of a bifurcation, and further that the local dynamics of the
projected system are topologically equivalent to the dynamics of the original system.

Turning now to stability, we recall from the body that stability under adaptive learning is gov-
erned by the E-stability ode (31); thus we are interesting in knowing when the bifurcation results
in two new fixed points of (31), at least one of which is Lyapunov stable. Again, because, locally,
the dynamics of (31) are topologically equivalent to suspension of the projected system by the
associated saddle, stability of the post-bifurcation fixed points entails two requirements: first, the
associated saddle must be stable, that is, β − 1 < 0; and second, the emergent fixed points of the
projected system (33) must be Lyapunov stable. In case E(ξ 3

t ) 6= 0, the bifurcation is transcritical
in nature, so that we may simply choose an appropriate perturbation µ to obtain a stable fixed point.
In case E(ξ 3

t ) = 0, additional restrictions are required: the new fixed points inherit the stability of
the origin. Thus stability of the new fixed points – the NRSE – requires in this case that Gbbb < 0,
which yields the additional non-generic condition identified in the theorem. Note that we may still
conclude that if β <−1 and F ′′(0) 6= 0 then stable NSRE exist.
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Proof Theorem 3. The natural approach is to consider a perturbation of σ near zero; the technical
challenge is that the T-map is not defined for σ = 0. To side-step the complication that σ2

v → 0
as σ → 0, define v̂t = σ−1vt , and notice that v̂t = ρ v̂t−1 + ζt . Now consider the new function F̂ ,
defined as

yt =
∫

Ω

F(a+bρ v̂t +bζt+1(ω),ρσ v̂t +σζt+1(ω))dµ(ω)≡ F̂(a,b,σ , v̂t).

Projecting this process onto the span of (1, v̂t) yields the following map, which we label T̂ :(
a

b

)
T̂=T̂ (a,b,σ)

−−−−−−−−→

( ∫
Ω

F̂(a,b,σ , v̂(ω))dµ(ω)(
σ2

v̂
)−1 ∫

Ω
v̂(ω)F̂(a,b,σ , v̂(ω))dµ(ω)

)
≡
(

T̂ a(a,b,σ)
T̂ b(a,b,σ)

)
.

By construction, T̂ is defined, k-times differentiable, and has a fixed point at (0,0)′ when σ = 0.

Let H = T̂ − (a,b)′. We need some more derivatives.

Derivatives of F̂ and H

F̂a = DFy ≡ β (37a)

F̂b = ρβ v̂ (37b)

F̂σ = DFv ·ρ v̂ (37c)

Ha
a =

∫
Ω

F̂adµ(ω)−1 = β −1 (37d)

Ha
b =

∫
Ω

F̂bdµ(ω) = βρ

∫
Ω

v̂(ω)µ(ω) = 0 (37e)

Hb
a =

(
σ

2
v̂
)−1

∫
Ω

v̂(ω)F̂adµ(ω) =
(
σ

2
v̂
)−1

β

∫
Ω

v̂(ω)dµ(ω) = 0 (37f)

Hb
b =

(
σ

2
v̂
)−1

∫
Ω

v̂(ω)F̂bdµ(ω)−1 =
(
σ

2
v̂
)−1

ρDFy

∫
Ω

v̂(ω)2dµ(ω) = βρ−1 (37g)

Ha
σ =

∫
Ω

F̂σ dµ(ω) = ρDFv

∫
Ω

v̂(ω)dµ(ω) = 0 (37h)

Hb
σ =

(
σ

2
v̂
)−1

∫
Ω

v̂(ω)F̂σ dµ(ω) =
(
σ

2
v̂
)−1

ρDFv

∫
Ω

v̂(ω)2dµ(ω) = DFv ·ρ v̂ (37i)

From these computations, we find that

DH(a,b)′(0,0,0) =
(

β −1 0
0 βρ−1

)
, and DHσ (0,0,0) =

(
0

ρDFv

)
. (38)

We conclude that the implicit function theorem applies to the system of equations H = 0, and that
∂b∗
∂σ

= (1−βρ)−1ρDFv 6= 0.21

21We observe that given a linear model yt = βEtyt+1 + ρDFvvt , the REE is given by yt = b∗vt with b∗ = (1−
βρ)−1ρDFv.
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We have demonstrated that for small σ , there exist (â(σ), b̂(σ))′, with b̂(σ) 6= 0, such that
T̂ (â(σ), b̂(σ),σ) = (â(σ), b̂(σ))′. The proof of part 1 of the theorem is completed by demonstrat-
ing that T (â(σ),σ−1b̂(σ),σ) = (â(σ),σ−1b̂(σ))′. To this end, first notice

F̃(a,σ−1b,σ ,vt) =
∫

Ω

F(a+σ
−1bρvt +bζt+1(ω),ρvt +σζt+1(ω))dµ(ω)

=
∫

Ω

F(a+bρ v̂t +bζt+1(ω),ρσ v̂t +σζt+1(ω))dµ(ω)

= F̂(a,b,σ , v̂t).

Using this, we compute

T a(a,σ−1b,σ) =
∫

Ω

F̃(a,σ−1b,σ ,v(ω))dµ(ω)

=
∫

Ω

F̂(a,b,σ , v̂(ω))dµ(ω) = T̂ a(a,b,σ),

and

T b(a,σ−1b,σ) =
(
σ

2
v (σ)

)−1
∫

Ω

vσ (ω)F̃(a,σ−1b,σ ,vσ (ω))dµ(ω)

=
(
σ

2
σ

2
v̂ (σ)

)−1
∫

Ω

σ v̂(ω)F̂(a,b,σ ,vσ (ω))dµ(ω)

= σ
−1T̂ b(a,b,σ).

Thus
T a(a,σ−1b,σ) = T̂ a(a,b,σ) and T b(a,σ−1b,σ) = σ

−1T̂ b(a,b,σ). (39)

and the result follows.

To establish part 2 of the theorem, we may combine equations (39) with (38) to obtain

DT (a,b,σ) = DT (a,σ−1(σb),σ) =

(
1 0
0 σ−1

)
DT̂ (a,σb,σ)

=

(
1 0
0 σ−1

)(
β −1 0

0 σ(βρ−1)

)
=

(
β −1 0

0 βρ−1

)
,

which yields the result.
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In the remaining sections of this Appendix, we general the model and conduct the associated
bifurcation analysis. While the details of the arguments are model-specific, the proof strategy
remains the same throughout. The arguments given below will be considerably more brief than
provided in the proof of Theorem 1, and we will reference this proof when steps are skipped.

Proof Theorem 4. Again, we begin with derivatives.

Derivatives of F̃
(

yt ,a,b,ξ ,η
ξ

t

)
≡
∫

Ω
F
(

yt ,a+bλ (ξ )η
ξ

t +bε(ω)
)

dµ(ω)

F̃y =
∫

Ω

F1dµ(ω) = F1 (40a)

F̃a =
∫

Ω

F2dµ(ω) = F2 (40b)

F̃b =
∫

Ω

F2(λ (ξ )η
ξ + ε(ω))dµ(ω) = λ (ξ )ηξ F2 (40c)

F̃ξ =
∫

Ω

F2bη
ξ dµ(ω) = 0 (40d)

F̃yy =
∫

Ω

F11dµ(ω) = F11 (40e)

F̃ya =
∫

Ω

F12dµ(ω) = F12 (40f)

F̃yb =
∫

Ω

λ (ξ )ηξ F12dµ(ω) = β
−1

η
ξ F12 (40g)

F̃yξ =
∫

Ω

F11bη
ξ dµ(ω) = 0 (40h)

F̃aa =
∫

Ω

F22dµ(ω) = F22 (40i)

F̃ab =
∫

Ω

λ (ξ )ηξ F22dµ(ω) = β
−1

η
ξ F22 (40j)

F̃aξ =
∫

Ω

F22bη
ξ dµ(ω) = 0 (40k)

F̃bb =
∫

Ω

F22

(
λ (ξ )ηξ + ε(ω)

)2
dµ(ω) =

(
β
−2
(

η
ξ

)2
+σ

2
ε

)
F22 (40l)

F̃ξ ξ =
∫

Ω

F22(bη
ξ )2dµ(ω) = 0 (40m)

F̃bξ =
∫

Ω

(ηξ F2 +bη
ξ F22)dµ(ω) = βη

ξ (40n)

F̃bbb =
∫

Ω

F222(λ (ξ )η
ξ + ε(ω))3dµ(ω) = F222((β

−1
η

ξ )3 +3β
−1

η
ξ

σ
2
ε ) (40o)

F̃ybb =
∫

Ω

F122

(
λ (ξ )ηξ + ε(ω)

)2
dµ(ω) =

(
β
−2
(

η
ξ

)2
+σ

2
ε

)
F122 (40p)
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Derivatives of F̃
(

F̂
(

a,b,ξ ,ηξ

)
,a,b,ξ ,ηξ

)
= 0

F̂a =−
F̃a

F̃y
= β (41a)

F̂b =−
F̃b

F̃y
= η

ξ (41b)

F̂ξ =−
F̃ξ

F̃y
= 0 (41c)

F̂aa =−
(
F̃y
)−1 (F̃aa +2F̂aF̃ya + F̂2

a F̃yy
)
=−

(
βF112

F1

)
η

ξ − 2βF12 +F22

F1
≡Φ

1
aa ·ηξ +Φ

0
aa (41d)

F̂ab =−
(
F̃y
)−1 (F̃ab + F̂bF̃ya + F̂aF̃yb + F̂aF̂bF̃yy

)
=−

(
F112

F1

)(
η

ξ

)2
−
(

2βF12 +F22

βF1

)
η

ξ ≡Φ
2
ab ·
(

η
ξ

)2
+Φ

1
ab ·ηξ (41e)

F̂bb =−
(
F̃y
)−1 (F̃bb +2F̂bF̃yb + F̂2

b F̃yy
)
=−

(
F112

βF1

)(
η

ξ

)3
−
(

2βF12 +F22

β 2F1

)(
η

ξ

)2
− F22σ2

ε

F1
(41f)

≡Φ
3
bb ·
(

η
ξ

)3
+Φ

2
bb ·
(

η
ξ

)2
+Φ

0
bb (41g)

F̂bξ =−
(
F̃y
)−1 (F̃bξ + F̂ξ F̃yb + F̂bF̃yξ + F̂bF̂ξ F̃yy

)
= βη

ξ (41h)

F̂ξ ξ = 0 (41i)

F̂bbb =−
(
F̃y
)−1 (F̃bbb +3F̂bbF̃yb +3F̂bbF̂bF̃yy +3F̂bF̃ybb +3F̂2

b F̃yyb + F̂3
b F̃yyy

)
(41j)

=

(
3F2

112
β 2F2

1

)(
η

ξ

)5
+

(
9βF12F112 +3F22F112

β 3F2
1

)(
η

ξ

)4
+

(
β 36βF2

12−F1F111−3βF1F122 +3F12F22−F1F222

β 3F2
1

)(
η

ξ

)3

+

(
3β 2F22F112σ2

ε −3β 3F1F11

β 3F2
1

)(
η

ξ

)2
+

(
3β 2F12F22σ2

ε −3β 3F1F122σ2
ε −3β 2F1F222σ2

ε

β 3F2
1

)
η

ξ (41k)

≡Φ
5
bbb ·

(
η

ξ

)5
+Φ

4
bbb ·

(
η

ξ

)4
+Φ

3
bbb ·

(
η

ξ

)3
+Φ

2
bbb ·

(
η

ξ

)2
+Φ

1
bbb ·ηξ +Φ

0
bbb

Derivatives of T a(a,b,ξ ) =
∫

Ω
F̂(a,b,ξ ,ηξ (ω))dµ(ω)

T a
a =

∫
Ω

F̂adµ(ω) = β (42a)

T a
b =

∫
Ω

F̂bdµ(ω) =
∫

Ω

η
ξ (ω)dµ(ω) = 0 (42b)

T a
ξ
=
∫

Ω

F̂ξ dµ(ω) = 0 (42c)

T a
aa =

∫
Ω

F̂aadµ(ω) =
∫

Ω

(
Φ

1
aa ·ηξ (ω)+Φ

0
aa

)
dµ(ω) = Φ

0
aa (42d)

T a
ab =

∫
Ω

F̂abdµ(ω) =
∫

Ω

(
Φ

2
ab ·
(

η
ξ (ω)

)2
+Φ

1
ab ·ηξ

ω)

)
dµ(ω) = Φ

2
ab ·σ2

ηξ (42e)

T a
bb =

∫
Ω

F̂bbdµ(ω) =
∫

Ω

(
Φ

3
bb ·
(

η
ξ (ω)

)3
+Φ

2
bb ·
(

η
ξ (ω)

)2
+Φ

0
bb

)
dµ(ω) = Φ

3
bb ·µ

ηξ

3 +Φ
2
bb ·σ2

ηξ +Φ
0
bb (42f)

T a
ξ b =

∫
Ω

F̂ξ bdµ(ω) = 0 (42g)
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Derivatives of T b(a,b,ξ ) = 1
σ2

ηξ

∫
Ω

F̂(a,b,ξ ,ηξ (ω))dµ(ω)

T b
a = 1

σ2
ηξ

∫
Ω

η
ξ (ω)F̂adµ(ω) = 0 (43a)

T b
b = 1

σ2
ηξ

∫
Ω

η
ξ (ω)F̂bdµ(ω) = 1

σ2
ηξ

∫
Ω

(ηξ (ω))2dµ(ω) = 1 (43b)

T b
ξ
=
(

σ
2
ηξ

)−2
[

σ
2
ηξ

∫
Ω

(
F̂

∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂ξ

)
dµ(ω)− ∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂dµ(ω)

]
= 0 (43c)

T b
bb =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂bbdµ(ω) = 1

σ2
ηξ

∫
Ω

η
ξ (ω)

(
Φ

3
bb ·
(

η
ξ (ω)

)3
+Φ

2
bb ·
(

η
ξ (ω)

)2
+Φ

0
bb

)
dµ(ω) = 1

σ2
ηξ

(
Φ

3
bbσ

4
ηξ +Φ

2
bbµ

ηξ

3

)
(43d)

T b
ab =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂abdµ(ω) = 1

σ2
ηξ

∫
Ω

η
ξ (ω)

(
Φ

2
ab ·
(

η
ξ (ω)

)2
+Φ

1
ab ·ηξ (ω)

)
dµ(ω) = 1

σ2
ηξ

(
Φ

2
abµ

ηξ

3 +Φ
1
abσ

2
ηξ

)
(43e)

T b
aa =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂aadµ(ω) = 1

σ2
ηξ

∫
Ω

η
ξ (ω)

(
Φ

1
aa ·ηξ (ω)+Φ

0
aa

)
dµ(ω) = Φ

1
aa (43f)

T b
ξ ξ

=
(

σ
2
ηξ

)−4
{(

σ
2
η

)2
[

σ
2
ηξ

∫
Ω

(
2F̂ξ

∂

∂ξ
η

ξ (ω)+ F̂
∂ 2

(∂ξ )2 η
ξ (ω)+ F̂ξ ξ η

ξ (ω)

)
dµ(ω)

+
∂

∂ξ
σ

2
ηξ

∫
Ω

(
F̂

∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂ξ

)
dµ−

∫
Ω

∂

∂ξ
η

ξ (ω)F̂
∂

∂ξ
σ

2
ηξ dµ(ω)

−
∫

Ω

η
ξ (ω)F̂ξ

∂

∂ξ
σ

2
ηξ dµ(ω)−

∫
Ω

η
ξ (ω)F̂

∂ 2

(∂ξ )2 σ
2
ηξ dµ(ω)

]
−σ

2
ηξ

∫
Ω

(
F̂

∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂ξ

)
∂

∂ξ
(σ2

ηξ )
2dµ(ω)+

∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂

∂

∂ξ
(σ2

ηξ )
2dµ(ω)

}
= 0 (43g)

T b
bξ

=
(

σ
2
ηξ

)−2
[

σ
2
ηξ

∫
Ω

(
∂

∂ξ
η

ξ (ω)F̂b +η
ξ (ω)F̂bξ

)
dµ(ω)− ∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂bdµ(ω)

]
= β

(
β 2−2
β 2−1

)
(43h)

T b
bbb =

1
σ2

ηξ

∫
Ω

F̂bbbη
ξ (ω)dµ(ω) (43i)

= 1
σ2

ηξ

∫
Ω

(
Φ

5
bbb ·

(
η

ξ (ω)
)5

+Φ
4
bbb ·

(
η

ξ (ω)
)4

+Φ
3
bbb ·

(
η

ξ (ω)
)3

+Φ
2
bbb ·

(
η

ξ (ω)
)2

+Φ
1
bbb ·ηξ (ω)+Φ

0
bbb

)
η

ξ (ω)dµ(ω) (43j)

= 1
σ2

ηξ

(
Φ

5
bbb ·σ

6
ηξ

+Φ
4
bbb ·σ5

ηξ
+Φ

3
bbb ·µ

ξ

4 +Φ
2
bbb ·µ

ηξ

3 +Φ
1
bbb ·σ2

ηξ

)
(43k)

We now turn to the body of the argument, which, as before, requires bifurcation analysis of
the system (31). The center manifold may be characterized locally as a C4 function: a = h(b,ξ ),
which satisfies the following functional equation:

(β −1)h(b,ξ )+ f (h(b,ξ ),b,ξ ) = hb(b,ξ )g(h(b,ξ ),b,ξ ).

Working as before, we find that

hbb =
1

1−β
fbb =

1
1−β

T a
bb =

1
1−β

(
Φ3

bb ·µ
ηξ

3 +Φ2
bb ·σ2

ηξ
+Φ0

bb

)
.

The projected system is given by

ḃ = g(h(b,ξ ),b,ξ )≡ G(b,ξ ). (44)
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To conduct bifurcation analysis, the higher-order derivatives of G are needed. That G(0,0) = 0 is
immediate. Since g = T b−b we have that

gaa = T b
aa = Φ

1
aa (45a)

gab = T b
ab =

1
σ2

ηξ

(
Φ2

abµ
ηξ

3 +Φ1
abσ2

ηξ

)
(45b)

gbb = T b
bb =

1
σ2

ηξ

(
Φ3

bbσ4
ηξ

+Φ2
bbµ

ηξ

3

)
(45c)

gbξ = T b
bξ

= β

(
β 2−2
β 2−1

)
(45d)

gbbb = T b
bbb =

1
σ2

ηξ

(
Φ5

bbb ·σ
6
ηξ

+Φ4
bbb ·σ5

ηξ
+Φ3

bbb ·µ
ξ

4 +Φ2
bbb ·µ

ηξ

3 +Φ1
bbb ·σ2

ηξ

)
. (45e)

Using our information about h, we compute

Gb = ga ·hb +gb = 0 (46a)
Gξ = ga ·hξ +gξ = 0 (46b)

Gbb = ga ·hbb +hb · (gaa ·hb +gab)+gab ·hb +gbb = gbb =
1

σ2
ηξ

(
Φ3

bbσ4
ηξ

+Φ2
bbµ

ηξ

3

)
(46c)

Gbξ = hb · ∂

∂ξ
ga +ga ·hbξ +gba ·hξ +gbξ = β

(
β 2−2
β 2−1

)
(46d)

Gbbb = gahbbb +2hbb · (gaa ·hb +gab)+hb · ∂

∂b(gaa ·hb +gab)

+ gab ·hbb +hb · ∂

∂b gab +hb ·gbba +gbbb = 3hbb ·gab +gbbb (46e)

= 1
(1−β )σ2

ηξ

(
Φ3

bb ·µ
ηξ

3 +Φ2
bb ·σ2

ηξ
+Φ0

bb

)(
Φ2

abµ
ηξ

3 +Φ1
abσ2

ηξ

)
+ 1

σ2
ηξ

(
Φ5

bbb ·µ
ηξ

6 +Φ4
bbb ·µ

ηξ

5 +Φ3
bbb ·µ

ηξ

4 +Φ2
bbb ·µ

ηξ

3 +Φ1
bbb ·σ2

ηξ

)
≡I C (46f)

where, in each computation, the second equality follows from the work just above and that h and
g have no first order terms.

Since G = Gb = Gξ = 0, and Gbξ is generically non-zero, the type of bifurcation experienced

by the projected system depends on whether Gbb = 0. Noting that Gbb =
1

σ2
ηξ

(
Φ3

bbµ
ηξ

4 +Φ2
bbµ

ηξ

3

)
and

that Φ3
bb =−

F112
βF1

and Φ2
bb =

2βF12+F22
β 2F1

, we have two cases:

Case 1: (2βF12 +F22)µ
ε
3 6= βF112;

In this case we have Gb = 0, Gξ = 0, Gbξ 6= 0, and Gbb 6= 0; thus the projected system undergoes a
transcritical bifurcation as ξ crosses zero, indicating the emergence of two additional fixed points.

Case 2: (2βF12 +F22)µ
ε
3 = βF112 and I C 6= 0.

Since Gb, Gξ and Gbb = 0, and Gbξ 6= 0 the system undergoes a pitchfork bifurcation as ξ crosses
zero provided that Gbbb 6= 0, thus I C must be non-zero.
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The remainder of the proof is completed as before, with stability in Case 1 requiring that I C
be negative.

Proof Theorem 5 In what follows, unless otherwise specified, derivatives are evaluated at

(a,b,c,ξ ) = (a∗,b∗,0,0).

Recall that in the body we stated that by choosing |σ | small we may assume that DF? ≈ DF?(0,0)
for ?= y,v,yy, etc. To see this, first observe that if (â(σ), b̂(σ))′ is the fixed point of the map T̂ (see
proof of Theorem 3) then limσ→0(â(σ), b̂(σ)) = (0,0), and since a∗(σ) = â(σ), we may assume
|a∗(σ)| is small. Also, since b∗(σ) = 1

σ
b̂(σ), we may assume |σb∗(σ)| is small. Since vt = σ v̂t

follows that for small |σ |,

DF? ≡ DF?(a∗(σ)+b∗(σ)ρvt +b∗(σ)σζt+1(ω),ρvt +σζt+1(ω))≈ DF?(0,0) (47)

for ?= y,v,yy, etc.

Turning now the the main argument, the proof follows the same structure as the proof of The-
orem 1, and because of this, we will be considerably more brief. Again, we require a host of
derivatives.

Derivatives of F̂ =
∫

Ω
F(a+bρvt +bσζt+1(ω)+ cλ (ξ )η

ξ

t + cεt+1(ω),ρvt +σζt+1(ω))dµ(ω)

F̂a =
∫

Ω

DFy ·dµ(ω) = DFy (48a)

F̂b =
∫

Ω

DFy · (ρvt +σζt+1(ω))dµ(ω) = DFy ·ρvt (48b)

F̂c =
∫

Ω

DFy · (λ (ξ )ηξ

t + εt+1(ω))dµ(ω) = DFy ·λ (ξ )ηξ

t (48c)

F̂ξ =
∫

Ω

DFy · cη
ξ

t dµ(ω) = 0 (48d)

F̂aa =
∫

Ω

DFyy ·dµ(ω) = DFyy (48e)

F̂ab =
∫

Ω

DFyy · (ρvt +σζt+1(ω))dµ(ω) = DFyy ·ρvt (48f)

F̂ac =
∫

Ω

DFyy · (λ (ξ )ηξ

t + εt+1(ω))dµ(ω) = DFyy ·λ (ξ )ηξ

t (48g)

F̂aξ =
∫

Ω

DFyy · cη
ξ

t dµ(ω) = 0 (48h)

F̂bb =
∫

Ω

DFyy · (ρvt +σζt+1(ω))2dµ(ω) = DFyy · (ρ2v2
t +σ

2
σ

2
ζ
) (48i)

F̂bc =
∫

Ω

DFyy · (ρvt +σζt+1(ω))(λ (ξ )η
ξ

t + εt+1(ω))µ(ω) = DFyy ·λ (ξ )ρη
ξ

t vt (48j)

F̂bξ =
∫

Ω

DFyy · (ρvt +σζt+1(ω))cη
ξ

t dµ(ω) = 0 (48k)

F̂cc =
∫

Ω

DFyy · (λ (ξ )ηξ

t + εt+1(ω))2dµ(ω) = DFyy ·
(

λ (ξ )2
(

η
ξ

t

)2
+σ

2
ε

)
(48l)

F̂cξ =
∫

Ω

(
DFyy · cη

ξ

t

(
λ (ξ )η

ξ

t + εt+1(ω)
)
+DFy ·ηξ

t

)
dµ(ω) = DFy ·ηξ

t (48m)

F̂ξ ξ =
∫

Ω

(
DFyy ·

(
cη

ξ

t

)2
+DFy · c · ∂

∂ξ
η

ξ

t

)
dµ(ω) = 0 (48n)

F̂ccc =
∫

Ω

DFyyy · (λ (ξ )ηξ

t + εt+1(ω))3dµ(ω) = DFyyy ·
(

λ (ξ )3
(

η
ξ

t

)3
+3λ (ξ )σ2

ε η
ξ

t +µ
ε
4

)
(48o)

53



Derivatives of T a =
∫

Ω
F̂(a,b,c,ξ ,v(ω),ηξ (ω))dµ(ω)

T a
a =

∫
Ω

F̂a ·dµ(ω) = DFy (49a)

T a
b =

∫
Ω

F̂b ·dµ(ω) = DFy ·ρ
∫

Ω

v(ω)dµ(ω) = 0 (49b)

T a
c =

∫
Ω

F̂c ·dµ(ω) = DFy ·λ (ξ )
∫

Ω

η
ξ (ω)dµ(ω) = 0 (49c)

T a
ξ
=
∫

Ω

F̂ξ ·dµ(ω) = 0 (49d)

T a
aa =

∫
Ω

F̂aa ·dµ(ω) = DFyy (49e)

T a
ab =

∫
Ω

F̂ab ·dµ(ω) = DFyy ·ρ
∫

Ω

v(ω)dµ(ω) = 0 (49f)

T a
ac =

∫
Ω

F̂ac ·dµ(ω) = DFyy ·λ (ξ )
∫

Ω

η
ξ (ω)dµ(ω) = 0 (49g)

T a
aξ

=
∫

Ω

F̂aξ ·dµ(ω) = 0 (49h)

T a
bb =

∫
Ω

F̂bb ·dµ(ω) = DFyy

∫
Ω

(
ρ

2v(ω)2 +σ
2
ζ

)
dµ(ω) = DFyy ·σ2

v (49i)

T a
bc =

∫
Ω

F̂bc ·dµ(ω) = DFyy ·ρ ·λ (ξ )
∫

Ω

v(ω)ηξ (ω)dµ(ω) = 0 (49j)

T a
bξ

=
∫

Ω

F̂bξ dµ(ω) = 0 (49k)

T a
cc =

∫
Ω

F̂cc ·dµ(ω) = DFyy

∫
Ω

(
λ (ξ )2

η
ξ (ω)2 +σ

2
ε

)
dµ(ω) = DFyy ·σ2

ηξ (49l)

T a
cξ

=
∫

Ω

F̂cξ ·dµ(ω) = DFy

∫
Ω

η
ξ (ω)dµ(ω) = 0 (49m)
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Derivatives of T b = 1
σ2

v

∫
Ω

v(ω)F̂(a,b,c,ξ ,v(ω),ηξ (ω))dµ(ω)

T b
a = 1

σ2
v

∫
Ω

v(ω)F̂adµ(ω) = 0 (50a)

T b
b = 1

σ2
v

∫
Ω

v(ω)F̂bdµ(ω) = 1
σ2

v
·DFy ·ρ

∫
Ω

v(ω)2dµ(ω) = DFy ·ρ (50b)

T b
c = 1

σ2
v

∫
Ω

v(ω)F̂cdµ(ω) = 1
σ2

v
·DFy ·λ (ξ )

∫
Ω

v(ω)ηξ (ω)dµ(ω) = 0 (50c)

T b
ξ
= 1

σ2
v

∫
Ω

v(ω)F̂ξ dµ(ω) = 0 (50d)

T b
aa =

1
σ2

v

∫
Ω

v(ω)F̂aadµ(ω) = 1
σ2

v
·DFyy

∫
Ω

v(ω)dµ(ω) = 0 (50e)

T b
ab =

1
σ2

v

∫
Ω

v(ω)F̂abdµ(ω) = 1
σ2

v
·DFyy ·ρ

∫
Ω

v(ω)2dµ(ω) = ρ ·DFyy (50f)

T b
ac =

1
σ2

v

∫
Ω

v(ω)F̂acdµ(ω) = 1
σ2

v
·DFyy ·λ (ξ )

∫
Ω

v(ω)ηξ (ω)dµ(ω) = 0 (50g)

T b
aξ

= 1
σ2

v

∫
Ω

v(ω)F̂aξ dµ(ω) = 0 (50h)

T b
bb =

1
σ2

v

∫
Ω

v(ω)F̂bbdµ(ω) = 1
σ2

v
·DFyy

∫
Ω

v(ω)
(

ρ
2v(ω)+σ

2
σ

2
ζ

)
dµ(ω) = DFyy ·ρ2 ·

(
µv

3
σ2

v

)
(50i)

T b
bc =

1
σ2

v

∫
Ω

v(ω)F̂bcdµ(ω) = 1
σ2

v
·DFyy ·λ (ξ ) ·ρ

∫
Ω

v(ω)2
η

ξ (ω)dµ(ω) = 0 (50j)

T b
bξ

= 1
σ2

v

∫
Ω

v(ω)F̂bξ dµ(ω) = 0 (50k)

T b
cc =

1
σ2

v

∫
Ω

v(ω)F̂ccdµ(ω) = 1
σ2

v
·DFyy

∫
Ω

v(ω)
(

λ (ξ )2
η

ξ (ω)2 +σ
2
ε

)
dµ(ω) = 0 (50l)

T b
cξ

= 1
σ2

v

∫
Ω

v(ω)F̂cξ dµ(ω) = 1
σ2

v
·DFy

∫
Ω

v(ω) ·ηξ (ω)dµ(ω) = 0 (50m)

T b
ξ ξ

= 1
σ2

v

∫
Ω

v(ω)F̂ξ ξ dµ(ω) = 0 (50n)
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Derivatives of T c =
(

σ2
ηξ

)−1 ∫
Ω

ηξ (ω)F̂(a,b,c,ξ ,v(ω),ηξ (ω))dµ(ω)

T c
a = 1

σ2
ηξ

∫
Ω

η
ξ (ω)F̂adµ(ω) = 0 (51a)

T c
b = 1

σ2
ηξ

∫
Ω

η
ξ (ω)F̂bdµ(ω) = 1

σ2
ηξ

·DFy

∫
Ω

η
ξ (ω)v(ω)dµ(ω) = 0 (51b)

T c
c = 1

σ2
ηξ

∫
Ω

η
ξ (ω)F̂cdµ(ω) = 1

σ2
ηξ

·DFy ·λ (ξ )
∫

Ω

η
ξ (ω)2dµ(ω) = 1 (51c)

T c
ξ
=
(

σ
2
ηξ

)−2
(

σ
2
ηξ

∫
Ω

(
F̂ ∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂ξ

)
dµ(ω)− ∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂dµ(ω)

)
= 0 (51d)

T c
aa =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂aadµ(ω) = 1

σ2
ηξ

DFyy ·
∫

Ω

η
ξ (ω)dµ(ω) = 0 (51e)

T c
ab =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂abdµ(ω) = 1

σ2
ηξ

·DFyy ·ρ
∫

Ω

η
ξ (ω)v(ω)dµ(ω) = 0 (51f)

T c
ac =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂acdµ(ω) = 1

σ2
ηξ

·DFyy ·λ (ξ )
∫

Ω

η
ξ (ω)2dµ(ω) = DFyy ·λ (ξ ) (51g)

T c
aξ

=
(

σ
2
ηξ

)−2
(

σ
2
ηξ

∫
Ω

(
F̂a

∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂aξ

)
dµ(ω)+ ∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂adµ(ω)

)
= 0 (51h)

T c
bb =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂bbdµ(ω) = 1

σ2
ηξ

·DFyy

∫
Ω

η
ξ (ω)

(
ρ

2v(ω)+σ
2
σ

2
ζ

)
dµ(ω) = 0 (51i)

T c
bc =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂bcdµ(ω) = 1

σ2
ηξ

·DFyy ·λ (ξ ) ·ρ
∫

Ω

η
ξ (ω)2v(ω)dµ(ω) = 0 (51j)

T c
bξ

=
(

σ
2
ηξ

)−2
(

σ
2
ηξ

∫
Ω

(
F̂b

∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂bξ

)
dµ(ω)+ ∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂bdµ(ω)

)
= 0 (51k)

T c
cc =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂ccdµ(ω) = 1

σ2
ηξ

DFyy

∫
Ω

η
ξ (ω)

(
λ (ξ )2

η
ξ (ω)2 +σ

2
ε

)
dµ(ω) = DFyy ·λ (ξ )2

 µ
ηξ

3

σ2
ηξ

 (51l)

T c
cξ

=
(

σ
2
ηξ

)−2
(

σ
2
ηξ

∫
Ω

(
F̂c

∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂cξ

)
dµ(ω)− ∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂cdµ(ω)

)
= DFy

(
DF2

y −2
DF2

y −1

)
(51m)

T c
ξ ξ

=
(

σ
2
ηξ

)−4
{(

σ
2
ηξ

)2
[

σ
2
ηξ

∫
Ω

(
2F̂ξ

∂

∂ξ
η

ξ (ω)+ F̂
∂ 2

(∂ξ )2 η
ξ (ω)+ F̂ξ ξ η

ξ (ω)

)
dµ(ω)

+
∂

∂ξ
σ

2
ηξ

∫
Ω

(
F̂

∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂ξ

)
dµ−

∫
Ω

∂

∂ξ
η

ξ (ω)F̂
∂

∂ξ
σ

2
ηξ dµ(ω)

−
∫

Ω

η
ξ (ω)F̂ξ

∂

∂ξ
σ

2
ηξ dµ(ω)−

∫
Ω

η
ξ (ω)F̂

∂ 2

(∂ξ )2 σ
2
ηξ dµ(ω)

]
−σ

2
ηξ

∫
Ω

(
F̂

∂

∂ξ
η

ξ (ω)+η
ξ (ω)F̂ξ

)
∂

∂ξ
(σ2

ηξ )
2dµ(ω)+

∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂

∂

∂ξ
(σ2

ηξ )
2dµ(ω)

}
= 0 (51n)

T c
ccc =

1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂cccdµ(ω) = 1

σ2
ηξ

·DFyyy

∫
Ω

(
λ (ξ )3

η
ξ (ω)4 +3λ (ξ )σ2

ε η
ξ (ω)2

)
dµ(ω) (51o)

= 1
σ2

ηξ

·DFyyy

(
λ (ξ )3

µ
ξ

4 +λ (ξ )σ2
ηξ σ

2
ε

)
(51p)

The computations (51d), (51h), (51k) require that at c = 0, F̂ and its first partials are independent
of η , and that

∫
Ω

∂

∂ξ
η(ω)dµ(ω) = 0, which follows from equation (30). Also, (51m) follows from

the same argument as (29h).

We turn now to the bifurcation analysis. Change coordinates: α = a− a∗,γ = b− b∗, and
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consider the dynamic system
α̇

γ̇

ċ
ξ̇

=


T a(α +a∗,γ +b∗,c,ξ )
T b(α +a∗,γ +b∗,c,ξ )
T c(α +a∗,γ +b∗,c,ξ )

0

−


α +a∗

γ +b∗

c
0

≡ H(α,γ,c,ξ ),

noting that the origin is a rest point. Following the usual proof strategy, write

H(α,γ,c,ξ ) =


T a

a T a
b , T a

c T a
ξ

T b
a T b

b , T b
c T b

ξ

T c
a T c

b , T c
c T c

ξ

0 0 0 0




α

γ

c
0

+


f 1(α,γ,c,ξ )
f 2(α,γ,c,ξ )
g(α,γ,c,ξ )

0

 ,

where f i and g are O
(
‖(a,b,c,ξ )‖2) . By appealing to our previous computations, we find that

T a
a T a

b , T a
c T a

ξ

T b
a T b

b , T b
c T b

ξ

T c
a T c

b , T c
c T c

ξ

0 0 0 0

=


DFy−1 0 0 0

0 ρDFy 0 0
0 0 0 0
0 0 0 0


and

f 1(α,γ,c,ξ ) = T a(α +a∗,γ +b∗,c,ξ )−DFy ·α−a∗

f 2(α,γ,c,ξ ) = T b(α +a∗,γ +b∗,c,ξ )−ρDFy · γ−b∗

g(α,γ,c,ξ ) = T c(α +a∗,γ +b∗,c,ξ )− c.

The center manifold is parameterized by α = hα(c,ξ ) and γ = hγ(c,ξ ); and, using invariance,
these parameterizations satisfy the following functional equations:

Lα(c,ξ )≡ (DFy−1)hα + f 1(hα ,hγ ,c,ξ ) = hα
c ·g(hα ,hγ ,c,ξ )≡ Rα(c,ξ ) (52)

Lγ(c,ξ )≡ (ρDFy−1)hγ + f 2(hα ,hγ ,c,ξ ) = hγ
c ·g(hα ,hγ ,c,ξ )≡ Rγ(c,ξ ). (53)

Computing as in (32), we find that

hα
cc =

f 1
cc

1−DFy
=

T a
cc

1−DFy
=

(
DFyy

1−DFy

)
σ

2
ηξ

hγ
cc =

f 2
cc

1−ρDFy
=

T b
cc

1−ρDFy
= 0,

and, as before, these are the only partials we require.

Projected onto the center, the dynamics take the form

ċ = g(hα(c,ξ ),hγ(c,ξ ),c,ξ )≡ G(c,ξ ).
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Computing as in (46), we find G? = 0 and

Gcc = gcc = T c
cc = DFyy ·DF−2

y

(
µ

ηξ

3
σ2

ηξ

)
(54a)

Gcξ = gcξ = T c
cξ

= DFy

(
DF2

y −2
DF2

y −1

)
(54b)

Gccc = 3(hα
cc ·gac +hγ

cc ·gbc)+gccc = 3hα
cc ·T c

ac +T c
ccc =

3DFyy
DFy

(
DFyy

1−DFy

)
σ

2
ηξ +T c

ccc (54c)

= 3DFyy
DFy

(
DFyy

1−DFy

)
σ

2
ηξ +

1
σ2

ηξ

·DFyyy

(
DF−3

y µ
ε
3 +DF−1

y σ
2
ηξ σ

2
ε

)
. (54d)

The proofs of existence and stability are complete arguing as in the proof of Theorem 1.

Proof of Theorem 6. First, we require some derivatives. As notation, write

T =

(
T a

T b

)
and DF =

(
DF i

y j

)
.

We compute as follows:

Derivatives of F̂(a,b,ξ ,ηξ

t ) =
∫

Ω
(F i(a1 +b1λ (ξ )η

ξ

t +b1εt+1(ω),a2 +b2λ (ξ )η
ξ

t +b2εt+1(ω))dµ(ω)

F̂ i
a j

=
∫

Ω

DF i
y j
·dµ(ω) = DF i

y j
(55a)

F̂ i
b j

=
∫

Ω

DF i
y j
·
(

λ (ξ ) ·ηξ

t + εt+1(ω)
)

dµ(ω) = DF i
y j
·λ (ξ ) ·ηξ

t (55b)

F̂ i
ξ
=
∫

Ω

(
n

∑
j=1

DF i
y j
·b j

)
η

ξ

t dµ(ω) = 0 (55c)

F̂ i
a jak

=
∫

Ω

DF i
y jyk
·dµ(ω) = DF i

y jyk
(55d)

F̂ i
a jbk

=
∫

Ω

DF i
y jyk
·λ (ξ ) ·ηξ

t dµ(ω) = DF i
y jyk
·λ (ξ ) ·ηξ

t (55e)

F̂ i
a jξ

=
∫

Ω

(
n

∑
k=1

DF i
y jyk
·bk

)
η

ξ

t dµ(ω) = 0 (55f)

F̂ i
b jbk

=
∫

Ω

DF i
y jyk
·
(

λ (ξ ) ·ηξ

t + εt+1(ω)
)2

dµ(ω) = DF i
y jyk

((
λ (ξ ) ·ηξ

t

)2
+σ

2
ε

)
(55g)

F̂ i
b jξ

=
∫

Ω

((
n

∑
k=1

DF i
y jyk
·bk

)
η

ξ

t +DF i
y j
·ηξ

t

)
dµ(ω) = DF i

y j
·ηξ

t (55h)
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Derivatives of T ai =
∫

Ω
F̂ i(a,b,ξ ,ηξ (ω))dµ(ω)

T ai
a j

=
∫

Ω

F̂ i
a j

dµ(ω) = DF i
y j

(56a)

T ai
b j

=
∫

Ω

F̂ i
b j

dµ(ω) =
∫

Ω

DF i
y j
·λ (ξ ) ·ηξ (ω)dµ(ω) = 0 (56b)

T ai
ξ

=
∫

Ω

F̂ i
ξ

dµ(ω) = 0 (56c)

T ai
a jak

=
∫

Ω

F̂ i
a jak

dµ(ω) = DF i
y jyk

(56d)

T ai
a jbk

=
∫

Ω

F̂ i
a jbk

dµ(ω) =
∫

Ω

DF i
y jyk
·λ (ξ ) ·ηξ (ω)dµ(ω) = 0 (56e)

T ai
a jξ

=
∫

Ω

F̂ i
a jξ

dµ(ω) = 0 (56f)

T ai
b jbk

=
∫

Ω

F̂ i
b jbk

dµ(ω) =
∫

Ω

DF i
y jyk

(
λ (ξ )2 ·ηξ (ω)2 +σ

2
ε

)
dµ(ω) = DF i

y jyk
·σ2

ηξ (56g)

T ai
b jξ

=
∫

Ω

F̂ i
b jξ

dµ(ω) =
∫

Ω

DF i
y j
·ηξ (ω)dµ(ω) = 0 (56h)

Derivatives of T bi = 1
σ2

ηξ

∫
Ω

ηξ (ω)F̂ i(a,b,ξ ,ηξ (ω))dµ(ω)

T bi
a j

= 1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂ i

a j
dµ(ω) = 0 (57a)

T bi
b j

= 1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂ i

b j
dµ(ω) = 1

σ2
ηξ

·DF i
y j
·λ (ξ ) ·

∫
Ω

η
ξ (ω)2dµ(ω) = DF i

y j
·λ (ξ ) (57b)

T bi
ξ

=
(

σ
2
ηξ

)−2
(

σ
2
ηξ

∫
Ω

(
η

ξ (ω)F̂ i
ξ
+ F̂ i ∂

∂ξ
η

ξ (ω)
)

dµ(ω)− ∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂ idµ(ω)

)
= 0 (57c)

T bi
a jak

= 1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂ i

a jak
dµ(ω) = 0 (57d)

T bi
a jbk

= 1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂ i

a jbk
dµ(ω) = 1

σ2
ηξ

·DF i
y jyk
·λ (ξ ) ·

∫
Ω

η
ξ (ω)2dµ(ω) = DF i

y jyk
·λ (ξ ) (57e)

T bi
b jbk

= 1
σ2

ηξ

∫
Ω

η
ξ (ω)F̂ i

b jbk
dµ(ω) = 1

σ2
ηξ

∫
Ω

η
ξ (ω)DF i

y jyk

((
λ (ξ ) ·ηξ (ω)

)2
+σ

2
ε

)
dµ(ω) = DF i

y jyk
·λ (ξ )2

(
µ

ηξ

3
σ2

ηξ

)
(57f)

T bi
b jξ

=
(

σ
2
ηξ

)−2
(

σ
2
ηξ

∫
Ω

(
η

ξ (ω)F̂ i
b jξ

+ F̂ i
b j

∂

∂ξ
η

ξ (ω)
)

dµ(ω)− ∂

∂ξ
σ

2
ηξ

∫
Ω

η
ξ (ω)F̂ i

b j
dµ(ω)

)
= DF i

y j

(
1−2λ (ξ )2

1−λ (ξ )2

)
(57g)

The above computations show that DT = DF ⊕ λ (ξ )DF . Next, let Ŝ = S⊕ S, θ = (a′,b′)′ and
φ = Ŝ−1θ , and consider the dynamic system

φ̇ = Ŝ−1T (Ŝφ ,ξ )−φ = Ĥ(φ ,ξ ), (58)

which is topologically equivalent to the E-stability differential equation of our economic model,
except now, to first order, the dynamics are decoupled. In particular, after adjoining ξ as usual, we
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may write the dynamic system (58) as

φ̇1
...

φ̇n
φ̇n+1

...
φ̇2n−1
φ̇2n

ξ̇


=



β1−1 · · · 0 0 · · · 0 0 0
... . . . ...

...
...

...
...

...
0 · · · βn−1 0 · · · 0 0 0
0 · · · 0 β1

βn
−1 · · · 0 0 0

...
...

...
... . . . ...

...
...

0 · · · 0 0 · · · βn−1
βn
−1 0 0

0 · · · 0 0 · · · 0 0 0
0 · · · 0 0 · · · 0 0 0





φ1
...

φn
φn+1

...
φ2n−1
φ2n
ξ


+



f 1(φ ,ξ )
...

f n(φ ,ξ )
f n+1(φ ,ξ )

...
f 2n−1(φ ,ξ )

g(φ ,ξ )
0


,

(59)
where f i and g comprise higher-order terms.

The center manifold is parameterized by φi = hi(φ2n,ξ ) for i= 1, . . .2n−1. Invariance provides
the following functional equations in φ2n and ξ :

hi
φ2n
·g = f i−DĤii ·hi. (60)

These may be used to compute a second-order approximation to the hi. Finally, the projected
dynamics are given by

φ̇2n = g
(
h1 (φ2n,ξ ) , . . . ,h2n−1 (φ2n,ξ ) ,φ2n,ξ

)
≡ G(φ2n,ξ ) .

We now turn to bifurcation analysis of φ̇2n = G(φ2n,ξ ).

Note that G is second order: G = G? = 0. Thus, to show that a transcritical bifurcation occurs
it suffices to show that Gφ2nφ2n and Gφ2nξ are non-zero. Using hi = hi

? = 0 we find that

Gφ2nφ2n = gφ2nφ2n and Gφ2nξ = gφ2nξ ,

just as in previous arguments.

Recalling that S−1 = (Si j) we find

g(∗,φ2n,ξ ) =
n

∑
i=1

Sni ·T bi (∗,b1(φ2n), . . . ,bn(φ2n),ξ ) ,

where bi(φ2n) = ∗+Sin ·φ2n, and here and below an “∗” captures terms that are not relevant to the
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local argument. We compute

gφ2n =
n

∑
i=1

Sni ·
n

∑
j=1

S jn ·T bi
b j

gφ2nφ2n =
n

∑
i=1

Sni ·
n

∑
j=1

S jn ·
n

∑
k=1

Skn ·T bi
b jbk

= λ (ξ )2
(

µε
3

σ2
ηξ

) n

∑
i=1

Sni (S′n ·D2F i ·Sn
)

gφ2nξ =
n

∑
i=1

Sni ·
n

∑
j=1

S jn ·T bi
b jξ

=

(
1−2λ (ξ )2

1−λ (ξ )2

) n

∑
i=1

Sni ·
n

∑
j=1

S jn ·DF i
j

=

(
1−2λ (ξ )2

1−λ (ξ )2

) n

∑
i=1

Sni ·DF i ·Sn =

(
1−2λ (ξ )2

1−λ (ξ )2

)
βn.

Existence is now established as in case 1 of the proof of Theorem 1, and stability follows from
the topological equivalence of (58) with the E-stability ode, together with the fact that, under the
assumptions, the non-zero eigenvalues of DĤ are negative.

Details of the NK example

A unit mass of households indexed as ω ∈Ω maximizes discounted expected utility, where the
utility flow is given by

1
1−σ

(
ct(ω)1−σ −1

)
+ log

(
mt−1(ω)

πt(ω)

)
− ht (ω)1+χ

1+χ
− γ

2

(
pt(ω)

pt−1(ω)
−π

∗
)2

,

where σ ,χ,γ > 0. Here household ω’s consumption index is

ct(ω) =

(∫
ct(ω,ϖ)

ν−1
ν dϖ

) ν

1−ν

,

with ct(ω,ϖ) denoting the consumption by household ω of good ϖ . Household ω produces the
quantity yt(ω) of good ω using labor ht(ω) via the technology yt(ω) = ht(ω)α , for 0 < α < 1.
The household then sells this good at price pt(ω) under conditions of monopolistic competition
against the demand curve p(ω) = p · (y(ω)/y)−

1
ν , for ν > 1, where p1−ν =

∫
p(ω)1−νdω and

y
ν−1

ν =
∫

y(ω)
ν−1

ν dω are the usual CES aggregates. Also, mt−1(ω) is real money holdings at t−1
and πt(ω) = pt(ω)/pt−1(ω) is the household-specific inflation rate. The first three terms of the
utility flow are standard. The fourth term involving pt(ω)/pt−1(ω) reflects the internalized cost
of price adjustment, with π∗ corresponding to the inflation target.

The budget constraint of the household is

ct(ω)+mt(ω)+bt(ω)+Tt =
mt−1(ω)

πt
+

Rt−1

πt
bt−1(ω)+

pt(ω)

pt
yt(ω),

where bt−1(ω) is the real bond holdings at the start of period t ,Rt−1 is the nominal interest rate
factor, πt = pt/pt−1 is the aggregate inflation factor, and Tt is lump-sum taxes net of transfers
(including real monetary injections).
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The government prints money and levies lump sum taxes. The government’s flow constraint is
given by

ms
t +Tt =

ms
t−1

πt
. (61)

Through transfers, the government may choose ms
t to implement its instrument rule.

Aggregate market-clearing conditions are given by

yt =
∫

ct(ω)dω, ms
t =

∫
mt(ω)dω, and 0 =

∫
bt(ω)dω.

These equations, coupled with homogeneity and the agents’ first-order conditions, yield the non-
linear three-equation model, reproduced here for reference:

y−σ
t = β ·RtEtπ

−1
t+1y−σ

t+1 (62)

γ ·πt(πt−π
∗) = β · γ ·Etπt+1(πt+1−π

∗)+(ν/α)y
1+χ

α

t +(1−ν)y1−σ
t (63)

Rt = R∗
(

Et

(
πt+1

π∗

))απ ·π∗
(

Et

(
yt+1

y∗

))αy·y∗

evt (64)

vt = ρvt−1 +ut . (65)

To apply the MSV-principle, we must linearize our model. Recall that we set the inflation target
to one, so that R∗ = β−1. Linearizing the model about the steady state, we obtain

dyt = Etdyt+1 +(y∗/σ)(βdRt−Etdπt+1)

dπt = βEtdπt+1 +κdyt

dRt = (απ/β)Etdπt+1 +(αy/β)Etdyt+1 +R∗dvt ,

where

y∗ =

(
α(ν−1)

ν

) α

1+χ+α(σ−1)

κ =
1
γ

(
(1+χ)ν

α2 (y∗)
1+χ

α
−1 +(1−ν)(1−σ)(y∗)−σ

)
,

and where d? represents the deviation of the variable ? from its steady-state value (of course,
dv = v). Combining the interest-rate rule with the IS equation eliminates the dependency on dRt ,
so that the linearized model may be written dxt = FEtdxt+1 +Gdvt for appropriate matrices F,G,
where we recall that x = (y,π)′.

The MSV solution of the linearized model is given by dxt = Cdvt , for appropriate matrix C.
If both eigenvalues of F have modulus less than one then the linearized model is determinate (or,
equivalently, the steady state of the nonlinear model) is locally determinate; in this case the MSV
solution is the unique non-explosive REE of the linearized model. If one or both eigenvalues
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of F lies outside the unit circle the linearized model is indeterminate. Finally, regardless of the
linearized model’s determinacy status, it is well-known and straightforward to show that the MSV
solution is E-stable provided the eigenvalues of F have real part less than unity.

For calibration used in our example only one of the eigenvalues of F is outside the unit circle.
Write ξt+1 = dxt+1−Etdxt+1 so that(

dxt
dvt

)
=

(
F−1 −F−1G

0 ρ

)(
dxt−1
dvt−1

)
+

(
I2 0
0 1

)(
ξt

dut

)
.

Next, write (
F−1 −F−1G

0 ρ

)
= S(λ1⊕λ2⊕ρ)S−1

with |λ1| > 1 > |λ2|. Noting that the bottom row of S−1 is (0,0,1), and changing coordinates to
(dz,dv)′= S−1(dx,dv)′, we obtain the system zit = λizit−1+ ξ̃it for i= 1,2, where ξ̃t = S−1(ξt ,dut)

′.

Write Sij as the ij-th entry of S−1. Non-explosiveness requires that z1t = 0. This restriction pins
down one of the forecast errors, i.e.

ξ̃1t = S11
ξ1t +S12

ξ2t +S13dut = 0.

If we select the forecast errors so that we also have ξ̃2t = 0 then the associated equilibrium may be
written (

dyt
dπt

)
=−

(
S11 S12

S21 S22

)−1(S31

S32

)
dvt ,

which is exactly the MSV solution dxt = Cdvt referenced above. If, on the other hand, ξ̃2t 6= 0,
then, writing ηt = λ2ηt−1 + ξ̃2t , the associated equilibrium becomes(

dyt
dπt

)
=−

(
S11 S12

S21 S22

)−1(S31

S32

)
dvt−

(
S11 S12

S21 S22

)−1(0
1

)
ηt ,

which has the form dxt = Cdvt +Dηt for appropriate matrix D. In particular, this equilibrium
presents as the MSV solution plus a serially correlated sunspot with resonance frequency λ2, as
analogous to sunspot equilibria in the univariate linearized model of the main text.
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