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A1 Proofs

First, we formally establish our earlier contention that k̂ is independent of level-0
beliefs and of the value of the constant γ.

Lemma A.1. Fix β and weight system ω. Let k̂(β, ω, a, γ) be the optimal sophis-
tication level given the constant term γ and level-0 beliefs a. Then k̂(β, ω, a, γ) =
k̂(β, ω, 1, 0).

Proof. Write Tγ(a, ω, β) as the realized value of y given the datum (β, ω, a, γ).
From equation (2) we have

Tγ(a, ω, β)− γ

1− β
= γ +

βγ

1− β
∑
k≥0

ωk −
βγ

1− β
∑
k≥0

βkωk + βa
∑
k≥0

βkωk −
γ

1− β

=
γ

1− β
−
(

γ

1− β

)
β
∑
k≥0

βkωk + βa
∑
k≥0

βkωk −
γ

1− β

= T0

(
a− γ

1− β
, ω, β

)
.

(A1)
Next, let φ(β, k, a, γ) be the forecast of a k-level agent. Then

φ(β, k, a, γ) = γ

(
1− βk

1− β

)
+ βka.

Also, let φε(β, k, a, γ) = |φ(β, k, a, γ)− Tγ(a, ω, β)| be the associated forecast
error.

Now observe that

arg min
k∈N

φε(β, k, a, 0) = arg min
k∈N

∣∣∣∣∣aβk − aβ∑
n≥0

βnωn

∣∣∣∣∣ = arg min
k∈N
|a|

∣∣∣∣∣βk − β∑
n≥0

βnωn

∣∣∣∣∣
= arg min

k∈N

∣∣∣∣∣βk − β∑
n>0

βnωn

∣∣∣∣∣ = arg min
k∈N

φε(β, k, 1, 0).

(A2)
Also, by (A1) we have that

φε(β, k, a, γ) = φε(β, k, a− ȳ, 0),

where ȳ = γ(1− β)−1, so that

arg min
k∈N

φε(β, k, a, γ) = arg min
k∈N

φε(β, k, a− ȳ, 0). (A3)

Putting (A2) and (A3) together yields

arg min
k∈N

φε(β, k, a, γ) = arg min
k∈N

φε(β, k, 1, 0),
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which completes the proof.

Stability of unified dynamics. The strategy is to show that adaptive dy-
namics lead to convergence for any sequence of weights. Some notation is needed.
Given a system of weights ω = {ωi}i≥0, let

Tγ(a, ω, β) = γ

(
1 +

β

1− β
∑
k≥0

(1− βk)ωk

)
+ β

∑
k≥0

βkωka (A4)

Now fix any sequence of weight systems {ωt}t≥0 =
{
{ωit}i≥0

}
t≥0

, and define the

following recursion:

at = at−1 + φ (Tγ (at−1, ωt−1, β)− at−1) . (A5)

We have the following result.

Lemma A.2. Let φ ∈ (0, 1].
1. If |β| < 1 then at → 0.

2. If β > 1 then |at| → ∞.

Proof. First, observe that (A1) and (A5) imply

at −
γ

1− β
= at−1 −

γ

1− β
+ φ

(
Tγ (at−1, ωt−1, β)− γ

1− β
−
(
at−1 −

γ

1− β

))
= at−1 −

γ

1− β
+ φ

(
T0

(
at−1 −

γ

1− β
, ωt−1, β

)
−
(
at−1 −

γ

1− β

))
,

which shows that it suffices to prove the results for γ = 0. We drop the subscript
on T .

Now assume |β| < 1, and observe that for any ω,∣∣∣∣∣β∑
k≥0

βkωk

∣∣∣∣∣ ≤ |β|∑
k≥0

|βk|ωk ≤ |β|
∑
k≥0

|β|ωk ≤ β2. (A6)

Next, write the recursion (A5) as

at =

(
1− φ

(
1− β

∑
k≥0

βkωkt−1

))
at−1 ≡ At−1at−1.

By equation (A6),

−1 < 1− φ(1 + β2) ≤ At−1 ≤ 1− φ(1− β2) < 1.

It follows that

|at| =

(
t∏

n=1

At−n

)
|a0| → 0,

establishing item 1.
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Now let β > 1. The same reasoning as in (A6), but with the inequalities
reversed, yields

β
∑
k≥0

βkωk ≥ β2.

It follows that
At ≥ 1− φ+ φβ2 = 1 + φ(β2 − 1) > 1,

and the result follows.

Proof of Theorem 1. The result is immediate: since Lemma A.2 holds for any
sequence of weight systems, it holds in particular for whatever system of weights
is produced by the unified dynamics.

Stability of the replicator dynamic. We begin with three lemmas.

Lemma A.3. Suppose γ = 0.

1. If |β| < 1 then k < k̂(y) implies that there exists δ ∈ (0, 1) such that
|y| < (1− δ)|aβk|.

2. If β > 1 then k < k̂(y) implies that there exists δ > 0 such |y| > (1+δ)|aβk|.

Proof. Assume |β| < 1. If |y| < |aβ k̂| we are done, so assume |aβ k̂| ≤ |y|. Let

δ = 1/2(1− |β k̂−k|). We claim 2|y| < |aβ k̂|+ |aβ k̂−1|. Indeed, by the optimality of
k̂,

|y| − |aβ k̂| = |y − aβ k̂| < |y − aβ k̂−1| = |aβ k̂−1| − |y|.

Thus we compute

|y| <
1

2

(
|aβ k̂|+ |aβ k̂−1|

)
≤ 1

2

(
|aβ k̂|+ |aβk|

)
=

1

2

(
|β k̂−k|+ 1

)
|aβk| = (1− δ)|aβk|.

Now assume β > 1. We may also assume, without loss of generality, that a > 0.
Let δ = 1/2(|β k̂−k| − 1). If y > aβ k̂ we are done, so assume aβ k̂ ≥ y. It follows
that

aβ k̂ ≥ y >
a

2

(
β k̂ + βk

)
=

1

2

(
β k̂−k + 1

)
aβk = (1 + δ)aβk,

where the second inequality follows from the definition of k̂.

Lemma A.4. Let γ = 0 and {yt}t≥1 be generated by the replicator, initialized

with weights {ωn0}n∈N and beliefs a. Let k̆ ≥ 1 and suppose there exists N > 0
such that t ≥ N implies k̂(yt) > k̆. Then limt→∞ ωnt = 0 for all n ≤ k̆.

Proof. Let t ≥ N . First suppose |β| < 1. Since k̂(yt) > k̆, it follows from Lemma

A.3 that (1− δ)|aβ k̆| > |yt|, for some δ ∈ (0, 1). Thus n ≤ k̆ implies

|aβn − yt| ≥ |aβn| − |yt| > |aβn| − (1− δ)|aβ k̆| > 0.

3



Unified Model

Using this estimate in the replicator yields, and that r′ > 0, we have, for s ≥ 1,

ωnt+s = (1− r (|aβn − yt+s−1|))ωnt+s−1

<
(

1− r
(
|aβn| − (1− δ)|aβ k̆|

))
ωnt+s−1

<
(

1− r
(
|aβn| − (1− δ)|aβ k̆|

))s
ωnt−1.

Because r(0) ≥ 0 it follows that ωnt+s → 0 as s→∞.
Now suppose β > 1, and assume, without loss of generality, that a > 0. Since

k̂(yt) > k̆, it follows from Lemma A.3 that aβ k̆(1 + δ) < yt. Thus n ≤ k̆ implies

|aβn − yt| = yt − aβn ≥ (1 + δ)aβ k̆ − aβn > 0.

The argument now proceeds analogously to the case |β| < 1.

Lemma A.5. If xn is an integer sequence and lim inf xn = x < ∞ then there
exists N > 0 such that n ≥ N implies xn ≥ x.

Proof. The result is trivial if x = −∞ so assume otherwise. Let x̂k = infn≥k xn.
Then x̂k is a non-decreasing integer sequence converging to x. Now simply choose
N so that |x̂N − x| < 1.
We are now ready to prove the main result.

Proof of Theorem 2. By Lemma A.1 we may assume γ = 0. To thin
notation, let k̂t = k̂(yt). It is helpful to introduce the relation �: for y ∈ R and
m(y), n(y) ∈ N, write m(y) � n(y) when the level-m forecast is superior to the
level-n forecast, i.e.,

m(y) � n(y)⇐⇒ |y − aβm(y)| < |y − aβn(y)|.

Now set k̃ = lim inf k̂t.
We consider the cases β > 1 and |β| < 1 separately, however, we note that

for each case it suffices to show k̃ =∞. To see this, first consider the case β > 1,
and note that without loss of generality we may assume a > 0. Let ∆ > 0 and
pick m so that aβm > ∆. Since k̃ =∞ it follows that k̂t →∞, so pick t̂ so that
t ≥ t̂ =⇒ k̂t > m. Finally, for n ≥ 1 let Ωl

t (n) =
∑

k<n ωkt, and note that, by

Lemma A.4, k̃ =∞ implies Ωl
t (n)→ 0 as t→∞. Thus

lim
t→∞

yt = lim
t→∞

aβ
∑
n∈N

βnωnt ≥ lim
t→∞

(
1− Ωl

t (m)
)
aβm+1 = aβm+1 > ∆.

Now suppose |β| < 1. By Lemma A.4, if k̂t → ∞ then all the weights are
driven to zero. If all the weights are driven to zero then yt → 0: indeed, writing,
ωmax
t = maxi∈N ωit, we have

|yt| =

∣∣∣∣∣aβ∑
n∈N

ωntβ
n

∣∣∣∣∣ ≤ ωmax
t |aβ|

∑
n∈N

|βn| → 0,

since ωmax
t → 0 as t→∞.

Our proof strategy is to assume k̃ < ∞ and derive a contradiction. To this
end, it suffices to find some M > 0 so that t ≥ M implies the existence of
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m(yt) > k̃ with m(yt) � k̃, as this contradicts the definition of k̃ as the limit
infimum of the k̂t.

First, the easy case: β > 1; and again assume a > 0. Then yt ≥ (1 −
Ωl
t(k̃))aβ k̃+1, and, by Lemmas A.4 and A.5, limt→∞Ωl

t(k̃)) = 0. It follows that
eventually, k̃ + 1 � k̃, which is the desired contradiction.

Now, assume |β| < 1, and let N be chosen as in Lemma A.5. The desired
contradiction is developed in three steps.
Step 1. We establish the following claim:
Claim. Given ε > 0 there exists M(ε) > 0 so that t ≥ M(ε) ≥ N implies

|yt| < |aβ|k̃+1(1 + ε).
Proof of claim. We know that for all t ≥ N we have k̂t ≥ k̃. It follows that, for
k̃ ≥ 1,

|yt| ≤ |aβ|
∑
k<k̃

|β|kωkt + |aβ|
∑
k≥k̃

|β|kωkt

< |aβ|Ωl
t

(
k̃
)

+ |a||β|k̃+1
(

1− Ωl
t

(
k̃
))

.

By Lemma A.4 we have that Ωl
t

(
k̃
)
→ 0 as t→∞, which establishes the claim.

Step 2. We now prove the result when 0 < β < 1. Choose 2ε < β−1− 1 so that

(1 + ε)βn+1 <
1

2

(
βn+1 + βn

)
.

LetM(ε) =M be chosen as in Step 1, and assume t ≥M. There are two cases.

Case 1: a > 0. It follows that yt > 0. Then

0 < yt < aβk̃+1(1 + ε) <
1

2

(
aβ k̃+1 + aβ k̃

)
,

which implies that k̃ + 1 � k̃, the desired contradiction.

Case 2: a < 0. In this case yt < 0. Then

0 > yt > aβk̃+1(1 + ε) >
1

2

(
aβ k̃+1 + aβ k̃

)
,

which implies that k̃ + 1 � k̃, the desired contradiction.

Step 3. Finally, we prove the result when −1 < β < 0. Choose ε < (2|β|)−1(1−
|β|)2 and choose M(ε) as in Step 1. Now notice that

1 + ε < (2|β|(n+1))−1
(
|β|n + |β|n+2

)
,

for any n ≥ 1. It follows that

2|β|k̃+1(1 + ε) < |β|k̃+2 + |β|k̃, or

0 < |β|k̃+1(1 + ε)− |β|k̃+2 < |β|k̃ − |β|k̃+1(1 + ε). (A7)

Let t ≥M . There are two cases.

Case 1: k̂t 6= k̃ (mod 2). In this case sign(yt) = −sign(aβ k̃), whence k̃ + 1 � k̃.
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Case 2: k̂t = k̃ (mod 2). If yt < 0 then aβ k̃ is negative. Next, note that if yt ≥
aβ k̃+2 then k̃ + 2 � k̃, which is a contradiction. Thus

aβ k̃ < −|aβ k̃+1|(1 + ε) < yt < aβk̃+2 < 0,

where the first inequality follows from (A7). Thus

|aβ k̃+2 − yt| <
∣∣∣aβ k̃+2 + |aβ k̃+1|(1 + ε)

∣∣∣
= |aβ k̃+1|(1 + ε)− |aβ k̃+2|

= |a|
(
|β k̃+1|(1 + ε)− |β k̃+2|

)
< |a|

(
|β k̃| − |β k̃+1(1 + ε)|

)
= |aβ k̃| − |aβ k̃+1(1 + ε)|

< |aβ k̃| − |yt| =
∣∣∣aβ k̃ − yt∣∣∣ ,

which implies k̃ + 2 � k̃.

Now suppose yt > 0, so that aβ k̃ is positive. Thus

aβ k̃ > |aβ k̃+1|(1 + ε) > yt > aβk̃+2 > 0,

where the reasoning is as above. Thus

|yt − aβ k̃+2| <
∣∣∣|aβ k̃+1|(1 + ε)− aβ k̃+2

∣∣∣
= |aβ k̃+1|(1 + ε)− |aβ k̃+2|

= |a|
(
|β k̃+1|(1 + ε)− |β k̃+2|

)
< |a|

(
|β k̃| − |β k̃+1(1 + ε)|

)
= |aβ k̃| − |aβ k̃+1(1 + ε)|

< |aβ k̃| − |yt| =
∣∣∣aβ k̃ − yt∣∣∣ ,

so that k̃ + 2 � k̃, completing the proof of step 3.

Proof of Theorem 3. Lemma A.2 establishes items 1 and 2, and so we focus
here only on item 3. Also, as demonstrated in the proof of Lemma A.2, we may
assume γ = 0. We recall the notation Ω = ∪̇n∆n and ψβ : Ω → R, given by
ψβ(ω) = β

∑
k β

kωk, and that Ω is endowed with the direct-limit topology.
The dynamic system for at may be written

at = (1− φ+ φψβ(ω)) at−1 ≡ A(β, ω, φ)at−1.

It follows that |A(β, ω, φ)| < 1 =⇒ at → 0 and |A(β, ω, φ)| > 1 =⇒ |at| → ∞.
We compute

|A(β, ω, φ)| < 1⇐⇒ −1 < 1− φ+ φψβ(ω) < 1⇐⇒ 1− 2φ−1 < ψβ(ω) < 1, and

|A(β, ω, φ)| > 1⇐⇒ 1− φ+ φψβ(ω) < −1 or 1− φ+ φψβ(ω) > 1

⇐⇒ ψβ(ω) < 1− 2φ−1 or ψβ(ω) > 1.
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This completes the proof of items 3(a) - 3(c).
To establish item 3(d) we start by showing that ψβ is continuous. Let ψnβ

be the restriction of ψβ to ∆n ⊂ Ω. It suffices to show that ψnβ : ∆n → R is
continuous for each n ∈ N. To see this, let U ⊂ R be open. Then

ψ−1
β (U) = ∪n

(
ψ−1
β (U) ∩∆n

)
= ∪n

((
ψnβ
)−1

(U) ∩∆n
)

= ∪n
((
ψnβ
)−1

(U)
)
.

Assuming ψnβ : ∆n → R is continuous, we have that
(
ψnβ
)−1

(U) is open in ∆n,

whence open in Ω. Thus ψ−1
β (U) is a union of open sets in Ω, which establishes

the continuity of ψβ.
Next we demonstrate surjectivity of ψβ. Let z ∈ R. Since β < −1 we can find

an n ∈ N with n ≥ 1 so that β2n+1 < z < β2n. By continuity there is ε ∈ (0, 1/2)
such that

(1− ε)β2n+1 + εβ2n < z < εβ2n+1 + (1− ε)β2n.

For α ∈ (0, 1) let ω(α) ∈ ∆2n+1 ⊂ Ω be given by

ωk(α) =


α if k = 2n+ 1
1− α if k = 2n
0 else

and note that α → ωα continuously maps (0, 1) into ∆2n+1, whence into Ω. Let
Ψβ : (0, 1)→ R be Ψβ(α) = ψβ(ω(α)). It follows that Ψβ is continuous and

Ψβ(ε) = (1− ε)β2n+1 + εβ2n < z < εβ2n+1 + (1− ε)β2n = Ψβ(1− ε)

By the intermediate value theorem there is an α ∈ (ε, 1− ε) so that z = Ψβ(α) =
ψβ(ω(α)), which establishes surjectivity.

Now let
Ωs = ψ−1

β

(
(1− 2φ−1, 1)

)
Ωu = ψ−1

β

(
(−∞, 1− 2φ−1) ∪ (1,∞)

)
.

Both sets are open by the continuity of ψβ, and from items 3(a) and 3(b) we have
that ω ∈ Ωs implies yt → ȳ and ω ∈ Ωu implies |yt| → ∞. Thus parts (i) and (ii)
of item 3(d) are established.

Finally, let Ω0 = Ω \ (Ωs ∪Ωu). We must show that Ω0 is no-where dense, i.e.
that the interior of the closure of Ω0 is empty. To this end, notice that

Ω0 = ψ−1
β ({−1}) ∪̇ψ−1

β ({1}) ≡ Ω−0 ∪̇Ω+
0 .

Since ψβ is continuous, it follows that Ω±0 are closed. Since no-where denseness is
closed under finite unions, it suffices to show that the interiors of Ω±0 are empty.
Thus let ω ∈ Ω+

0 . Let N ∈ N so that ω ∈ ∆N . Since β < −1 and ψβ(ω) = 1 there
is an even n ∈ N and an odd m ∈ N, with n,m ≤ N and such that ωn, ωm 6= 0.
For k ∈ N with k ≥ 2, define ωk ∈ ∆N ⊂ Ω as follows:

ωki =


(1− k−1)ωn if i = n
ωm + k−1ωn if i = m
ωi else

Note that ωk is the same weight system as ω except that some of the weight
associated with the positive forecast βn is shifted to the negative forecast βm.
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Because the model itself has negative feedback, this means that the implied value
of y is larger for weight system ωk than it is for weight system ω. More formally,
k ≥ 2 implies that ψβ(ωk) > 1, which implies that ωk ∈ Ωu. Now notice that, as
a sequence in ∆N , we have ωk → ω. Owing to the construction of the direct-limit
topology, we have that ωk → ω in Ω as well. Thus, given an arbitrary element
ω ∈ Ω+

0 we have constructed a sequence in Ωu converging to it, and since Ωu∩Ω+
0

is empty, we conclude that ω is not in the interior of Ω+
0 . So the interior of Ω+

0 is
empty, and since Ω+

0 is closed, we conclude that Ω+
0 is nowhere dense. The same

argument applies to Ω−0 , which shows that Ω0 = Ω−0 ∪̇Ω+
0 is no-where dense.

Full statement and proof of Proposition 1. Recall from (4) that k̂ is
defined explicitly as a function of yt. However, both yt and Ek

t−1yt are affine
functions of level-0 beliefs a. In particular, if γ = 0 then

k̂(a) = min arg min
k∈N
|βka− β

∑
k ωka|, (A8)

which further implies that k̂ is independent of a. It is straightforward to show
this result continues to hold with γ 6= 0, and, in fact, k̂ is independent of the
value of γ. Thus, we may view k̂ = k̂(β, ω). We have the following result.

Proposition 1′ (Optimal forecast levels). Let K ≥ 1 and ωK = {ωn}Kn=0 be a

weight system with weights given as ωn = (K + 1)−1. Let k̂ = k̂
(
β, ωK

)
.

1. Suppose 0 < β < 1.

(a) K →∞ =⇒ k̂ →∞ and k̂/K → 0.

(b) β → 1− =⇒ k̂ →

{
K
2

+ 1 if K is even
K+1

2
if K is odd

(c) β → 0+ =⇒ k̂ →
{

1 if K = 1
2 if K ≥ 2

2. Suppose −1 < β < 0.

(a) K →∞ =⇒ k̂ →∞ and k̂/K → 0.

(b) β → 0− =⇒ k̂ →
{

1 if K = 1
3 if K ≥ 2

(c) β → −1+ =⇒ k̂ →∞.

3. Suppose β < −1

(a) K →∞ =⇒ k̂ →∞ and k̂/K → 1

(b) β → −1− =⇒ k̂ →
{

1 if K is even
0 if K is odd

(c) β → −∞ =⇒ k̂ → K + 1.

Before proceeding to the proof, some preliminary work is required. By Lemma
A.1 we may assume γ = 0 and a = 1. Recall from Section 3.2 our notation for
uniform weights: for K ∈ N, ωK = {ωn}Kn=0 with ωn = (K + 1)−1. It follows that

y = β
∑

kβ
kωk = β

K+1

∑
kβ

k =
β(1−βK+1)
(K+1)(1−β)

≡ ψ (K, β) .

8



Unified Model

When it does not impede clarity, we make the identifications k̂ = k̂
(
β, ωK

)
and

ψ = ψ (K, β).
It is helpful to define k∗ as the continuous counterpart to k̂. For β > 0 our

definition for k∗ corresponds to the first order condition for minimizing (βk −
ψ(K, β))2 for k ∈ R+. However, care must be taken to accommodate β < 0. We
define k∗ as follows:

k∗ (K, β) =
log
(
ψ (K, β)2)

log(β2)
. (A9)

Of course if β, and hence ψ, are positive then we can dispense with the squared
terms in the definition.

Now define b·c to be the usual floor function, i.e. for x ∈ R, bxc is the largest
integer less than or equal to x. Define b·codd and b·ceven and the odd and even
floors, respective, which take the obvious meaning, e.g. bxceven is the largest even
integer less than or equal to x. Finally, d·e, d·eeven, and d·eeven have the analogous
definitions. Define

k∗low =


bk∗c if 0 < β < 1

bk∗codd if − 1 < β < 0 or if β < −1 and ψ < 1+β
2

bk∗ceven if β < −1 and ψ > 0

and define k∗high analogously using the ceiling functions. The following result links

k∗ and k̂.

Lemma A.6. If k∗ ≥ 0 then k̂ ∈ {k∗low, k∗high}.

Proof. We begin with the following observations on the parity of k̂.1 Recall
that 0 is taken as even.

1. If −1 < β < 0 then k̂ is odd.
2. If β < −1 and ψ < 1+β

2
then k̂ is odd.

3. If β < −1 and ψ > 0 then k̂ is even.
These items may be established as follows. Note that −1 < β < 0 implies ψ < 0,
whence there is an odd n ∈ N so that ψ < βn < 0, making n superior to any even
forecast level. If β < −1 and ψ < 1+β

2
then the level 1 forecast is superior to any

even forecast level. If β < −1 and ψ > 0 then the level 0 forecast is superior to
any odd forecast level.

Next, note that k∗ < 0 if and only if −1 < ψ < 1 and β < −1. Now, for
α ∈ R+ define φ(α, β) as follows:

φ(α, β) =

{
(β2)

α
2 if ψ > 0

β (β2)
α−1
2 if ψ < 0

This function has the following properties:
(a) If k̂ ≥ 1 and if non-zero k ∈ N has the same parity as k̂ then βk = φ(k, β):

in this way φ extends our notion of forecast level to all positive reals.
(b) φ(k∗, β) = ψ.

1The parity of n ∈ N is its equivalence class mod 2. Thus n and m have the same parity if
they are either both even or both odd.

9
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To establish item (a), first suppose k̂ is even. Since k̂ ≥ 1 it follows that ψ > 0.
Let k = 2m for m > 0. Then φ(k, β) = (β2)m = βk. Next suppose k̂ is odd. Let

k = 2m + 1. If 0 < β < 1 then ψ > 0, so that φ(k, β) = (β2)
2m+1

2 = β2m+1. Let
β < 0. If −1 < β < 0 then ψ < 0. If β < −1 then k̂ odd implies ψ < 0. Thus
k = 2m + 1 implies φ(k, β) = β(β2)m = β2m+1. To establish item (b), observe
that ψ > 0 implies

log φ(k∗, β) = (k∗/2) log β2 = (1/2) logψ2 = logψ

and ψ < 0 implies φ(k∗, β) < 0, and

log (−φ(k∗, β)) = log
(
β2
) 1

2
(
β2
) k∗−1

2 = log
(
β2
) k∗

2 = (k∗/2) log β2 = log (−ψ) .

We turn now to the body of the proof of Lemma A.6, in which we use the
following notation: k1 ≺ k2 if βk1 is strictly inferior to βk2 as a forecast of ψ. The
strategy is as follows: show that k < bk∗c =⇒ k ≺ bk∗c, and that k > dk∗e
implies that k ≺ dk∗e, with floor and ceiling functions adjusted for parity as
needed.
Case 1: 0 < β < 1. Since ψ < β in this case, we have that k∗ ≥ 1 and k̂ ≥ 1.
Also α > 0 implies φα(α, β) < 0. Thus if k1 < bk∗c and k2 > dk∗e then

φ(k1, β) > φ(bk∗c, β) ≥ φ(k∗, β)︸ ︷︷ ︸
ψ

≥ φ(dk∗e, β) > φ(k2, β).

Thus k1 ≺ bk∗c and k2 ≺ dk∗e.
Case 2: −1 < β < 0. Since β < ψ < 0 in this case, we have that k∗ ≥ 1. Also
α > 0 implies φα(α, β) > 0. Also ψ < 0 so that k̂ is necessarily odd. Thus if
bk∗codd ≥ 1 and if ki are odd with k1 < bk∗codd and k2 > dk∗eodd, then

φ(k1, β) < φ(bk∗codd, β) ≤ φ(k∗, β)︸ ︷︷ ︸
ψ

≤ φ(dk∗eodd, β) < φ(k2, β).

Thus k1 ≺ bk∗codd and k2 ≺ dk∗eodd.
Case 3: β < −1 and ψ < 1+β

2
. Then k∗ ≥ 1 and k̂ is odd. Also α > 1 implies

φα(α, β) < 0. Thus if bk∗codd > 1 and if ki are odd with k1 < bk∗codd and
k2 > dk∗eodd, then

φ(k1, β) > φ(bk∗codd, β) ≥ φ(k∗, β)︸ ︷︷ ︸
ψ

≥ φ(dk∗eodd, β) > φ(k2, β).

Thus k1 ≺ bk∗codd and k2 ≺ dk∗eodd.
Case 4: β < −1 and ψ > 0. Then k∗ ≥ 0 (by assumption) and k̂ is even.
Also α > 0 implies φα(α, β) > 0. Thus if bk∗ceven > 2 and if ki are even with
k1 < bk∗ceven and k2 > dk∗eeven, then

φ(k1, β) < φ(bk∗c, β) ≤ φ(k∗, β)︸ ︷︷ ︸
ψ

≤ φ(dk∗eeven, β) < φ(k2, β).

Thus bk∗ceven > 2 implies k1 ≺ bk∗ceven and k2 ≺ dk∗eeven. If bk∗ceven = 2 then

1 ≡ β0 < β2 = φ(bk∗ceven, β) ≤ φ(k∗, β)︸ ︷︷ ︸
ψ

≤ φ(dk∗eeven, β) < φ(k2, β).

If bk∗ceven = 0 < k∗ then

1 ≡ β0 < φ(k∗, β)︸ ︷︷ ︸
ψ

≤ φ(dk∗eeven, β) < φ(k2, β).

10
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Finally, if k∗ = 0 then k̂ = k∗.
We now turn to the proof of Proposition 1. We note that if K = 0 then

k∗ = k̂ = 1 regardless of the value of β, so this case is excluded.

Proof of Proposition 1. The arguments for the limits involving K →∞ will
rely directly on the behavior of k∗. The arguments involving limits in β require
additional analysis. Define

∆(k1, k2, β) =
(
βk1 − ψ(β)

)2 −
(
βk2 − ψ(β)

)2
,

and note that k1 ≺ k2 when ∆(k1, k2, β) > 0 and k2 ≺ k1 when ∆(k1, k2, β) < 0,
where the ordering here is as defined in the proof of Lemma A.6. The proof
strategy for limiting values of β has three steps:

1. Compute the relevant limiting value of k∗.
2. Use Lemma A.6 to determine a finite set K̂ of possible limiting values for
k̂.

3. Expand ∆ around the limiting value of β and use the expansion to pairwise
compare the elements of the K̂.

A final comment before proceeding: Many of the arguments below include tedious
symbolic manipulation, and we have relegated much of this work to Mathematica.
Whenever Mathematica is relied upon to reach a conclusion, we state this reliance
explicitly. As an example, the code used for the first result is included below. All
code is available upon request.
Case 1: 0 < β < 1. The following Mathematica code establishes that K → ∞
implies k∗ →∞ and k∗/K → 0.
psi[K_, beta_] := beta/(K + 1) Sum[beta^(k - 1), {k, 1, K + 1}];

kstar[K_, beta_] := Log[psi[K, beta]^2]/Log[beta^2];

Module[{limK, limKk, assume},

assume = {0 < beta < 1};

limK = Limit[kstar[K, beta], K -> \[Infinity], Assumptions -> And @@ assume];

limKk = Limit[kstar[K, beta]/K, K -> \[Infinity], Assumptions -> And @@ assume];

Print["Limit of kstar as K -> infinity is " <> ToString@limK];

Print["Limit of kstar/K as K -> infinity is " <> ToString@limKk];

];

Lemma A.6 then implies the same limits for k̂, thus proving item 1(a).
Turning to item 1(b), using Mathematica, we find that β → 1− implies k∗ →

K/2 + 1. Suppose K is odd. It follows that β near (and below) 1 implies bk∗c <
k∗ < dk∗e, whence

k̂ ∈ {bk∗c, dk∗e} =

{
K + 1

2
,
K + 3

2

}
.

Using Mathematica, we find that near β = 1,

∆

(
K + 1

2
,
K + 3

2
, β

)
=

1

12
(K − 1)(K + 3)(β − 1)3 +O

(
|β − 1|4

)
,

so that when K ≥ 3 and β is near and below 1, we conclude that ∆ < 0, so that
k̂ = 1/2(K + 1). When K = 1 a direct computation shows ∆ = 0, so that both
bk∗c and dk∗e yield the same forecast. Our tiebreaker, then, chooses k̂ = 1.

Now suppose K is even. Then for β near and below 1 we know that k∗ is
near K/2 + 1 ∈ N. Unfortunately, we do not know if k∗ approaches its limit
monotonically. Thus we can only conclude that for β near and below 1 we have

k̂ ∈
{
K

2
,
K + 2

2
,
K + 4

2

}
.

11
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Using Mathematica, we find that near β = 1,

∆

(
K

2
,
K + 2

2
, β

)
= (β − 1)2 +O

(
|β − 1|3

)
∆

(
K + 2

2
,
K + 4

2
, β

)
= −(β − 1)2 +O

(
|β − 1|3

)
.

It follows that near and below β = 1 we have K
2
, K+4

2
≺ K+2

2
.

For item 1(c), using Mathematica, we find that β → 0+ implies k∗ → 1, so that
for small positive β, k̂ ∈ {1, 2}. Also, β → 0+ =⇒ ψ → 0, so k̂ 6= 0. Using
Mathematica, we find that near β = 0,

∆ (1, 2, β) = (2− 4(1 +K)−1)(β − 1)2 +O
(
|β − 1|3

)
, (A10)

so that k̂ = 2 for K ≥ 2. When K = 1 we again find ∆ = 0, so that k̂ = 1.
Case 2: −1 < β < 0. We establish item 2(a) by direct analysis, and noting that
it suffices to study the behavior of k∗. Noting that −1 < ψ < 0, we compute

logψ2 = 2 log(−ψ) = log

(
β

β − 1

)
+ log

(
1− βK+1

)
− log(1 +K)→ −∞

(A11)

K−1 logψ2 = K−1 log

(
β

β − 1

)
+K−1 log

(
1− βK+1

)
−K−1 log(1 +K)→ 0

(A12)

Since k∗ = logψ2/ log β2 and log β2 < 0 we see that by equation (A11) k∗ →∞,
and that by equation (A12) k∗/K → 0.

Turning to item 2(b), using Mathematica we find that β → 0− implies k∗ → 1,
and since β ∈ (0, 1), we know that ψ < 0 so that k̂ is odd. It follows that for β
is near and below 0 we have k̂ ∈ {1, 2}. The expansion (A10) then shows that
k̂ = 3 for K ≥ 2. Also as before, K = 1 implies ∆ = 0, so that k̂ = 1. Finally, for
item 2(c), we find using we find that β → −1+ implies k∗ → ∞, and the result
follows.
Case 3: β < −1. We establish item 3(a) by direct analysis. First, observe that
β < −1 implies

|ψ(K, β)| =
(

β

β − 1

)(
(β2)

K+1
2 + (−1)K+1

K + 1

)

By L’Hopital’s rule, the function f(x) = (2α)−1(xα + β) diverges to infinity as
α→∞ for x > 1 and for any β ∈ R, which shows that |ψ(K, β)| → ∞ as K →∞.
It follows that logψ2 → ∞, and thus k∗ and k̂ go to infinity as K → ∞. Next
note

k∗

K
= (log(−β)−1

(
K−1 log(β − 1)−1β +K−1 log

(
(β2)

K+1
2 + (−1)K+1

)
−K−1 log(K + 1)

)
.

It follows that

lim
K→∞

k∗

K
= lim

K→∞
(K log(−β))−1 log

(
(β2)

K+1
2 + (−1)K+1

)
. (A13)
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Let g(x) = α−1 log(x
α−1
2 + β), for β ∈ R and x > 1. Then

lim
α→∞

g(x) = lim
α→∞

x
α−1
2 log(x)

2
(
x
α−1
2 + β

) = log(x)/2.

It follows that

K−1 log
(

(β2)
K+1

2 + (−1)K+1
)
→ log(β2)/2 = log(−β),

which, when combined with (A13), yields the result.
Turning now to item 3(b), note that if K is odd then ψ → 0, so that k̂ → 0.

If K is even then ψ → −(K + 1)−1 ∈ (0, 1), so that k̂ → 1. Finally, for item 3(c),
using Mathematica, we find that β → −∞ implies k∗ → K + 1. By Lemma A.6
we know

lim
β→−∞

k̂ ∈ {K − 1, K + 1, K + 3}.

Again using Mathematica we find that if K ≥ 2 then

lim
β→−∞

∆(K − 1, K + 1) = lim
β→−∞

∆(K + 1, K + 3)−∞,

so that eventually K + 1, K + 3 ≺ K − 1. If K = 1, then ∆(K − 1, K + 1) = 0
and so by our tie-breaker, k̂ = 0.

A2 Additional Experimental Results

Figure A1 shows the average price observed across all treatments relative to the
REE price. Figure A2 shows the individual price predictions for all individu-
als with outliers indicated by X’s. The individual forecasts illustrate both the
diversity and uniformity that can occur depending on the expectational feed-
back in the market. As predicted by the simulations shown in Section 3.4, all the
|β| < 1 cases show convergence to the REE initially and after the announcements,
whereas both convergence and non-convergence is observed when β < −1.

We observed more outliers in individual predictions in this study than were
observed, for example, in Bao and Duffy (2016). However, we also have more
than double the participants. Some outliers are easily explained as “fat finger”
errors where an extra zero is added to a forecast. Others reflect participants with
a penchant for anarchy who consistently typed in nonsensical forecasts. In fact,
we identify two anarchists who repeatedly typed in the highest price permitted
just to see what would happen. One of these anarchists actually provided a nice
natural experiment within our laboratory experiment, which we discuss in detail
in Section A2.1 below.

When classifying individual forecasts without cutoffs, we chose to not classify
35 out of the 18,367 forecasts from our analysis (5 of which occurred in announce-
ment rounds out of 517 observations in total).2 Nearly half of the total outliers

2The odd number of observations is due to two markets that did not complete the experi-
ment. One market in a T2×A1 treatment ended early when a participant withdrew from the
experiment. The other was a T2×A2 treatment that ended a short time after the announce-
ment when a student kicked a power cord knocking out two computers with players in the same
market. The data up to that point was saved, but there was no way to let the students pick up
where they left off.
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Figure A1: Average market price relative to REE
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Figure A2: Individual participant predictions
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Notes: The ‘X’s denote forecasts that are larger than the top axis shown in the graph. The maximum value the program
would allow a participant to predict is 500.
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forecasts were submitted by just 3 (out of the 372) participants in the study.
The outlier predictions on average were for a price of 391, which is nearly 200
larger than any plausible price in any treatment. If these outliers were classified
as level-k, then most are classified as an REE prediction (e.g. in a positive feed-
back treatment when level-k forecasts converge from below the REE price and
the outlier is above the REE price) or a level-0 prediction (e.g. when convergence
starts from above an REE price and level-k deductions are closer to the REE
price), which is clearly not in keeping with what the classification is attempting
to achieve.3

Table A1 provides an overall breakdown of the data, including the outliers, to
provide a sense of how far away most forecasts are from the model predictions.
The table shows three measures of the root squared difference between a subjects
submitted forecast and the nearest level-k model implied forecast, where the level-
k forecasts are constructed using the standard assumptions given in Section 5 in
the main text. The root mean squared error/difference (RMSE) for the classifica-
tions are quite large. This is almost entirely due to outliers and a minority group
of the submitted forecasts. The root median squared error/difference (RMedSE)
shows that the majority of forecasts are with one unit of a level-k forecast overall
and within 4 units in announcement rounds. The final statistic reported in the
table is the 70th percentile of root squared differences. This statistic is chosen
because we found that approximately 70% of participants chose a level-k forecast
in an announcement round when we use a cutoff value of ± 4.5 for pooled data
(see Table 4 in the main text). The column illustrates a treatment-by-treatment
breakdown of that classification.

Table A1: Classification of predictions using counterfactual forecast rules

All observations Announcement periods only

Treatment RMSE RMedSE 70th Pctl RMSE RMedSE 70th Pctl

T1 x A1 14.92 0.31 0.57 73.61 1.00 2.35
T1 x A2 10.53 0.36 0.64 7.78 1.49 4.90
T1 x A3 9.73 0.37 0.78 28.97 1.70 4.35
T2 x A1 9.59 0.30 0.73 7.29 4.00 5.00
T2 x A2 21.78 0.36 1.05 7.34 3.00 5.56
T2 x A3 3.97 0.50 1.32 5.39 3.00 5.00
T3 x A1 22.53 0.50 1.00 12.04 2.00 9.07
T3 x A2 14.72 0.44 1.00 28.07 2.01 5.00

Notes: This table shows how well laboratory participants’ forecasts can be classified using a coun-
terfactual forecast. For each subject we construct Level-0, 1, 2, 3, and REE forecasts based on the
observed market data available to participants at each point in time. We calculate the difference
between this forecast and the observed forecast submitted by the participant. We classify the subject
as Level-0, 1, 2, 3, or REE based on which comparison yields the lowest squared error. The table
reports the root mean (RMSE), median (RMedSE), and 70th percentile of the squared difference
between the submitted forecast and the nearest counterfactual forecast. The 70th percentile is shown
because we were able to classify 70% of forecasts in announcement periods using a ±4.5 cutoff when
the data is pooled.

3Inclusion of these outliers actually makes some of our results stronger. For example, with
respect to the result reported in Table 5 in the main text, the forecast errors generated by some
of these outliers move the results in favor of the unified model.
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Figure A3: Comparing the unified model to experimental data
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Notes: Survey participants’ forecasts are classified as Level-0, 1, 2, 3, or consistent with the REE forecast by comparing to the model implied forecasts. The time path of observed ωn for n = 0, 1, 2, 3
are distinguished by plot-style: red dotted, blue dash-dot, magenta dash and black solid, respectively. The corresponding median forecasts, Et−1y

k
t , of the participants use the same style format. The

final column shows average market prices observed (solid black) laid over all individual forecasts. We omitted some outliers from the the final column of figures, which are shown in Figure A2 for clarity.
The omitted forecasts are included in the calculations in the first two columns.
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Figure A3 provides the same data breakdown for A2 treatments that we pro-
vided for A3 treatments in Figure 6 in the main text. We find similar results
here. We identify heterogeneous forecasts that display level-k depths of reason-
ing in announcement rounds with mdiean individual and mean market dynamics
closely matching what was predicted in Section 3.4 in the main text.

There are some additional points of interest in Figure A3 worthy of comment.
In the T3 treatment we observed one market that had a significant departures in
price from the REE after a period of convergence to the REE. You can see the
individual forecasts in the third graph on the right of the last row. There is a
group of individual forecasts that rise for many periods prior to the announcement
in period 20. This market is what causes the spike in the median level-0 forecast
that can be seen in the middle figure on the bottom row of Figure A3. The cause
of this divergence is an anarchist player. This player’s actions provide a nice
case study for the unified model. For the five players who are attempting to play
the game normally, the market has both large unobserved shocks and announced
shocks.

A2.1 An Anarchist Anecdote

Figure A4 and A5 provide some detail on this anarchist’s market. The first graph
in the top left of Figure A4 shows the market price and the individual forecasts of
the market participants. The anarchist is shown in red. The market converged to
the REE by period 7. The anarchist then decided in period 9 to enters a price of
500, which was the largest price that the program would allow. The next figure
shows the result. The price increased and a significant forecast error was realized
by all other market participants. The anarchist struck again in round 14 and this
time repeatedly enter a price of 500 for four consecutive rounds (ending in round
17). As before, there is a significant forecast error realized by all other players
in the period the anarchists defects. However, the players quickly adapt to this
unexplained rise in the price and the average forecast error falls over the next
four periods. Importantly, we see all players switching to a forecast that lines
up well with an adaptive forecast, consistent with the assumptions of the unified
model. When the anarchist switches strategy in round 18, another large forecast
error is generated, which causes yet another clear change in the strategy choices
among the other participants.

The final figure in the top row of A4 layers onto the individual expectations
the implied level-0, 1, 2, and 3 forecasts using our standard assumptions from
Section 5. The bottom row of figures in A4 zooms in on the period of interest
and plots the implied path of a single level-k forecast on each graph for clarity. It
is immediately apparent that each large forecast error generates a shift in behavior
by the non-anarchist players. Each shift in behavior is well-captured by one of
the level-k deductions.

18



U
n
if
ie
d

M
o
d
e
l

Figure A4: An Anarchist Anecdote
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Notes: These figures show data from a T3×A2 treatment experimental market, where one player decided to actively sabotage the market. The anarchist’s forecasts are shown in red. The time path of
the implied level-0, 1, 2, and 3 forecasts are distinguished by plot-style: red dotted, blue dash-dot, magenta dash and black solid, respectively. The REE forecast is black dotted. The market price is the
solid thick black line.
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To see this, start by looking at period 10. Recall that there is no information
that the participants have to suggest why the price suddenly moved in period
9. All participants trend follow in period 10 and revise their forecasts up. But
the anarchist reverses course and provides a reasonable forecast in period 10, this
generates another sizable forecast error. For period 11, the other participants
switch strategies again. They appear to revise up their depth of reasoning and
predict that market price will again fall. Both level-1 and level-2 predictions,
which are based on the average price for rounds 9 and 10, explain nearly all the
variation in forecasts chosen in this period. This switch by participants to a
higher level strategy in period 11 generates a low forecast error and the subjects
appear to maintain these strategies in the subsequent periods leading the market
to converge.

When the anarchists strikes again in period 14, the remaining participants
are quick to revise their depth of reasoning down to level-0. Forecast errors fall
when switching to this strategy so they maintain the level-0 strategy. When the
anarchists stop choosing 500 and reverts to choosing a normal strategy, another
large forecast error is realized by the other market participants. This leads to a
change in strategy in the next round. The revised strategies observed in the next
round all sit on, or between, the implied level-1 and level-2 strategies (see bottom
row of plots in Figure A4).

The chaos of this market is distinct from most other markets we observed.
This raises the question of what the participants will do in an announcement
round after the market has been so unpredictable. It appears that they mostly
respond in accordance with the unified model. Five out the six forecasts for the
announcement round sit between the level-1 forecast using our standard definition
and a level-1 forecast where the level-0 assumptions is p = 120, which is the steady
state price prior to the announced change.

Figure A5 zooms in even further on just rounds 20 and 21 and classifies the
individual forecasts types using the method described in Section 5 in the main
text. Between the two rounds of play, those subjects whose forecasts were closest
to the actual price, i.e. experienced the smallest errors, stick with the level-
1 forecast. Those subjects who experience larger errors clearly revise up their
depth of reasoning, where a revision to level-2 corresponds to what would have
been the best forecast to play in round 20 given what occurred. This behavior is
consistent with the assumptions that underlie the replicator dynamic’s reflective
process that we assume for the unified model.

A3 Robustness: Level-0 forecast definition

To classify the types of forecasting strategies that participants use, we must as-
sume a shared level-0 forecast. Our baseline assumption is that level-0 is a two-
round moving average of past prices. To demonstrate that our results are robust
to this assumption, we conduct two exercises. First, we replicate the results in
Table 4 and 5 of the main text using a four round moving average as the shared
level-0 forecast. Second, we study how overall classification of types and of the
level-0 type changes when we assume last periods price as the level-0 forecast,
a two-period moving average, a four-period moving average, or three different
cosntant gain specifications.

Table A4 replicates Table 4. The number of people we classify as level-k

20



Unified Model

Figure A5: An Anarchist Anecdote Announcement Round
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Notes: Individual classified price forecasts in a T3×A2 treatment. The classifications are made by comparing
the forecasts to different implied level-k forecasts. The closest implied forecast type determines the classification
(see Section 5).

reasoners increases slightly under this definition overall. The regression estimates
are mostly unchanged. We retain statistical significance for the hypothesis test
conducted on announcement rounds with a comparable F-stat obtained to the
original specification.

Table A3 replicates Table 5 for the four-round average level-0 assumption.
The results are slightly stronger on all categories relative the previous definition.

Table A4 shows the classification results for the ±3 cut off for different level-0
assumptions. In general, the proportion of subjects that we classify as level-
k forecasters of any type increases as we consider level-0 forecasts with longer
averages or weighted averages of past observed prices.

A4 Oscillating deductions with strategic substitutes

Garćıa-Schmidt and Woodford (2019) and Angeletos and Sastry (2021) both raise
the possibility that level-k reasoning may be implausible when there is strategic
substitutability, i.e. negative feedback to expectations. In such an environment
level-k deductions imply an oscillatory pattern in which each deduction takes
expectations from one side of the perfect foresight equilibrium to the other. For
example, this is clearly visible in the simulation of the unified model in Figure 4 in
the main text. The third column of the figure shows the predicted level-1, 2, and
3 forecasts, which are on opposite sides of ȳ. It is argued that it is more plausible
that agents would not contemplate such oscillations and would instead think
about monotonic convergence from either above or below the perfect foresight
equilibrium. Our experimental setting offers an environment that can shed light
on whether people are willing to entertain oscillating deductions at least in this
simple environment. We of course cannot observe the thoughts of subjects in each
period, but we can observe their actions over time and in announcement rounds.

Announcement rounds in particular offer an interesting insight into people’s
thinking, especially when there is significant negative feedback as in the T2 treat-
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Table A2: Classifying participant’s forecasts as Level-k - Robustness Check

Within ±3 of Level-k in announcement rounds Differences in deliberation time (seconds)

1 20/50 45 Variable [1] [2]

Total Classified 47.3% 65.8% 66.0% Level-0 -9.73 -1.97
[33.9% , 57.0%] [50.6% , 73.6%] [49.4% , 69.9%] (1.113) (0.672)

Level-1 -8.61 -0.16
Level-0 14.8% 7.8% 5.1% (1.144) (0.629)

[11.0% , 15.1%] [4.31% , 9.48%] [4.49% , 6.41%] Level-2 -5.50 -0.24
(1.312) (0.991)

Level-1 7.3% 25.0% 14.1% Level-3 -6.67 -0.33
[6.45% , 8.60%] [19.3% , 27.6%] [14.1% , 14.1%] (1.332) (1.054)

Level-0 x Ann 47.52 3.58
Level-2 6.5% 5.2% 3.8% (8.623) (6.065)

[1.89% , 6.45%] [4.31% , 5.75%] [1.92% , 3.85%] Level-1 x Ann 45.47 11.90
(4.881) (4.741)

Level-3 3.2% 3.2% 4.5% Level-2 x Ann 8.61 11.08
[1.07% , 1.13%] [2.58% , 3.74%] [3.21% , 5.13%] (9.058) (8.546)

Level-3 x Ann 63.82 23.02
REE 15.6% 24.7% 38.5% (11.92) (8.260)

[13.4% , 15.6%] [20.1% , 27.0%] [25.6% , 40.4%] Cons 41.16 112.52
(0.526) (4.227)

N 372 348 156 Individual FE yes yes

Hypothesis tests of deliberation time regressions Round FE no yes

H0 : Level-0 - Level-3 = 0 F(1, 61) =0.75 R-squared 0.030 0.253
H0 : (Level-0 x Ann) - (Level-3 x Ann) = 0 F(1, 61) =4.33 N 18,367 18,367

Notes: The top left panel reports the proportion of participant’s forecasts that fall within ±3 of a Level-k
forecast. Proportions for cutoffs of ±1.5 and ±4.5 are shown in brackets. The right panel reports the regression
results of identified Level-k individual’s deliberation time in all periods and in announcement periods. Standard
errors are clustered at the market level and reported in parenthesis below the point estimates. Bolded values
indicate statistical significance at the ten percent level. The bottom left panel reports the hypothesis tests for
the equality of regression coefficients for regression specification (2). We pool A1 (round 50 announcement) and
A2 (round 20 announcement) results because both experiments feature a single and identical announcement.

ments (β = −2). The level-k deductions quickly push people towards a forecast
of zero or γ in this case, which are prices that most players have never observed
in any of the previous rounds that they have played. In fact, in most markets
the price is on average at the REE for many periods before the announcement,
which makes picking some other price, especially one that is far from the new
equilibrium and on the opposite side it from the current price, a clear signal that
people are contemplating oscillating deductions and acting on them. In Figure 6
and Figure 7 of the main text, we show clearly that people do indeed make pre-
dictions consistent with level-k deductions on either side of the perfect foresight
equilibrium in an announcement rounds when β < 0. The T2 treatments arguably
provide the strongest evidence of level-k behavior out of all or our treatments.

Another way to explore this hypothesis is to observe whether individual fore-
casts converge monotonically over time to the REE or whether they oscillate
above and below over the REE price over time when β < 0. On this question
we find heterogeneity across individual markets. The most common behavior is a
clear willingness to contemplate oscillating deductions, but we also find a smaller
number of episodes of clear monotonic behavior as well.

Figures A6 and A7 show two examples of markets with clear oscillating be-
havior and Figures A8 shows one market with more monotonic behavior. The
top row of plots in each figure summarizes the market dynamics in each case with
the first plot showing the market price and all of the individual forecasts, the
second plot showing the individual forecasts plotted against the level-0,1,2, and
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Table A3: Revisions and loss - Robustness Check

Proportion of changers Ave. abs. prediction error Ave. deliberation time (sec)
Between rounds 20 & 21 Round 20 Round 21

Treatment Revise opt. No Change Change No change Difference Change No change Difference

T1 x A2 and A3 0.62 0.37 18.43 7.08 11.35 58.3 47.8 10.48
[5.75] (31/84) [6.11] [1.27]

T2 x A2 and A3 0.48 0.51 24.95 13.16 11.79 62.7 56.5 6.16
[3.20] (46/90) [4.41] [0.69]

T3 x A2 and A3 0.56 0.25 26.83 14.84 11.99 36.5 35.8 0.73
[6.24] (30/119) [3.31] [0.12]

Between rounds 45 & 46 Round 45 Round 46

T1 x A3 0.73 0.64 26.4 5.34 21.06 43.3 30.0 13.3
[3.97] (27/42) [6.39] [1.35]

T2 x A3 0.30 0.58 17.42 11.77 5.65 36.1 27.8 8.23
[0.47] (28/48) [1.48] [1.32]

T3 x A3 0.52 0.15 31.18 21.58 9.60 25.4 18.2 7.16
[4.25] (10/66) [1.56] [2.21]

Notes: “Revise opt.” is the proportion of people who, conditioning on changing their strategy in period 21(46),
changed their strategy to the best counterfactual strategy out of level-0, 1, 2, 3, or the REE in their market,
where best is defined as what forecast would have been best in round 20(45). Z-scores for the test of the null
hypothesis that subjects switched to one of the five strategies at random are reported in brackets. The next
column reports the proportion of participants who we classify as not changing their strategy either between
rounds 20 and 21 or between rounds 45 and 46 following announcements in either round 20 or 45, respectively.
Counts appear in parentheses below. The remaining columns report the difference in average absolute prediction
errors and average deliberation time for subjects classified as changing versus not changing with two-sample
t-test statistics reported in brackets. Bolded values represent statistical significance at the ten percent level.

Table A4: Classifying participant’s forecasts as Level-k - Robustness Check

Moving averages Constant Gain
Round 20/50 1-period 2-period* 4-period φ = 0.4 φ = 0.3 φ = 0.2

Level - k 63.8% 64.4% 65.8% 65.2% 66.1% 66.1%
Level - 0 6.6% 6.6% 7.8% 6.9% 7.2% 7.2%

Notes: *Assumption used for level-k classification in the main text. The table reports the proportion of
participant’s forecasts that fall within ±3 of a Level-k forecast in all treatments with an announcement in
period 20 or 50. The level-k forecasts are based on the level-0 assumption denoted in the table.

REE forecasts, and the third plot showing the classification of each type along
with just the level-0 forecast.4 The latter two plots are zoomed in around the
announcement period. The bottom six plots of each figure show each individual’s
forecasts from each market classified by level-k type period-by-period compared
to just the level-0 forecast. These plots illustrate the evolution of an individual’s
forecasts over time relative to the principle reference point for level-k deductions:
the level-0 forecast.

Figures A6, A7, and A8 clearly suggest a willingness by some individuals to
oscillate their predictions above and below both the level-0 forecast and the REE
price. The oscillations occur despite the experience of the price not oscillating
for many periods prior to the announcement. This experience of tranquility
combined with how close many of the forecasts are to level-k deductions is at least

4We do not plot the level-3 forecast in the middle figure because it makes the graph harder
to interpret by requiring a larger scale of the y-axis. For the markets we show, no one chooses it
in the announcement round. This of course is not true in general. We observe people choosing
exactly level-3 deductions in some markets as can be seen in Figure 6 in the main text.
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suggestive evidence that people contemplated oscillations consistent with classic
level-k reasoning. Moreover, they took action with money at stake consistent
with such deductions.

To further illustrate point, Figures A9 show the same type of analysis applied
to a T3 treatment where β = 0.5. Level-k deductions do not imply oscillations
in this case and indeed none are observed. Individual forecasts conform nicely
to level-k deductions based on our proposed level-0 forecast. This suggests that
people do not abandon level-k deductions in environments with strategy substi-
tutability. Level-k deductions describes forecasting behavior in our experiment
when strategic actions are both compliments and substitutes.
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Figure A6: Example 1: Individual forecasts from experimental market with treatment T2 (β = −2)
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Notes: The first plots shows all individual forecasts and the market price from a single market. The second plot shows the model implied level-k forecasts and the data in a window around the
announcement. The remaining figures classify each of the forecasts as a level-k type, which is indicated by the color of the dot. Forecasts that are classified as level-0 are shown in red, level-1 in blue,
level-2 in magenta, level-3 in black, and REE as a black circle with a white interior. The dotted red line shows the path of the level-0 forecast from which all level-k deductions are derived. The perfect
foresight equilibrium is indicated by the dashed line.
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Figure A7: Example 2: Individual forecasts from experimental market with treatment T2 (β = −2)
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Notes: The first plots shows all individual forecasts and the market price from a single market. The second plot shows the model implied level-k forecasts and the data in a window around the
announcement. The remaining figures classify each of the forecasts as a level-k type, which is indicated by the color of the dot. Forecasts that are classified as level-0 are shown in red, level-1 in blue,
level-2 in magenta, level-3 in black, and REE as a black circle with a white interior. The dotted red line shows the path of the level-0 forecast from which all level-k deductions are derived. The perfect
foresight equilibrium is indicated by the dashed line.
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Figure A8: Example 3: Individual forecasts from experimental market with treatment T2 (β = −2)
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Notes: The first plots shows all individual forecasts and the market price from a single market. The second plot shows the model implied level-k forecasts and the data in a window around the
announcement. The remaining figures classify each of the forecasts as a level-k type, which is indicated by the color of the dot. Forecasts that are classified as level-0 are shown in red, level-1 in blue,
level-2 in magenta, level-3 in black, and REE as a black circle with a white interior. The dotted red line shows the path of the level-0 forecast from which all level-k deductions are derived. The perfect
foresight equilibrium is indicated by the dashed line.
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Figure A9: Example 4: Individual forecasts from experimental market with treatment T3 (β = 0.5)
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Notes: The first plots shows all individual forecasts and the market price from a single market. The second plot shows the model implied level-k forecasts and the data in a window around the
announcement. The remaining figures classify each of the forecasts as a level-k type, which is indicated by the color of the dot. Forecasts that are classified as level-0 are shown in red, level-1 in blue,
level-2 in magenta, level-3 in black, and REE as a black circle with a white interior. The dotted red line shows the path of the level-0 forecast from which all level-k deductions are derived. The perfect
foresight equilibrium is indicated by the dashed line.
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A5 Exit Survey Results

After the experimented ended, subjects completed an exit survey while they
waited for their pay envelopes to be prepared. The survey questions aimed to
assess what information they used to make their forecasts and what information
they thought others used.

A5.1 Exit Survey Questions

1. Please rank the importance of each option below to the formation of your
price forecast in each period:

a. The history of market prices

b. The market equations

c. The history of my own price forecasts

d. The history of my own forecasts errors

e. My expectation about the average price forecast in the period

2. Please rank the importance of each option below to the formation of your
price forecast following the announcements:

a. The history of market prices

b. The market equations

c. The history of my own price forecasts

d. The history of my own forecasts errors

e. My expectation about the average price forecast in the period

3. Which of the following statements best describes your thinking before mak-
ing each forecast?

a. I looked at the past prices and made my best guess based on their
recent movements. I never used the equations.

b. I made a guess about what the average forecast might be based on
past prices and then used the equations to determine my own forecast
using that guess.

c. I made a guess about what the average forecast might be and used the
equation to work out the price only when I did a poor job of forecasting
in the previous round. Otherwise, I just looked at past prices and made
my best guess.

d. I made a guess about what the average forecast might be and used
the equation to work out the price only when there was an announced
change in the market. Otherwise, I just looked at past prices and made
my best guess.
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4. Please rank the importance of each option below to other participants,
which you believe they may have used to make their price forecasts:

a. The history of market prices

b. The market equations

c. The history of their own price forecasts

d. The history of their own forecasts errors

e. Their expectation about the average price forecast in the period

5. Please rank the importance of each option below to other participants,
which you believe they may have used to make their price forecasts follow-
ing the announcements:

a. The history of market prices

b. The market equations

c. The history of their own price forecasts

d. The history of their own forecasts errors

e. Their expectation about the average price forecast in the period

6. If you do not feel like the strategy you used was well-captured by the survey
questions, then please use this box to explain your strategy

A5.2 Exit Survey Results

Survey questions (1), (2), (4), and (5) used a drop-down menu with options:
“very important”, “somewhat important”, and “did not consider.” Table A5 and
Table A6 shows the cumulative importance of each factor where “very impor-
tant” is assigned a zero, “somewhat important” is assigned a one, and “did not
consider” a two. Therefore, the lower the value, the more important the informa-
tion. Consistent with level-k reasoning, we find that on average subjects rated
the equations and the forecast of the average expectation as more important to
their own forecast than they believed it was to others. This is consistent with
a belief that others are less sophisticated. We observe the results on the full
sample and when restricting to only people who played a level-k forecast in the
announcement periods with the ± 3 cutoff. The latter consistently rank the equa-
tions as important to them than they are to their perceived competitors, which
is consistent with the level-k assumption that others players are perceived as less
sophisticated.

Figure A10 shows the responses to question 3 separated by treatment. The
most common response is (b), which is:

I made a guess about what the average forecast might be based on past
prices and then used the equations to determine my own forecast using
that guess.

This response is consistent with level-1 behavior.
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Table A5: Tabulated survey results for Q1 and Q4

All Responses

Past Prices Equations Forecast History Forecast Errors Exp. Ave. Price
Treatment Own Others Own Others Own Others Own Others Own Others

T1×A1 10 9 33 32 24 21 30 32 19 21
T1×A2 11 11 32 30 33 19 38 31 17 19
T1×A3 11 11 31 30 40 31 45 32 21 23
T2×A1 13 8 25 23 31 25 36 30 16 19
T2×A2 13 10 28 28 47 24 50 42 18 30
T2×A3 23 18 36 41 52 35 47 43 25 41
T3×A2 7 7 42 37 50 33 44 42 20 29
T3×A3 16 13 47 59 67 52 63 66 30 33

All 104 87 274 280 344 240 353 318 166 215
Difference 17 -6 104 35 -49

Info is ( ) to me (less important) (more important) (less important) (less important) (more important)

Responses from those identified as level-k in announcement rounds with ±3 cutoff

Past Prices Equations Forecast History Forecast Errors Exp. Ave. Price
Treatment Own Others Own Others Own Others Own Others Own Others

T1×A1 6 6 24 22 13 10 17 18 10 13
T1×A2 5 7 10 14 18 12 21 15 7 9
T1×A3 4 3 3 7 8 9 8 8 3 5
T2×A1 7 3 8 11 14 9 13 9 8 9
T2×A2 4 3 2 7 18 12 23 20 6 14
T2×A3 3 4 1 6 6 4 5 2 2 10
T3×A2 0 0 5 6 14 10 14 9 6 9
T3×A3 6 4 10 14 12 12 11 14 4 8

All 35 30 63 87 103 78 112 95 46 77
Difference 5 -24 25 17 -31

Info is ( ) to me (less important) (more important) (less important) (less important) (more important)

Notes: Participants rated each piece of information denoted in the top line as “very important”,
“somewhat important”, or “did not consider” when making their “own” forecasts and what they
believed was important to “others”. The categories are assigned the following values and summed:
“very important” is a assigned a zero, “somewhat important” a one, and “did not consider” as two.
Lower totals indicate that the piece of information is more important to a person’s decision.

A6 Quantitative evaluation: additional results

We fit the model to the experimental data at the market level. Table 6 in the main
text averages over the individual market outcomes from the same treatments.
Table A7 shows the underlying data from each market.

Each model that features heterogeneous types is initialized to the first realized
price and to the distribution of level-k types observed in period one for each
market. Afterwards, the model makes predictions based solely on the evolution
of price, adaptive learning, or the replicator, depending on which model is used.
The learning model starts initial beliefs at the average of the individual forecasts
in period one. After period one it updates according to the evolution of data
implied by the model and beliefs for the chosen gain. The simulated data is
compared to experimental data and the mean squared error is calculated.

Each model is optimized individually by searching over a grid of gains φ ∈
[0, 1], or replicator parameters α ∈ [0, 2], or both in the case of the unified model.
The optimal coefficients are shown in Table A8. Both the replicator and adaptive
learning are required to best fit the data in T1 and T2 treatments. In many
of the T3 treatments, however, naive expectations and fixed level-k reasoning is
chosen as the best model. This reflects the fact that many markets coverge very
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Table A6: Tabulated survey results for Q2 and Q5

All Responses

Past Prices Equations Forecast History Forecast Errors Exp. Ave. Price
Treatment Own Others Own Others Own Others Own Others Own Others

T1×A1 13 12 30 29 24 24 29 39 23 18
T1×A2 19 19 24 19 42 35 36 32 23 21
T1×A3 19 19 28 24 40 29 44 38 24 23
T2×A1 11 21 18 23 33 27 40 34 21 20
T2×A2 21 19 21 20 44 24 49 41 20 24
T2×A3 31 35 30 36 52 49 54 45 32 35
T3×A2 25 27 31 25 51 39 54 45 26 28
T3×A3 40 44 38 38 75 64 73 76 28 30

All 179 196 220 214 361 291 379 350 197 199
Difference -17 6 70 29 -2
Info is ( ) to me (more important) (less important) (less important) (less important) (more important)

Responses from those identified as level-k in announcement rounds with ±3 cutoff

Past Prices Equations Forecast History Forecast Errors Exp. Ave. Price
Treatment Own Others Own Others Own Others Own Others Own Others

T1×A1 7 7 22 21 12 15 18 23 13 10
T1×A2 11 9 6 4 22 19 16 19 9 12
T1×A3 4 3 4 6 8 8 8 10 5 5
T2×A1 7 7 7 12 16 8 16 13 9 11
T2×A2 9 8 1 4 19 10 22 18 14 8
T2×A3 4 4 1 5 5 4 4 1 10 7
T3×A2 1 4 7 9 15 9 18 10 9 7
T3×A3 11 11 8 7 19 12 15 17 8 7

All 54 53 56 68 116 85 117 111 77 67
Difference 1 -12 31 6 10
Info is ( ) to me (less important) (more important) (less important) (less important) (less important)

Notes: Participants rated each piece of information denoted in the top line as “very important”,
“somewhat important”, or “did not consider” when making their “own” forecasts and what they
believed was important to “others”. The categories are assigned the following values and summed:
“very important” is a assigned a zero, “somewhat important” a one, and “did not consider” as two.
Lower totals indicate that the piece of information is more important to a person’s decision.

quickly to steady state, but not as quickly as RE implies. This is also reflected
in the results for the adaptive learning case were a naive model is found to best
fit the data for all markets. In subsequent exploration, which is not shown here,
we have found that a φ > 1 plus level-k reasoning is preferred. That is consistent
with a trend following behavior similar to what many other positive feedback
experiments have found.

A6.1 Further derivations for the NK model

For the NK model (14), inflation is determined as follows:

πt = γt + βt
∑
k≥0

ωt(k)Ek
t πt+1, (A14)

where Ek
t πt+1 is the period t forecast of πt+1 made by a k-level agent. An expres-

sion for Ek
t πt+1 can be derived using backward induction:

Ek
t πt+1 = γt+1 + βt+1E

k−1
t πt+2

...

E1
t πt+k = γt+k + βt+kat
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Table A7: MSE between experimental data and competing models

Treatment REE Unified Model Fixed Level-k Replicator only Adaptive learning

T1 × A3 MSE MSE Rel. REE MSE Rel. REE MSE Rel. REE MSE Rel. REE

Market 1 6.67 3.88 0.58 11.59 1.74 4.29 0.64 20.77 3.11
Market 2 8.66 4.17 0.48 13.34 1.54 4.17 0.48 27.38 3.16
Market 3 24.18 22.34 0.92 25.07 1.04 22.34 0.92 39.76 1.64
Market 4 14.47 3.01 0.21 3.87 0.27 3.51 0.24 29.48 2.04
Market 5 14.66 2.24 0.15 12.81 0.87 13.96 0.95 7.85 0.54
Market 6 18.20 4.11 0.23 16.94 0.93 17.74 0.97 17.23 0.95
Market 7 5.22 1.89 0.36 2.94 0.56 2.57 0.49 13.32 2.55

Average 13.15 5.95 0.45 12.37 0.94 9.80 0.74 22.26 1.69
T2 × A3

Market 1 66.42 57.92 0.87 126.77 1.91 76.33 1.15 86.21 1.30
Market 2 25.31 20.44 0.81 154.20 6.09 34.67 1.37 34.06 1.35
Market 3 58.01 76.90 1.33 873.05 15.05 94.48 1.63 77.46 1.34
Market 4 48.70 40.98 0.84 779.52 16.01 75.16 1.54 65.73 1.35
Market 5 23.36 37.13 1.59 80.20 3.43 44.65 1.91 42.05 1.80
Market 6 44.84 51.04 1.14 569.37 12.70 69.59 1.55 68.70 1.53
Market 7 67.28 52.25 0.78 671.08 9.98 75.55 1.12 47.06 0.70
Market 8 80.64 50.42 0.63 127.50 1.58 97.45 1.21 85.84 1.06

Average 51.82 48.38 0.93 422.71 8.16 70.98 1.37 63.39 1.22
T3 × A3

Market 1 22.49 1.80 0.08 1.80 0.08 35.16 1.56 36.23 1.61
Market 2 31.16 14.70 0.47 16.33 0.52 46.91 1.51 39.09 1.25
Market 3 37.48 17.64 0.47 17.64 0.47 42.97 1.15 38.23 1.02
Market 4 31.37 13.70 0.44 13.70 0.44 31.78 1.01 48.27 1.54
Market 5 12.52 4.34 0.35 4.34 0.35 28.54 2.28 48.90 3.91
Market 6 28.67 33.11 1.15 35.38 1.23 60.66 2.12 75.75 2.64
Market 7 45.41 23.82 0.52 27.08 0.60 61.14 1.35 46.89 1.03
Market 8 44.70 19.56 0.44 22.89 0.51 50.28 1.12 48.38 1.08
Market 9 92.75 76.53 0.83 76.53 0.83 104.95 1.13 106.02 1.14
Market 10 31.71 3.46 0.11 3.46 0.11 40.40 1.27 28.27 0.89
Market 11 30.64 9.45 0.31 9.45 0.31 41.05 1.34 39.53 1.29

Average 37.17 19.83 0.53 20.78 0.56 49.44 1.33 50.51 1.36

Notes: Mean square error (MSE) of five simulated models of aggregate price dynamics compared
to experimental market price data. “Rel. REE” reports the MSE of the a model relative to REE
MSE, i.e., Model MSE/REE MSE. Models are fit by doing a grid search over values α ∈ [0, 2] and
φ ∈ [0, 1].
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Table A8: Parameter estimates of competiting models

Treatment Unified Model Fixed Level-k Replicator only Adaptive learning
T1 × A3 α φ α φ α φ φ

Market 1 0.225 0.725 - 0.475 0.025 - 0.425
Market 2 0.015 0.000 - 0.550 0.015 - 0.500
Market 3 0.008 0.000 - 0.325 0.008 - 0.450
Market 4 0.200 0.775 - 1.000 0.005 - 0.475
Market 5 0.175 0.725 - 1.000 0.000 - 0.550
Market 6 0.150 0.750 - 1.000 0.000 - 0.575
Market 7 0.300 0.800 - 0.725 0.010 - 0.525

T2 × A3

Market 1 0.005 0.100 - 0.000 0.005 - 0.325
Market 2 0.010 0.050 - 0.475 0.010 - 0.325
Market 3 0.010 0.050 - 0.125 0.010 - 0.400
Market 4 0.005 0.200 - 0.150 0.010 - 0.500
Market 5 0.015 0.025 - 0.175 0.010 - 0.300
Market 6 0.010 0.025 - 0.000 0.010 - 0.325
Market 7 0.005 0.175 - 0.150 0.010 - 0.525
Market 8 0.025 0.425 - 0.400 0.010 - 0.375

T3 × A3

Market 1 0.000 1.000 - 1.000 0.175 - 1.000
Market 2 0.600 0.725 - 1.000 0.200 - 1.000
Market 3 0.000 1.000 - 1.000 0.175 - 1.000
Market 4 0.000 0.950 - 0.950 0.025 - 1.000
Market 5 0.000 1.000 - 1.000 0.075 - 1.000
Market 6 0.600 0.725 - 1.000 0.375 - 1.000
Market 7 0.600 0.725 - 1.000 0.350 - 1.000
Market 8 0.100 0.725 - 1.000 0.375 - 1.000
Market 9 0.000 1.000 - 1.000 0.200 - 1.000
Market 10 0.000 1.000 - 1.000 0.200 - 1.000
Market 11 0.000 1.000 - 1.000 0.225 - 1.000

Notes: Paremeter estimates of the competiting models. Models are fit by doing a grid
search over values α ∈ [0, 2] and φ ∈ [0, 1]. The Fixed level-k model assumes an adaptive
level-0 forecast.
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Figure A10: Exit survey question 3 responses
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Notes: This figure shows the response to question 3 from exit survey separated by treatment type.

where at = E0
t πt+m for all m. Setting βkt =

∏k
n=1 βt+n, it follows that

Ek
t πt+1 =

k∑
n=1

βn−1
t γt+n + βkt at. (A15)

Combining (A14) and (A15), the dynamics of the economy can be loosely
written as πt = γt + βtπ

e
t+1, however there is an important nuance. Under both

rationality and unified learning, contemporaneous outcomes depend on (agents’
perceptions of) the future path of model coefficients; and the entire path of coef-
ficients is subject to change when policy announcements are made.

Let γ tt+k and βtt+k be the values of the coefficients in period t+ k as perceived
by agents in period t. For example, we know that, in period T , agents think
the the CB follows a perpetual Taylor rule: βTT+k = ψ for all k. Also, in period

T +M1 the CB announces an interest rate peg for N periods, thus βT+M1
T+M1+k = θ

for 0 ≤ k < N −M1. The dynamics of the economy are now given as

πt+k = γtt+k + βtt+kπ
e
t+k+1 (A16)

where

T ≤ t < T +M1 =⇒ γtt+k =

{
b∆v∗ if 0 ≤ k < M − (t− T )
0 else

t ≥ T +M1 =⇒ γtt+k =

 b∆v∗ − (θ − 1)∆i if 0 ≤ k < M2 − (t− (T +M1))
−(θ − 1)∆i if M2 − (t− (T +M1)) ≤ k < N −M2 − (t− (T +M))
0 else

T ≤ t < T +M1 =⇒ βtt+k = ψ

t ≥ T +M1 =⇒ βtt+k =

{
θ if 0 ≤ k < N −M1 − (t− (T +M1))
ψ else
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A7 Experiment materials

This section provides the instructions and tutorial information that were provided
to laboratory subjects.

Negative feedback case

Computer based tutorial:

• What is your role?

Your role is to act as an expert forecaster advising firms that produce widgets.

• What makes you an expert in this market?

You will have access to information about the demand and supply of widgets to
the market. You will also have a bit of training before making paid forecasts.

• What is a widget?

Widgets are a perishable commodity like bananas or grapes. They are perishable
in the sense that they can only be consumed in the period they are produced. They
cannot be stored for consumption in future periods. The widgets that each firm
produces are all the same and there are many firms in the market. Therefore, the
individual firms do not set the price at which they sell their widgets but must sell
widgets at the market price.

• Why do the firms need to forecast the price?

A firm must commit to the number of widgets it will produce in the coming period
before knowing the price. Therefore, the firms need to have a forecast of the price
to know how many to produce.

• How am I paid?

Your compensation for each forecast is based on the accuracy of the forecast. The
payoff for each forecast is given by the following formula:

payment = 0.50− 0.03 (p− your price forecast)
2

where p is the actual market price, and 0.50 and 0.03 are measured in cents. If your
forecast is off by more than 4, you will receive $0.00 for your forecast. Therefore,
you will receive $0.50 for a perfect forecast, where p=your price forecast, and
potentially $0.00 for a very poor forecast. You will be paid to make 50 forecasts
in total.

In addition, you will be paid a $5 show-up fee for participating. You may quit the
experiment at any time, for any reason, and retain this $5 payment.

• The Demand for Widgets:
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The total demand for widgets in a period is downward sloping. This means that
the lower the price is the greater the demand for widgets. In precise terms, the
demand is given by

q = A−Bp

where q is the quantity demanded, and p is the current price in the market. The
equation for demand and the values for A and B will be given to you at the
beginning of the experiment. The values may also change during the experiment.
The equation, the values of A and B, and any changes to these values will be told
to all participants at the same time.

• The Supply of Widgets:

The firms in the market all face the same costs for producing widgets. The supply
of widgets by each firm, therefore, only depends on their forecast for price next
period. The total supply of widgets to the market depends on the average price
forecast from all firms.

The total amount of widgets supplied to the market by all firms is given by

q = D × average price forecast

where D is a positive number, which will be given to you and all other forecasters
in the market at the start of the experiment. Just like with demand, D may change
during the experiment and the changes will be announced.

• Prices and Expected Prices:

Once all participants have chosen their expected price, the average expected price
determines total supply. Since quantity demanded depends on price, equating
supply and demand determines the price. Consequently the actual market price
depends on average expected price. In fact there is a negative relationship between
price and expected price. In other words, when the average forecast for the price
is high, the actual price is low and vice versa.

• Why does this occur?

It occurs because a high average expected price causes widget producers to increase
their production of widgets. The increase in production results in more widgets
supplied to the market. More supply of widgets means that the price of each widget
will be lower. The opposite occurs when the average expected price is low. In this
case, the widget producers will supply fewer widgets to the market, which results
in a high price.

By equating supply and demand,

A−Bp = D × average price forecast

we can arrive at the precise relationship for price and expected price

p =
A

B
− D

B
× average price forecast

Note that expected price is negatively related to price. If expected price is high,
then the actual price is low and vice versa

• A bit of randomness:

Finally, like in real markets, we allow for the possibility that unforeseen and unpre-
dictable things may happen that affect price. We add this to the game by adding
a small amount of noise to price such that
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p =
A

B
− D

B
× average price forecast + noise.

The noise term is chosen at random in each period and is not predictable. Its value
is not given to any participant in the market. The size of each realisation is small.
The average value of the noise over the course of the experiment is zero and each
realisation of it is independent from any other realization. In other words, the
noise term may take a positive or a negative value in any given period, but overall,
the size and number of positive and negative realisations will be approximately
equal and cancel each other out over time.

Positive feedback case

Computer based tutorial:

• What is your role?

Your role is to act as an expert forecaster advising firms that sell widgets.

• What makes you an expert in this market?

You will have access to information about the demand and supply of widgets to
the market. You will also have a bit of training before making paid forecasts.

• What is a widget?

Widgets are a perishable commodity like bananas or grapes. They are perishable
in the sense that they can only be consumed in the period they are produced. They
cannot be stored for consumption in future periods. The widgets are all the same
and there are many firms that sell in the market. Therefore, the individual firms
do not set the price at which they sell their widgets but must sell widgets at the
market price.

• Why do the firms need to forecast the price?

Widgets are considered by many to be a luxury good, in part because they cannot
be stored. In fact, when the price of widgets goes up, the demand for widgets tends
to go up as well as many consider expensive widgets a status symbol. Therefore,
how many widgets a firm should produce to meet demand depends on the expected
price in the market that day. Each firm has an advisor like you that provides price
forecasts. If the average price forecast is high, then firms will want to supply many
widgets and the actual price will be high. If the average price forecast is low, then
the firms will supply fewer widgets and the actual price will be low.

• How am I paid?

Your compensation for each forecast is based on the accuracy of the forecast. The
payoff for each forecast is given by the following formula:

payment = 0.50− 0.03 (p− your price forecast)
2

where p is the actual market price, and 0.50 and 0.03 are measured in cents. If your
forecast is off by more than 4, you will receive $0.00 for your forecast. Therefore,
you will receive $0.50 for a perfect forecast, where p=your price forecast, and
potentially $0.00 for a very poor forecast. You will be paid to make 50 forecasts
in total.

In addition, you will be paid a $5 show-up fee for participating. You may quit the
experiment at any time, for any reason, and retain this $5 payment.
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• The Demand for Widgets:

The total demand for widgets in a period is upward sloping. This means that the
higher the price, the greater the demand for widgets. In precise terms, the demand
is given by

q = A+Bp

where q is the quantity demanded, and p is the current price in the market. The
equation for demand and the values for A and B will be given to you at the
beginning of the experiment. The values may also change during the experiment.
The equation, the values of A and B, and any changes to these values will be told
to all participants at the same time.

• The Supply of Widgets:

The firms in the market all face the same costs for producing widgets. The supply
of widgets by each firm, therefore, only depends on their advisor’s forecast for price
next period. The total supply of widgets to the market depends on the average
price forecast from all firms.

The total amount of widgets supplied to the market by all firms is given by

q = C +D × average price forecast

where C and D are positive numbers, which will be given to you and all other
forecasters in the market at the start of the experiment. Just like with demand, C
and D may change during the experiment and the changes will be announced.

• Prices and Expected Prices:

Once all advisors have chosen their expected price, the average expected price
determines total supply. In each period, a central market-maker then sets the
final price so that demand equals the quantity supplied. Consequently, the actual
market price depends on the average expected price. In fact, there is a positive
relationship between price and expected price. In other words, when the average
forecast for the price is high, the actual price is high and vice versa.

• Why does this occur?

It occurs because a high average expected price causes widget producers to increase
their production of widgets. The higher the price, the higher the actual demand
for widgets due the fact they are a status symbol. The opposite occurs when the
average expected price is low. In this case, low prices will results in low demand
as widgets appear to be less of a luxury good. By equating supply and demand,

A+Bp = C +D × average price forecast

we can arrive at the precise relationship for the price and the expected price

p =
C −A
B

+
D

B
× average price forecast

where we will assume that C > A. Note that the expected price is positively
related to price. If the expected price is high, then the actual price is high and
vice versa

• A bit of randomness:
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Finally, like in real markets, we allow for the possibility that unforeseen and unpre-
dictable things may happen that affect price. We add this to the game by adding
a small amount of noise to price such that

p =
A

B
− D

B
× average price forecast + noise.

The noise term is chosen at random in each period and is not predictable. Its value
is not given to any participant in the market. The size of each realisation is small.
The average value of the noise over the course of the experiment is zero and each
realisation of it is independent from any other realization. In other words, the
noise term may take a positive or a negative value in any given period, but overall,
the size and number of positive and negative realisations will be approximately
equal and cancel each other out over time.

Paper instructions:
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Widget Game Instruction Summary: 

• Your job is to forecast the price of a widget next period 
• Demand for widgets is determined by the market price 

o q = A – B p 
• The total supply of widgets to the market is determined by the average of all price forecasts 

submitted to the market 
o q = D x average price forecast 

• Combining supply and demand, we have the key formula that determines price in the 
market 

o P = A/B – D/B x average expected price + noise 
 Recall that noise is small and on average equal to zero 

• An Example: A = 120, B =2, D = 1, and noise = 0, what is price if the average price forecast is 
42? 

o p = 60 – ½ x average price forecast 
o P = 60 – ½ x 42 = 60 – 21 = 39 

• You are paid based on accuracy of your forecast according to the following formula 
o Payment = 0.50 – 0.03 (𝑝𝑝 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓)2 

 A perfect forecast in a round earns 50 cents 
 A very poor forecast results in 0.00 

• KEY POINT: The market has negative feedback. Therefore, if the average price forecast is 
high, the market price will be low. And, if the average price forecast is low, then the 
market price will be high. 

• Your Notes: 
o – 
o – 
o – 
o – 
o – 
o –  

 

 

Widget Game Rules 

• You may withdraw from the experiment at any time for any reason 
• You may take notes on this paper or the scratch paper provided 
• Feel free to do any calculations you wish on the scratch paper provided 
• Do not exit the web browser 
• Do not open new tabs in the web browser 
• Please turn your phone off during the experiment 
• Do not speak with the people around you 
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Widget Game Instruction Summary: 

• Your job is to forecast the price of a widget next period 
• Demand for widgets is determined by the market price 

o q = A + B p 
• The total supply of widgets to the market is determined by the average of all price forecasts 

submitted to the market 
o q = C + D x average price forecast 

• Combining supply and demand, we have the key formula that determines price in the 
market 

o P = (C – A)/B + D/B x average expected price + noise 
 Recall that noise is small and on average equal to zero 

• An Example: A = 0, B =2, C=60, D = 1, and noise = 0, what is price if the average price 
forecast is 42? 

o p = 30 + ½ x average price forecast 
o P = 30 + ½ x 42 = 30 + 21 = 51 

• You are paid based on accuracy of your forecast according to the following formula 
o Payment = 0.50 – 0.03 (𝑝𝑝 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓)2 

 A perfect forecast in a round earns 50 cents 
 A very poor forecast results in 0.00 

• KEY POINT: The market has positive feedback. Therefore, if the average price forecast is 
high, the market price will be high. And, if the average price forecast is low, then the 
market price will be low. 

• Your Notes: 
o – 
o – 
o – 
o – 
o – 
o –  

 

 

Widget Game Rules 

• You may withdraw from the experiment at any time for any reason 
• You may take notes on this paper or the scratch paper provided 
• Feel free to do any calculations you wish on the scratch paper provided 
• Do not exit the web browser 
• Do not open new tabs in the web browser 
• Please turn your phone off during the experiment 
• Do not speak with the people around you 
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