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1 Introduction

Let F be an algebraically closed field of characteristic p. A central problem in the represen-

tation theory of the general linear group GL(n) = GLn(F) is to understand the structure of

the tensor space V ⊗r, where V is the natural GL(n)-module. To do this (inductively) we

would like information about the structure of tensor products of the form M ⊗V , where M

is an irreducible (or Weyl or tilting) module.

Given α ∈ Z/pZ, we will define functors Trα and Trα, which roughly speaking are

given by tensoring with the natural GL(n)-module V and its dual V ∗ respectively, then

projecting onto certain blocks determined by the residue α. In particular, for any rational

GL(n)-module M ,

M ⊗ V ∼=
⊕

α∈Z/pZ

TrαM and M ⊗ V ∗ ∼=
⊕

α∈Z/pZ

TrαM.

In fact, these functors can be viewed as special cases of Jantzen’s translation functors. Our

main results prove the following facts about Trα and Trα:

(1) Fix an irreducible rational GL(n)-module L. We give a precise combinatorial criterion

for N := Trα L (resp. Trα L) to be irreducible; whenever this occurs, the inverse
∗1991 subject classification: 20G05, 20C05.
†Authors partially supported by the NSF (grant nos DMS-9801442 and DMS-9600124).
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decomposition numbers for the irreducible module N can be computed from knowledge

of the ones for L.

(2) Even when N is not irreducible, we show that it is always a (contravariantly) self-dual

indecomposable module, and describe its (simple) socle and head, as well as the space

of high weight vectors in N , precisely.

(3) We construct a natural filtration of N by precisely b high weight modules, for some

combinatorially defined constant b (depending on L and α), compute certain composi-

tion multiplicities in N and describe the endomorphism ring of N using Casimir-type

operators.

(4) In particular, we show that the dimension of the endomorphism ring of N is precisely

b, and that the Loewy length of N is at least 2b− 1.

Special cases of these results, with b ≤ 2, follow from [12, II.7]. In general, the natural

number b can take any value. We also obtain various related results describing the action

of Trα and Trα on Weyl modules, and obtain combinatorial criteria for L⊗ V and L⊗ V ∗

to be completely reducible.

We also consider applications to the representation theory of the symmetric group Σn

over F. The functor Trα corresponds under the Schur functor to a certain ‘α-induction’

functor Indα : FΣn -mod→ FΣn+1 -mod. Roughly speaking, the functor Indα can be defined

as ordinary induction from Σn to Σn+1 followed by projection onto certain blocks. This

goes back to G. Robinson [21]. As consequences of the above results (1)–(4) for Trα, we

will obtain analogous results for the functor Indα, which are the counterparts of the results

proved in [14]–[18], [1], [2] for the ‘α-restriction’ functor Resα.

In section 2 and section 3, we state our results precisely, for general linear and symmetric
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groups respectively. In the remaining sections 4–8, we prove the results, usually by relating

the problems under consideration to certain branching problems studied in [14]–[18].

2 Statement of results for general linear groups

To describe our main results for GL(n), we need a little notation. Let X(n) denote the

set of all n-tuples λ = (λ1, . . . , λn) ∈ Zn and X+(n) ⊂ X(n) denote all λ ∈ X(n) sat-

isfying λ1 ≥ · · · ≥ λn. As we explain in section 4, X+(n) can be identified with the

dominant weights for the root system of GL(n). So for λ ∈ X+(n), we have the (ratio-

nal) GL(n)-modules Ln(λ),∆n(λ) and ∇n(λ), which are the irreducible, standard (or Weyl)

and costandard modules of highest weight λ, respectively. For 1 ≤ i ≤ n, let εi denote

the n-tuple (0, . . . , 0, 1, 0, . . . , 0) where 1 is in the ith position. We also denote the natural

GL(n)-module by Vn and its dual by V ∗n .

Given (a, b) ∈ Z× Z, define the corresponding p-residue res(a, b) to be (b− a) regarded

as an element of the ring Z/pZ. For α ∈ Z/pZ and λ ∈ X(n), define the α-content of λ to

be the integer:

contα(λ) :=

∣∣∣∣∣∣∣
(a, b)

∣∣∣ 1 ≤ a ≤ n, 0 < b ≤ λa,

res(a, b) = α


∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
(a, b)

∣∣∣ 1 ≤ a ≤ n, λa ≤ b < 0,

res(a, b) = α


∣∣∣∣∣∣∣ .

Say λ, µ ∈ X(n) are linked, written λ ∼ µ, if contα(λ) = contα(µ) for all α ∈ Z/pZ. The

linkage principle proved in [5] implies that if Ext1
GL(n)(Ln(λ), Ln(µ)) 6= 0, for λ, µ ∈ X+(n),

then λ ∼ µ. We remark that in fact the blocks of GL(n) (which can in general be smaller

than the linkage classes) are explicitly known, see [12, II.7.2(3)].

Let Cn denote the category of all rational GL(n)-modules. For any λ ∈ X(n), let Cn(λ)

denote the full subcategory of Cn consisting of all M ∈ Cn such that all composition factors
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of M are of the form Ln(µ) for µ ∼ λ. By the linkage principle,

Cn ∼=
⊕
λ

Cn(λ)

where λ runs over the set of ∼-equivalence classes in X(n).

Fix a residue α ∈ Z/pZ. We can now define the functors

Trα : Cn → Cn and Trα : Cn → Cn.

It suffices to define the restriction of Trα (resp. Trα) to Cn(λ), for any λ ∈ X(n) (then we

may extend the functors additively to all of Cn). Given M ∈ Cn(λ), we let TrαM (resp.

TrαM) denote the largest submodule of M ⊗ Vn (resp. M ⊗ V ∗n ) all of whose composition

factors are of the form Ln(µ) with

contα(µ) = contα(λ) + 1 (resp. contα(µ) = contα(λ)− 1),

and contβ(µ) = contβ(λ) for all α 6= β ∈ Z/pZ. By the linkage principle, TrαM (resp.

TrαM) is a direct summand of M ⊗ Vn (resp. M ⊗ V ∗n ). Given a morphism θ : M → N ,

Trα θ is just the restriction to TrαM of the natural map θ ⊗ 1 : M ⊗ Vn → N ⊗ Vn, and

similarly for Trα.

On any fixed block Cn(λ), the functor Trα (resp. Trα), for a suitable choice of α, coincides

with the translation functor Tµλ defined in [12, II.7.6], for a weight µ ∈ X(n) such that the

dominant conjugate of (µ − λ) is equal to the highest weight of Vn (resp. V ∗n ). We note

initially that the argument of [12, II.7.6] shows easily that the functors Trα and Trα are

(left and right) adjoint to one another, and both are exact.

In the next combinatorial definitions, the notions of normal and good first appeared in

[15]; the dual notions of conormal and cogood are new. The reader may be more familiar

with normal and good nodes; we reserve this terminology for the symmetric group setting

when definitions are ‘transposed’, see section 3. In the definitions, we call a map ψ from a
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set M ⊆ Z to a set N ⊆ Z increasing (resp. decreasing) if ψ(m) > m (resp. ψ(m) < m) for

all m ∈M .

Fix λ ∈ X+(n) and 1 ≤ i ≤ n. We say i is λ-removable if either i = n or 1 ≤ i < n and

λi > λi+1; equivalently, i is λ-removable if λ − εi ∈ X+(n). We say i is λ-addable if either

i = 1 or 1 < i ≤ n and λi < λi−1; equivalently, i is λ-addable if λ+ εi ∈ X+(n).

Say i is normal for λ if i is λ-removable and there is a decreasing injection from the set

of

λ-addable j with i < j ≤ n and res(i, λi) = res(j, λj + 1)

into the set of

λ-removable j′ with i < j′ ≤ n and res(i, λi) = res(j′, λj′).

Say i is good for λ if i is normal for λ and there is no j that is normal for λ with 1 ≤ j < i

and res(j, λj) = res(i, λi).

Say i is conormal for λ if i is λ-addable and there is an increasing injection from the set

of

λ-removable j with 1 ≤ j < i and res(j, λj) = res(i, λi + 1)

into the set of

λ-addable j′ with 1 ≤ j′ < i and res(j′, λj′ + 1) = res(i, λi + 1).

Say i is cogood for λ if i is conormal for λ and there is no j that is conormal for λ with

i < j ≤ n and res(j, λj + 1) = res(i, λi + 1).

We refer the reader to the combinatorial Lemma 5.8 for an explanation of the duality

between these definitions. For a fixed α ∈ Z/pZ, there is at most one i that is good for λ

with res(i, λi) = α. Moreover, such an i exists if and only if there is at least one j that is

normal for λ with res(j, λj) = α. A similar statement is true for conormal and cogood.
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Our first result describes the effect of Trα on standard modules (the analogous result for

costandard modules follows easily since Trα commutes with contravariant duality):

Theorem A. Fix λ ∈ X+(n) and a residue α ∈ Z/pZ. Then, Trα ∆n(λ) is zero unless

there is at least one λ-addable i with 1 ≤ i ≤ n and res(i, λi + 1) = α. In that case,

(i) Trα ∆n(λ) has a filtration with factors ∆n(λ+ εj) for all λ-addable j with 1 ≤ j ≤ n

and res(j, λj + 1) = α, each appearing with multiplicity one;

(ii) the head of Trα ∆n(λ) is
⊕

j Ln(λ+ εj) where the sum is over all j with 1 ≤ j ≤ n

such that j is normal for λ+ εj and res(j, λj + 1) = α;

Next we consider Trα applied to an irreducible module. Here and later [M : L] denotes

the multiplicity of an irreducible module L as a composition factor of a module M .

Theorem B. Fix λ ∈ X+(n) and a residue α ∈ Z/pZ. Then, Trα Ln(λ) is zero unless

there is a (necessarily unique) i that is cogood for λ with res(i, λi + 1) = α. In that case,

(i) Trα Ln(λ) is an indecomposable, contravariantly self-dual module, with simple socle

and head isomorphic to Ln(λ+ εi);

(ii) Trα Ln(λ) is irreducible if and only if there is a unique j with 1 ≤ j ≤ n such that j

is conormal for λ and res(j, λj + 1) = α; in particular, Ln(λ) ⊗ Vn is completely reducible

if and only if for every α ∈ Z/pZ, there is at most one j such that j is conormal for λ and

res(j, λj + 1) = α;

(iii) for any µ ∈ X+(n),

HomGL(n)(∆n(µ),Trα Ln(λ)) =


F if µ = λ+ εj for some j that is conormal for λ,

with res(j, λj + 1) = α;

0 otherwise;
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(iv) for any λ-addable j with 1 ≤ j ≤ n,

[Trα Ln(λ) : Ln(λ+ εj)] =


bj if j is conormal for λ and res(j, λj + 1) = α,

0 otherwise

where bj denotes the number of k with 1 ≤ k ≤ j such that k is conormal for λ and

res(k, λk + 1) = α;

(v) the endomorphism ring EndGL(n)(Trα Ln(λ)) is isomorphic to the truncated polyno-

mial ring F[T ]/(T b), of dimension b, where b is the number of j with 1 ≤ j ≤ n such that j

is conormal for λ and res(j, λj + 1) = α.

If, in the language of [12, II.6.2], λ+εi lies in the upper closure of the facet containing λ,

where i is as in Theorem B, then one can easily deduce that Trα Ln(λ) is irreducible directly

from [12, II.7.15]. Theorem B(ii) gives a necessary and sufficient condition for Trα Ln(λ)

to be irreducible, and shows that there are many other more general circumstances when

Trα Ln(λ) is irreducible. The significance of this is the following corollary, which follows

immediately from Theorem B(i) and (ii), by exactness of Trα:

Corollary 1. Fix λ ∈ X+(n) and α ∈ Z/pZ. Suppose that there is a unique i with

1 ≤ i ≤ n such that i is conormal for λ and res(i, λi + 1) = α. If

chLn(λ) =
∑

µ∈X+(n)

cλ,µ ch ∆n(µ)

with almost all coefficients cλ,µ equal to zero, then

chLn(λ+ εi) =
∑

µ∈X+(n)

cλ,µ ch Trα ∆n(µ),

which is known by Theorem A(i).

Our next result gives further information about the structure of Trα Ln(λ):
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Theorem C. Fix λ ∈ X+(n) and a residue α ∈ Z/pZ. Let 1 = s1 < s2 < · · · < sb denote

the set of all j with 1 ≤ j ≤ n such that j is conormal for λ and res(j, λj + 1) = α. Then,

N := Trα Ln(λ) has a filtration 0 = N0 < N1 < · · · < Nb = N such that:

(i) for 1 ≤ i ≤ b, Ni/Ni−1 is a non-zero quotient of ∆n(λ+ εsi);

(ii) for 1 ≤ i ≤ j ≤ b, dim HomGL(n)(Nj/Nj−1, Ni/Ni−1) = [Ni/Ni−1 : Ln(λ+ εsj )] = 1;

(iii) for 1 ≤ i < b, the extension 0 → Ni/Ni−1 → Ni+1/Ni−1 → Ni+1/Ni → 0 does not

split;

(iv) the Loewy length of Ni/Ni−1 is at least b− i+ 1;

(v) the Loewy length of N is at least 2b− 1.

We state now the dual results to Theorems A, B and C, for the adjoint functor Trα. The

dual statement to Corollary 1 is easily deduced from Theorem B′, and we leave the details

to the reader.

Theorem A
′
. Fix λ ∈ X+(n) and a residue α ∈ Z/pZ. Then, Trα ∆n(λ) is zero unless

there is at least one λ-removable i with 1 ≤ i ≤ n and res(i, λi) = α. In that case,

(i) Trα ∆n(λ) has a filtration with factors ∆n(λ−εj) for all λ-removable j with 1 ≤ j ≤ n

and res(j, λj) = α, each appearing with multiplicity one;

(ii) the head of Trα ∆n(λ) is
⊕

j Ln(λ− εj) where the sum is over all j with 1 ≤ j ≤ n

such that j is conormal for λ− εj and res(j, λj) = α;

Theorem B
′
. Fix λ ∈ X+(n) and a residue α ∈ Z/pZ. Then, Trα Ln(λ) is zero unless

there is a (necessarily unique) i that is good for λ with res(i, λi) = α. In that case,

(i) Trα Ln(λ) is an indecomposable, contravariantly self-dual module, with simple socle

and head isomorphic to Ln(λ− εi);

(ii) Trα Ln(λ) is irreducible if and only if there is a unique j with 1 ≤ j ≤ n such that

j is normal for λ and res(j, λj) = α; in particular, Ln(λ) ⊗ V ∗n is completely reducible if
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and only if for every α ∈ Z/pZ, there is at most one j such that j is normal for λ and

res(j, λj) = α;

(iii) for any µ ∈ X+(n),

HomGL(n)(∆n(µ),Trα Ln(λ)) =


F if µ = λ− εj for some j that is normal for λ,

with res(j, λj) = α;

0 otherwise;

(iv) for any λ-removable j with 1 ≤ j ≤ n,

[Trα Ln(λ) : Ln(λ− εj)] =


bj if j is normal for λ and res(j, λj) = α,

0 otherwise

where bj is the number of k with j ≤ k ≤ n such that k is normal for λ and res(k, λk) = α;

(v) the endomorphism ring EndGL(n)(Trα Ln(λ)) is isomorphic to the truncated polyno-

mial ring F[T ]/(T b), of dimension b, where b is the number of j with 1 ≤ j ≤ n such that j

is normal for λ and res(j, λj) = α.

Theorem C
′
. Fix λ ∈ X+(n) and a residue α ∈ Z/pZ. Let n = s1 > s2 > · · · > sb denote

the set of all j with 1 ≤ j ≤ n such that j is normal for λ and res(j, λj) = α. Then,

N := Trα Ln(λ) has a filtration 0 = N0 < N1 < · · · < Nb = N such that:

(i) for 1 ≤ i ≤ b, Ni/Ni−1 is a non-zero quotient of ∆n(λ− εsi);

(ii) for 1 ≤ i ≤ j ≤ b, dim HomGL(n)(Nj/Nj−1, Ni/Ni−1) = [Ni/Ni−1 : Ln(λ+ εsj )] = 1;

(iii) for 1 ≤ i < b, the extension 0 → Ni/Ni−1 → Ni+1/Ni−1 → Ni+1/Ni → 0 does not

split.

(iv) the Loewy length of Ni/Ni−1 is at least b− i+ 1;

(v) the Loewy length of N is at least 2b− 1.

In the remainder of the paper, we will not mention the functors Trα and Trα again,

preferring simply to work with the functors ?⊗ Vn and ?⊗ V ∗n .
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We now indicate where proofs of the above theorems can be found in the main body of

the paper. Using the linkage principle and contravariant duality, Theorems A(i) and A′(i)

are special cases of Lemma 4.8, and Theorems A(ii) and A′(ii) follow from Theorems 5.11(ii)

and 5.9(ii) respectively. Theorems B(iii) and B′(iii) follow from the linkage principle and

Theorems 5.11(i) and 5.9(i) respectively, while the description of the socles in Theorems

B(i) and B′(i) follow from Theorems 5.11(iii) and 5.9(iii). In particular, since these socles

are either simple (or zero), the modules Trα Ln(λ) and Trα Ln(λ) are indecomposable (or

zero), and they are obviously self-dual as Trα and Trα commute with contravariant duality,

giving the remaining parts of Theorems B(i) and B′(i). Theorem B(ii) follows from parts (i)

and (iii) together with Proposition 4.7, applied to N = Trα Ln(λ) and M = Trα∇n(λ), and

Theorem B′(ii) follows similarly. Theorem B′(iv) and (v) are Theorem 7.7 and Theorem 8.6

respectively; Theorem B(iv) and (v) follow from these using the duality argument of the

proof of Corollary 6.5 together with the combinatorial Lemma 5.8. Finally, Theorem C′(i)

follows from Theorem 6.3 together with the linkage principle, as explained in (4). The

remaining parts of Theorem C′ are proved in Theorem 8.9 and Corollary 8.10, and Theorem

C follows from Theorem C′ by the duality argument again.

3 Statement of results for symmetric groups

Let Σr be the symmetric group on r letters. If λ is a partition of r we write λ ` r. We

denote by Sλ the Specht module over FΣr corresponding to a partition λ ` r, and by Dλ the

irreducible FΣr-module, corresponding to a p-regular partition λ ` r (the reader is referred

to [9], [10] or [11] for these and other standard notions in the representation theory of

symmetric groups).
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Fix a partition λ = (λ1, λ2, . . . ) ` r. We identify λ with its Young diagram

λ = {(i, j) ∈ N× N | j ≤ λi}.

The elements of N×N are called nodes. A node of the form (i, λi) is called a removable

node (of λ) if λi > λi+1; a node of the form (i, λi + 1) is called an addable node (for λ) if

i = 1 or i > 1 and λi < λi−1. If A = (i, λi) is a removable node, we let

λA := λ \ {A} = (λ1, . . . , λi−1, λi − 1, λi+1, . . . ),

the partition of (r − 1) obtained by removing A from λ. If B = (i, λi + 1) is an addable

node, we let

λB := λ ∪ {B} = (λ1, . . . , λi−1, λi + 1, λi+1, . . . ),

the partition of (r + 1) obtained by adding B to λ. The p-residue of a node A = (i, j) is

defined as in section 2: resA := (j − i) ∈ Z/pZ. We say a node A = (i, j) is to the right

(resp. left) of B = (k, l) if j > l (resp. j < l).

A removable node A (of λ) is called a normal node if for every addable node B to the

right of A with resB = resA there exists a removable node C(B) strictly between A and B

with resC(B) = resA, and moreover B 6= B′ implies C(B) 6= C(B′). A removable node is

called a good node if it is the leftmost among the normal nodes of a fixed residue.

An addable node B (for λ) is called a conormal node if for every removable node A to

the left of B with resA = resB there exists an addable node C(A) strictly between B and

A with resC(A) = resB, and moreover A 6= A′ implies C(A) 6= C(A′). An addable node is

called a cogood node if it is the rightmost among the conormal nodes of a fixed residue.

In the next theorem, the last two equalities are new, while the first two equalities can

be deduced from [15, 0.4,0.5] and Lemma 5.8(iv) using Frobenius reciprocity.
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Theorem D. Fix p-regular partitions λ ` r, µ ` (r + 1). Then,

HomΣr+1(Dµ, Dλ ↑Σr+1) =


F if µ = λB for some cogood node B for λ,

0 otherwise;

HomΣr+1(Sλ ↑Σr+1 , Dµ) =


F if λ = µA for some normal node A for µ,

0 otherwise;

HomΣr+1(Sµ, Dλ ↑Σr+1) =


F if µ = λB for some conormal node B for λ,

0 otherwise;

HomΣr+1(Sλ ↑Σr+1 , (Sµ)∗) =


F if µ = λB for some addable node B for λ,

0 otherwise.

For α ∈ Z/pZ and a partition λ, define the α-content of λ to be the integer

contα(λ) := |{A ∈ λ | resA = α}|

(which is a special case of the definition in section 2). For two partitions λ and µ we write

λ ∼ µ, if contα(λ) = contα(µ) for all α ∈ Z/pZ. The ‘Nakayama Conjecture’ (proved e.g.

in [11]) claims that FΣr-modules Dλ and Dµ are in the same block if and only if λ ∼ µ.

Fix a residue α ∈ Z/pZ. We define the functors

Indα : FΣr-mod→ FΣr+1-mod and Resα : FΣr-mod→ FΣr−1-mod,

by defining them first on a module M in any fixed block, and then extending additively

to all of FΣr-mod. Assume M belongs to the block corresponding to the residue contents

c0, c1, . . . , cp−1, that is, every composition factor of M is of the form Dλ with contβ(λ) = cβ

for all β ∈ Z/pZ. We let IndαM (resp. ResαM) denote the largest submodule of M ↑Σr+1

(resp. M ↓Σr−1) all of whose composition factors are of the form Dµ with contα(µ) = cα+ 1
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(resp. contα(µ) = cα − 1), and contβ(µ) = cβ for all α 6= β ∈ Z/pZ. Given a morphism θ :

M → N , Indα θ is just the restriction to IndαM of the natural map θ̂ : M ↑Σr+1→ N ↑Σr+1

induced by θ, and similarly for Resα. We have

M ↑Σr+1∼=
⊕

α∈Z/pZ

IndαM and M ↓Σr−1
∼=

⊕
α∈Z/pZ

ResαM.

The functors just defined are called Robinson’s α-induction and α-restriction functors (cf.

[11, 6.3.16]).

Our next result describes the effect of Indα on irreducible modules, and is the symmetric

group analogue of Theorem B.

Theorem E. Fix a p-regular partition λ ` r and a residue α ∈ Z/pZ. Then, IndαDλ is

zero unless λ has at least one conormal node of residue α. In that case,

(i) IndαDλ is an indecomposable, self-dual module, with simple socle and head isomor-

phic to DλB where B is the (unique) cogood node of residue α;

(ii) IndαDλ is irreducible if and only if there is a unique conormal node of residue α; in

particular, the induced module Dλ ↑Σr+1 is completely reducible if and only if all conormal

nodes have different residues.

(iii) for any p-regular µ ` (r + 1),

HomΣr+1(Sµ, IndαDλ) =


F if µ = λB for some conormal node B with resB = α,

0 otherwise;

(iv) for any addable node B such that λB is p-regular,

[IndαDλ : DλB ] =


dB if B is conormal for λ and resB = α,

0 otherwise

where dB denotes the number of conormal nodes C to the left of B (counting B itself) such

that resC = α;
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(v) the endomorphism ring EndΣr+1(IndαDλ) is isomorphic to the truncated polynomial

ring F[T ]/(T d), of dimension d, where d is the number of conormal nodes B with resB = α.

We note that a criterion for complete reducibility of Dλ ↑Σr+1 different from the one

in Theorem E(ii) was found in [17, Theorem C]. It is difficult to see directly that the

two combinatorial conditions are equivalent (see Corollary 8.7(iii)). Also, Theorem E(i) is

immediate from [16, Theorem 3.2], using the combinatorial Lemma 5.8.

The next result is parallel to Corollary 1, and is useful in calculating inverse decompo-

sition matrices. It follows immediately from Theorem E(ii) together with exactness of the

functor Indα; in the second part of the statement, we have used the (known) fact that for

any µ ` r, Indα Sµ has a filtration with factors Sµ
C

for all addable nodes C for µ with

resC = α.

Corollary 2. Let λ ` r be p-regular, and α ∈ Z/pZ. Suppose that λ has a unique conormal

node B of residue α. If (in the Grothendieck group)

Dλ =
∑
µ`r

cλ,µS
µ then DλB =

∑
µ`r

cλ,µ Indα Sµ =
∑
µ`r

cλ,µ

(∑
C

Sµ
C

)
,

where the last summation is over all addable nodes C for µ with resC = α.

We state now for completeness the dual result to Theorem E, for the functor Resα. These

results are known, see [15, 0.4,0.5], [16, 3.1], [17, Theorem B], [18, 1.4].

Theorem E
′
. Fix a p-regular partition λ ` r and a residue α ∈ Z/pZ. Then, ResαDλ is

zero unless λ has at least one normal node of residue α. In that case,

(i) ResαDλ is an indecomposable, self-dual module, with simple socle and head isomor-

phic to DλA where A is the (unique) good node of residue α;
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(ii) ResαDλ is irreducible if and only if there is a unique normal node of residue α; in

particular, the restriction Dλ ↓Σr−1 is completely reducible if and only if all normal nodes

have different residues.

(iii) for any p-regular µ ` (r − 1),

HomΣr−1(Sµ,ResαDλ) =


F if µ = λA for some normal node A with resA = α,

0 otherwise;

(iv) for any removable node A such that λA is p-regular,

[ResαDλ : DλA ] =


dA if A is normal for λ and resA = α,

0 otherwise

where dA denotes the number of normal nodes C to the right of A (counting A itself) such

that resC = α;

(v) the endomorphism ring EndΣr−1(ResαDλ) is isomorphic to the truncated polynomial

ring F[T ]/(T d), of dimension d, where d is the number of normal nodes A with resA = α.

Remark. We remark that an analogue of Theorem C can also be proved for the func-

tor Indα. More precisely, fix a p-regular partition λ ` r and a residue α ∈ Z/pZ. Let

B1, B2 . . . Bd be all conormal nodes of residue α counted from left to right. Then, one can

show that I := IndαDλ has a filtration 0 = I0 < I1 < · · · < Id = I such that:

(i) for 1 ≤ j ≤ d, Ij/Ij−1 is a non-zero quotient of Sλ
Bj ;

(ii) for 1 ≤ j ≤ k ≤ d such that λBk is p-regular, [Ij/Ij−1 : DλBk ] = 1;

(iii) the extension 0→ Ij/Ij−1 → Ij+1/Ij−1 → Ij+1/Ij → 0 does not split;

(iv) if every λBj is p-regular, then the Loewy length of I is at least 2d− 1.

We now indicate briefly how to deduce Theorems D and E from the results for GL(n)

stated in section 2, using Schur functors. The key point is that a Schur functor applied to
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a GL(n)-module of the form M ⊗ Vn (where M is polynomial of degree r < n) gives the

FΣr+1-module induced from the FΣr-module obtained by applying the Schur functor to M ;

see [3, Theorem 4.17] for the precise statement. Now fix p-regular partitions λ ` r and

µ ` (r+1), and choose n > r. We can regard the transpose partitions λt and µt as elements

of X+(n). In [3, Corollary 4.18] (cf. [7, Lemma 2.5]), we used the Schur functor to show

that:

HomΣr+1(Dµ, Dλ ↑Σr+1) ∼= HomGL(n)(Ln(µt), Ln(λt)⊗ Vn),

HomΣr+1(Sµ, Dλ ↑Σr+1) ∼= HomGL(n)(∆n(µt), Ln(λt)⊗ Vn),

HomΣr+1(Sλ ↑Σr+1 , Dµ) ∼= HomGL(n)(Ln(µt),∇n(λt)⊗ Vn),

HomΣr+1(Sλ ↑Σr+1 , (Sµ)∗) ∼= HomGL(n)(∆n(µt),∇n(λt)⊗ Vn).

Theorem D follows from these isomorphisms, (5.1) and Theorem 5.11 (note for symmetric

groups we have ‘transposed’ the combinatorial definitions of normal, conormal and cogood

from section 2). Now Theorem E(iii) and the fact that IndαDλ has the socle as claimed

in Theorem E(i) follow immediately from Theorem D on taking blocks. Since the socle is

simple (whenever it is non-zero), it follows that IndαDλ is indecomposable, and it is self-

dual as Dλ is and Indα commutes with duality, proving the remaining parts of Theorem

E(i). Theorem E(iv) follows from Theorem B(iv) together with the following fact proved in

[3, Theorem 4.16] (where λ ` r and µ ` (r + 1) are p-regular and n > r):

[Dλ ↑Σr+1 : Dµ] = [Ln(λt)⊗ Vn : Ln(µt)].

To prove Theorem E(ii), we note that as IndαDλ has simple socle and head isomorphic to

DλB (where B is as in (i)), IndαDλ is irreducible if and only if [IndαDλ : DλB ] = 1. So

Theorem E(ii) follows from Theorem E(iv) (alternatively, one can deduce Theorem E(ii)

directly from Theorem B(ii) using [13, 2.13] and a block argument). Finally, we observe
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that if λ ` r < n is p-regular, then Ln(λt)⊗Vn has p-restricted socle and head, which follows

from [3, Corollary 2.12]. So by [3, Theorem 4.17],

EndGL(n)(Ln(λt)⊗ Vn) ∼= EndΣr+1(Dλ ↑Σr+1).

This isomorphism is even an isomorphism of F-algebras, as follows from the proof of [3,

Theorem 4.17] (see [3, Lemma 2.17(ii)]), since the isomorphism is given by a natural restric-

tion map. Theorem E(v) follows from Theorem B(v) by the same argument at the level of

blocks.

4 A complete reducibility criterion

In the remainder of the paper, we prove the results stated in section 2 and section 3.

We begin in this preliminary section with some general results in the setting of rational

representations of an arbitrary reductive algebraic group as in [12]. Actually the results in

this section (except for Lemma 4.8) are true for an arbitrary quasi-hereditary algebra with a

duality fixing the simple modules. In later sections, we will only be concerned with GL(n).

Fix a (connected) reductive algebraic group G over our algebraically closed field F. A

G-module always means a rational FG-module as in [12]. Fix a maximal torus T < G and

a Borel subgroup B+ > T . Let R denote the root system of G relative to T , and R+ ⊂ R

denote the positive roots determined by the choice of positive Borel subgroup B+. Let

X(T ) denote the character group of T , and call elements of X(T ) weights. The Weyl group

W = NG(T )/T acts on X(T ), and we let 〈., .〉 denote some fixed W -invariant inner product

on X(T ) ⊗
Z
R. For µ ∈ X(T ) ⊗

Z
R, µ∨ denotes 2µ

〈µ,µ〉 . Let w0 denote the longest element

of W . We have the usual dominance order on X(T ), defined by λ > µ if (λ − µ) is a sum

of positive roots. The weight λ ∈ X(T ) is dominant (relative to B+) if 〈λ, α∨〉 ≥ 0 for all

α ∈ R+; we let X+(T ) denote the set of all dominant weights λ ∈ X(T ). For λ ∈ X+(T ),
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we have the G-modules ∆(λ) (denoted V (λ) in [12]), ∇(λ) (denoted H0(λ) in [12]) and

L(λ), which are the standard, costandard and irreducible G-modules of highest weight λ

respectively.

In the special case that G = GL(n), we always take T = T (n) to be all diagonal invertible

matrices and B+ = B+(n) to be all upper triangular invertible matrices. The character

group of T (n) is the free abelian group with generators ε1, . . . , εn, where εi denotes the

standard character defined by diag(t1, . . . , tn) 7→ ti for all t1, . . . , tn ∈ F×, and we identify

this with the set X(n) of all n-tuples λ = (λ1, . . . , λn) ∈ Zn, by letting (λ1, . . . , λn) ∈ X(n)

correspond to the character
∑

i λiεi. For λ = (λ1, . . . , λn) ∈ X(n), we write:

|λ| for λ1 + · · ·+ λn ∈ Z;

λ̄ for (λ1, . . . , λn−1) ∈ X(n− 1);

λ̃ for (λ1, . . . , λn, 0) ∈ X(n+ 1).

The root system of GL(n) is the set {εi − εj | 1 ≤ i, j ≤ n, i 6= j}, and the root εi − εj is

positive if i < j. A weight (λ1, . . . , λn) ∈ X(n) is dominant precisely when λ1 ≥ · · · ≥ λn,

and we let X+(n) ⊂ X(n) denote the set of all such dominant weights. For λ ∈ X+(n),

we then denote the irreducible, standard and costandard for GL(n) of highest weight λ by

Ln(λ),∆n(λ) and ∇n(λ) respectively, as in section 2.

If M is a finite dimensional G-module, the dual M∗ is defined as usual to be the dual

vector space with action (gf)(m) = f(g−1m) for g ∈ G, f ∈ M∗ and m ∈ M . Recall that

L(λ)∗ ∼= L(λ∗) and ∆(λ)∗ = ∇(λ∗), where λ∗ := −w0λ. We also define the contravariant

dual M τ of M . This is the dual vector space M∗ with new action defined by (gf)(m) =

f(τ(g)m) for g ∈ G, f ∈M∗ and m ∈M , where τ is the Chevalley antiautomorphism of G as

in [12, II.1.16]. For λ ∈ X+(T ), we have L(λ)τ ∼= L(λ) and ∆(λ)τ ∼= ∇(λ). In the case G =

GL(n), τ is just matrix transposition, while for λ ∈ X(n), λ∗ = −w0λ = (−λn, . . . ,−λ1).
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The following fact proved in [12, II.4.13] is of central importance:

4.1. For λ, µ ∈ X+(T ), ExtiG(∆(λ),∇(µ)) is zero unless i = 0 and λ = µ, when it is one

dimensional.

We say that a G-module M has a ∇-filtration (resp. a ∆-filtration) if it has an ascending

filtration 0 = M(0) < M(1) < . . . with
⋃
i≥0M(i) = M such that each factor M(i)/M(i−1) is

isomorphic to a (possibly infinite) direct sum of copies of ∇(λ(i)) (resp ∆(λ(i))) for some

λ(i) ∈ X+(n). We recall the Donkin-Mathieu theorem [6], [20]:

4.2. If M,N are G-modules with ∇-filtrations, then M ⊗N has a ∇-filtration.

For the remainder of the section, fix G-modules W and N such that:

(P1) W has a ∇-filtration

0 = W(0) < W(1) < · · · < W(s) = W

where W(t)/W(t−1)
∼= ∇(λ(t)) for some λ(t) ∈ X+(T ), t = 1, 2, . . . , s.

(P2) N is a submodule of W satisfying N ∼= N τ . Define N(t) to be the intersection

N ∩W(t); then N has the filtration

0 = N(0) ≤ N(1) ≤ · · · ≤ N(s) = N,

and N(t)/N(t−1) is a (possibly zero) submodule of ∇(λ(t)) for 1 ≤ t ≤ s.

We have in mind the following example for the modules W and N . Take W = ∇(λ) ⊗

∇(ν) and N = L(λ) ⊗ L(ν) (or any fixed block of these); then, (P1) is satisfied by (4.2),

while (P2) is obvious. Another example is if W = ∇(λ) ↓H , N = L(λ) ↓H where H is a

Levi subgroup of G.

We prove some general facts about modules W and N for use later in the paper. We

will need the following known lemma:
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4.3. Lemma. For λ ∈ X+(T ) and any finite dimensional G-module V all of whose compo-

sition factors are of the form L(ν) for ν 6> λ, Ext1
G(∆(λ), V ) = 0.

Proof. We argue by induction on dimension. Pick a maximal submodule W of V such that

V/W ∼= L(ν) for ν 6> λ. The long exact sequence of cohomology yields the exact sequence

Ext1
G(∆(λ),W ) → Ext1

G(∆(λ), V ) → Ext1
G(∆(λ), L(ν)). By induction, the left hand Ext is

zero, so it suffices to show that Ext1
G(∆(λ), L(ν)) = 0 which is done in the proof of [12,

II.2.14].

Applying the lemma to V = ∆(µ) and dualizing with [12, II.2.12(3)], we deduce the

well-known:

4.4. For λ, µ ∈ X+(T ) with µ 6> λ, Ext1
G(∆(λ),∆(µ)) = Ext1

G(∇(µ),∇(λ)) = 0.

We can reorder the ∇-filtration of W in (P1) if necessary using (4.4), to assume from

now on that λ(i) > λ(j) implies i > j for all 1 ≤ i, j ≤ s.

4.5. Lemma. For 1 ≤ t ≤ s and λ ∈ X+(T ), there is an exact sequence

0→ HomG(∆(λ), N(t−1))→ HomG(∆(λ), N(t))→ HomG(∆(λ), N(t)/N(t−1))→ 0.

Proof. We have the long exact sequence

0→ HomG(∆(λ), N(t−1))→ HomG(∆(λ), N(t))→ HomG(∆(λ), N(t)/N(t−1))

→ Ext1
G(∆(λ), N(t−1))→ . . . .

Note that HomG(∆(λ), N(t)/N(t−1)) ⊆ HomG(∆(λ),∇(λ(t))), and the latter is zero by (4.1)

unless λ = λ(t). If HomG(∆(λ), N(t)/N(t−1)) = 0 the result is obvious, so we may assume

that λ = λ(t). This means by the choice of ordering of the ∇-filtration of W that for u < t,

λ(u) 6> λ. All composition factors of N(t−1) are of the form L(ν) for ν ≤ λ(u) and some

20



1 ≤ u < t, hence also satisfy ν 6> λ. So Ext1
G(∆(λ), N(t−1)) = 0 by Lemma 4.3, and the

result follows from the long exact sequence.

4.6. Corollary. For λ ∈ X+(T ), dim HomG(∆(λ), N) is equal to the number of t with

1 ≤ t ≤ s such that λ = λ(t) and N(t) 6= N(t−1).

Proof. Note that dim HomG(∆(λ), N(t)) =
∑t

u=1 dim HomG(∆(λ), N(u)/N(u−1)), which fol-

lows from lemma by induction on t. Now take t = s to deduce that

dim HomG(∆(λ), N) =
s∑
t=1

dim HomG(∆(λ), N(t)/N(t−1)).

Since N(t)/N(t−1) is a submodule of ∇(λ(t)), HomG(∆(λ), N(t)/N(t−1)) is zero unless λ = λ(t)

and N(t) 6= N(t−1), when it is one dimensional. The result follows.

Now we obtain our main result in the general setting:

4.7. Proposition. The G-module N is completely reducible if and only if

HomG(L(λ), N) ∼= HomG(∆(λ), N)

for all λ ∈ X+(T ).

Proof. Obviously, if N is completely reducible then HomG(L(λ), N) ∼= HomG(∆(λ), N)

for all λ. Conversely, suppose HomG(L(λ), N) ∼= HomG(∆(λ), N) for all λ ∈ X+(T ). Let

d := dim HomG(∆(λ), N); by Corollary 4.6, d is equal to the number of t with 1 ≤ t ≤ s

such that λ(t) = λ and N(t) 6= N(t−1).

We claim that N(t)/N(t−1)
∼= L(λ(t)) whenever it is non-zero, for all 1 ≤ t ≤ s. Suppose

for a contradiction that this is false, and take u ≤ s maximal such that N(u)/N(u−1) is

reducible. This implies that HomG(N(u)/N(u−1), L(λ)) = 0 as N(u)/N(u−1) is a submodule
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of ∇(λ), where λ := λ(u). So, using contravariant duality,

d = dim HomG(∆(λ), N) = dim HomG(L(λ), N) = dim HomG(N,L(λ))

≤
s∑
t=1

dim HomG(N(t)/N(t−1), L(λ))

=
u−1∑
t=1

dim HomG(N(t)/N(t−1), L(λ)) +
s∑

t=u+1

dim HomG(N(t)/N(t−1), L(λ)).

For t < u such that N(t) 6= N(t−1), the module N(t)/N(t−1) is a submodule of ∇(λ(t)), so

has highest weight λ(t) 6> λ. Hence in this case, HomG(N(t)/N(t−1), L(λ)) is zero unless

λ(t) = λ, when it is at most one dimensional. For t > u, N(t)/N(t−1) is either zero or L(λ(t))

by maximality of u, so HomG(N(t)/N(t−1), L(λ)) is zero unless λ(t) = λ and N(t) 6= N(t−1),

when it is exactly one dimensional. This shows that

u−1∑
t=1

dim HomG(N(t)/N(t−1), L(λ)) +
s∑

t=u+1

dim HomG(N(t)/N(t−1), L(λ)) ≤ d− 1.

Comparing this with our previous inequality gives the desired contadiction.

We have now shown that N(t)/N(t−1)
∼= L(λ(t)) whenever it is non-zero. Hence by

Corollary 4.6 again, dim HomG(L(λ), N) = [N : L(λ)] for all λ ∈ X+(T ). Hence, N

coincides with its socle, so is completely reducible.

Now, let ε ∈ X+(n) be a miniscule weight (see [8, §13 ex. 13] where such weights are

called minimal). Then L(ε) = ∆(ε) = ∇(ε). It is of importance that the ∇-filtration of

W = ∇(λ)⊗∇(ε) in (P1) is in fact multiplicity-free:

4.8. Lemma. Let ε ∈ X+(T ) be a miniscule weight. For any λ ∈ X+(T ), the G-module

∇(λ)⊗ L(ε) has a ∇-filtration with factors

{∇(λ+ wε) | for all w ∈W such that λ+ wε ∈ X+(T )},
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each appearing with multiplicity one. In particular by (4.1), for any µ ∈ X+(T )

HomG(∆(µ),∇(λ)⊗ L(ε)) =


F if µ ∈ λ+Wε,

0 otherwise.

Proof. The fact that ∇(λ)⊗ L(ε) has a ∇-filtration follows from (4.2) (or [6, Proposition

4.2.1] or [22]). To compute the factors appearing in a ∇-filtration, it suffices to work at the

level of characters. Consequently, the multiplicities are the same as in characteristic 0. Now

use [8, §26 ex. 9]. We note that the lemma can also be deduced as a special case of [12,

II.7.13].

5 Primitive vectors and the socle of Ln(λ)⊗ V ∗n

As observed in section 4, the GL(n)-modules W = ∇n(λ) ⊗ Vn (resp. ∇n(λ) ⊗ V ∗n ) and

N = Ln(λ) ⊗ Vn (resp. Ln(λ) ⊗ V ∗n ) satisfy the hypotheses (P1) and (P2) of section 4, for

any λ ∈ X+(n). In this section, we will relate the combinatorial notions from section 2 to

the general properties of the modules W and N considered in section 4.

We point out that the weights ε1 and −εn are miniscule for G = GL(n), so we have the

following special cases of Lemma 4.8:

5.1. Fix λ, µ ∈ X+(n).

(i) The space HomGL(n)(∆n(µ),∇n(λ)⊗Vn) is zero unless µ = λ+εi for some λ-addable

i, when it is one dimensional.

(ii) The space HomGL(n)(∆n(µ),∇n(λ) ⊗ V ∗n ) is zero unless µ = λ − εi for some λ-

removable i, when it is one dimensional.

We work now with the hyperalgebra U(n) ofGL(n) (denoted Dist(GL(n)) in [12]), taking

notation from [4, Section 2]. The hyperalgebra can be defined by base change starting from
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the universal enveloping algebra U(n,C) of the Lie algebra gl(n,C). For 1 ≤ i, j ≤ n, let

xi,j denote the element of gl(n,C) corresponding to the n× n matrix with 1 in the ij-entry

and zeros elsewhere. Let U(n,Z) be the Z-subalgebra of U(n,C) generated byx(r)
i,j ,

xi,i
r

 ∣∣∣∣ 1 ≤ i, j ≤ n, i 6= j, r ≥ 0

 ,

where x(r) denotes the divided power xr

r! and

x
r

 denotes x(x−1)...(x−r+1)
r! . The hyperalgebra

U(n) = U(n,F) is then U(n,Z) ⊗
Z
F. For 1 ≤ i < j ≤ n, we denote the image of x(r)

i,j and

x
(r)
j,i in U(n) by E

(r)
i,j and F

(r)
i,j respectively, and the image of

xi,i
r

 by

Hi
r

. Letting

U−(n), U0(n) and U+(n) denote the subalgebras of U(n) generated by

{
F

(r)
i,j

}
1≤i<j≤n,r≥0

,


Hi

r




1≤i≤n,r≥0

and
{
E

(r)
i,j

}
1≤i<j≤n,r≥0

respectively, we have the usual ‘triangular decomposition’ U(n) = U−(n)U0(n)U+(n).

Any rational GL(n)-module M is naturally a U(n)-module (see [12, I.8]). We say that

a vector v ∈ M is a primitive vector if it is annihilated by E
(k)
i,j for all 1 ≤ i < j ≤ n and

k ≥ 1. We say M is a high weight module of high weight λ if it is generated by a primitive

vector of weight λ. By [12, II.2.13], the standard module ∆n(λ) is universal amongst all

high weight modules of high weight λ. This implies:

5.2. For any GL(n)-module M and λ ∈ X+(T ), the dimension of the space of all primitive

vectors in M of weight λ is equal to dim HomGL(n)(∆n(λ),M).

Let f1, . . . , fn denote the basis for V ∗n that is dual to the natural basis for Vn. The action
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of the generators of U(n) on V ∗n is given by:

E
(l)
i,j fk = −δl,1δi,kfj , F

(l)
i,j fk = −δl,1δj,kfi,

Hi
l

 fk = −δl,1δi,kfk (1)

for 1 ≤ i, j, k ≤ n and l ≥ 1.

For the remainder of the section, let P = LY denote the standard parabolic subgroup of

GL(n), where L ∼= GL(n− 1)×G(1) (embedded diagonally) and Y is the unipotent radical

generated by the root subgroups corresponding to the roots εi − εn, for i = 1, 2, . . . n − 1.

Note that for any GL(n)-module M , the Y -fixed points MY of M are L-invariant, so we

can regard MY as a GL(n− 1)-module in a natural way.

5.3. Lemma. For any GL(n)-module M , the linear map e : M →M⊗V ∗n defined for v ∈M

by

e(v) := v ⊗ fn +
n−1∑
h=1

Eh,nv ⊗ fh

is an injective GL(n− 1)-homomorphism such that e(M) ⊇ (M ⊗ V ∗n )Y .

Proof. The map e is obviously injective as f1, . . . , fn are linearly independent. To prove

that it is a GL(n− 1)-homomorphism, we work with the naturally embedded hyperalgebra

U(n− 1) < U(n). Note that for any vector v ∈ M that is a weight vector for the maximal

torus T (n − 1) of GL(n − 1), the weights of v and e(v) relative to T (n − 1) are equal. So,

to prove that e is a GL(n − 1)-homomorphism, it suffices to show that e(Xv) = Xe(v) for

any v ∈ M and any X ∈ U(n− 1) of the form E
(k)
i,j or F (k)

i,j with 1 ≤ i < j < n and k > 0.

We have (interpreting En,n as 1):

E
(k)
i,j e(v) = E

(k)
i,j

(
n∑
h=1

Eh,nv ⊗ fh

)
=

n∑
h=1

(E(k)
i,j Eh,nv)⊗ fh + (E(k−1)

i,j Ei,nv)⊗ (Ei,jfi)

=
n∑
h=1

Eh,nE
(k)
i,j v ⊗ fh + Ei,nE

(k−1)
i,j v ⊗ fj + Ei,nE

(k−1)
i,j v ⊗ (−fj) = e(E(k)

i,j v),
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and

F
(k)
i,j e(v) = F

(k)
i,j

(
n∑
h=1

Eh,nv ⊗ fh

)
=

n∑
h=1

(F (k)
i,j Eh,nv)⊗ fh + (F (k−1)

i,j Ej,nv)⊗ (Fi,jfj)

=
n∑
h=1

Eh,nF
(k)
i,j v ⊗ fh + Ej,nF

(k−1)
i,j v ⊗ fi + Ej,nF

(k−1)
i,j v ⊗ (−fi) = e(F (k)

i,j v).

For the last part, take any element w =
∑n

h=1 vh ⊗ fh of (M ⊗ V ∗n )Y . Then Ei,nw = 0

for any 1 ≤ i < n. That is,

0 = Ei,n(
n∑
h=1

vh ⊗ fh) =
n∑
h=1

Ei,nvh ⊗ fh + vi ⊗ Ei,nfi =
n∑
h=1

Ei,nvh ⊗ fh − vi ⊗ fn.

Since f1, . . . , fn are linearly independent, we conclude that vi = Ei,nvn for i = 1, . . . , n− 1.

So w = e(vn) and we have shown that (M ⊗ V ∗n )Y ⊆ e(M).

We recall the notion of level introduced by Seitz. For λ ∈ X+(n), we define the `th

level M (`) of any submodule M of ∇n(λ) to be the sum of the weight spaces Mν for all

ν ∈ X(n) satisfying νn = λn + `. Observe that M (`) is a GL(n − 1)-submodule of M and

M =
⊕

`≥0M
(`).

5.4. Proposition. For any λ ∈ X+(n) and any submodule M of ∇n(λ), the restriction of

the map e from Lemma 5.3 to M (0) ⊕M (1) gives an isomorphism

ē : M (0) ⊕M (1) → (M ⊗ V ∗n )Y

as GL(n− 1)-modules.

Proof. We first check that for v ∈M (0) ⊕M (1), e(v) lies in (M ⊗ V ∗n )Y . We have to prove

that E(k)
i,n e(v) = 0 for any 1 ≤ i < n and k > 0. We have

E
(k)
i,n

(
n∑
h=1

Eh,nv ⊗ fh

)
=

n∑
h=1

E
(k)
i,nEh,nv ⊗ fh + E

(k−1)
i,n Ei,nv ⊗ Ei,nfi,

which is clearly zero by weights if k > 1. For k = 1, it equals Ei,nv ⊗ fn + Ei,nv ⊗ (−fn)

which is again 0.
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Applying Lemma 5.3, this shows that ē is an injective GL(n − 1)-homomorphism from

M (0)⊕M (1) to (M⊗V ∗n )Y . To show that ē is surjective take w =
∑n

h=1 vh⊗fh ∈ (M⊗V ∗n )Y .

We may assume that w is a weight vector of weight ν ∈ X(n). By Lemma 5.3, we can write

w = e(v) for some weight vector v ∈ M of weight ν + εn. We now prove by downward

induction on the dominance order on ν that v lies in M (0) ⊕M (1), to complete the proof.

If v is a GL(n − 1)-primitive vector in M , then e(v) = w is a GL(n)-primitive vector,

since we have already shown that it is Y -invariant. So (5.1) and (5.2) imply that the weight

ν of w is λ − εj for some 1 ≤ j ≤ n. But then, the weight of v is λ − εj + εn so v lies in

M (0) ⊕M (1) as required.

Otherwise, if v is not GL(n − 1)-primitive, then we can find 1 ≤ i < j < n and k > 0

such that E(k)
i,j v 6= 0. By induction E

(k)
i,j v lies in M (0) ⊕M (1) so v does too by weights.

Recall the notation λ̄ from section 4.

5.5. Corollary. For λ, µ ∈ X+(n) and a submodule M of ∇n(λ), the restriction of the

map ē from Proposition 5.4 gives a bijection between the GL(n − 1)-primitive vectors in

M (0) ⊕M (1) of weight µ + εn and the GL(n)-primitive vectors in M ⊗ V ∗n of weight µ. In

particular, if µn = λn,

HomGL(n)(∆n(µ),M ⊗ V ∗n ) ∼= HomGL(n−1)(∆n−1(µ̄),M (1)).

Proof. The first statement follows immediately from Proposition 5.4, since a vector v ∈

M ⊗ V ∗n is GL(n)-primitive if and only if it is GL(n− 1)-primitive and lies in (M ⊗ V ∗n )Y .

If µn = λn, a vector v ∈M (0) ⊕M (1) has GL(n)-weight µ+ εn if and only if it lies in M (1)

and has GL(n− 1)-weight µ̄. So the second statement now follows using (5.2).

5.6. Remark. A functorial proof of the Hom-space isomorphism in Corollary 5.5 is given

in [3, Corollary 2.10]. The elementary argument given here provides more information.
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Now we can prove the main results of the section. In fact, using Corollary 5.5, these will

follow from the following theorem first proved in [15, Theorem 4.2] (see also [1, Theorem

5.3]) concerning the branching rule from GL(n) to GL(n− 1):

5.7. Suppose λ ∈ X+(n), µ ∈ X+(n− 1). Then, the space HomGL(n−1)(∆n−1(µ), Ln(λ)(1))

is zero unless µ = λ̄− εi for some i with 1 ≤ i < n that is normal for λ, in which case it is

one dimensional.

Recall the combinatorial notions from section 2 and the notation λ∗ = (−λn, . . . ,−λ1)

from section 4. For 1 ≤ i ≤ n, we let i∗ := n + 1 − i. Obviously, given λ ∈ X+(n), i is

λ-removable if and only if i∗ is λ∗-addable, and dually i is λ-addable if and only if i∗ is

λ∗-removable. We have the following combinatorial lemma:

5.8. Lemma. (i) i is normal for λ if and only if i∗ is conormal for λ∗;

(ii) i is good for λ if and only if i∗ is cogood for λ∗;

(iii) i is good for λ if and only if i is normal for λ and conormal for λ− εi;

(iii)′ i is cogood for λ if and only if i is conormal for λ and normal for λ+ εi.

(iv) i is cogood for λ if and only if i is λ-addable and i is good for λ+ εi;

(iv)′ i is good for λ if and only if i is λ-removable and i is cogood for λ− εi.

Proof. Note that the primed statements are equivalent to the unprimed statements, ap-

plying ∗. Also, parts (i) and (ii) follow immediately from the definitions.

Now consider (iii). We first prove that if i is both normal and conormal for λ then i

is good for λ. Assume that i is normal for λ but not good for λ. Then, there is a j with

1 ≤ j < i, j normal for λ and res(i, λi) = res(j, λj). Since j is normal, there is a decreasing

injection from the set of

λ-addable k with j < k < i and res(j, λj) = res(k, λk + 1)
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into the set of λ-removable k′ with j < k′ < i, res(j, λj) = res(k′, λk′). So, there are strictly

more

λ-removable h with j ≤ h < i and res(i, λi) = res(h, λh)

than there are

λ-addable h′ with j < h′ < i and res(i, λi) = res(h′, λh′ + 1).

This means that there cannot be an increasing injection from the set of

λ-removable h with 1 ≤ h < i and res(i, λi) = res(h, λh)

into the set of

λ-addable h′ with 1 ≤ h′ < i and res(i, λi) = res(h′, λh′ + 1).

Hence, i is not conormal for λ− εi.

Conversely, if i is not normal for λ then it is not good, so suppose that i is normal for

λ but not conormal for λ − εi. Then, we can find some λ-removable j < i such that there

is no increasing injection from the set of

λ-removable k with j ≤ k < i and res(i, λi) = res(k, λk)

into the set of

λ-addable k′ with j < k′ < i and res(i, λi) = res(k′, λk′ + 1).

If we take the largest such j, then there must be an increasing bijection θ1 from the set of

λ-removable k with j < k < i and res(i, λi) = res(k, λk)

into the set of

λ-addable k′ with j < k′ < i and res(i, λi) = res(k′, λk′ + 1).
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Since i is normal, there is a decreasing injection θ2 from the set of

λ-addable k with i < k ≤ n and res(i, λi) = res(k, λk + 1)

into the set of

λ-removable k′ with i < k′ ≤ n and res(i, λi) = res(k′, λk′).

Now combining θ−1
1 and θ2 gives a decreasing injection θ from the set of

λ-addable k with j < k ≤ n and res(i, λi) = res(k, λk + 1)

into the set of

λ-removable k′ with j < k′ ≤ n and res(i, λi) = res(k′, λk′).

Noting res(j, λj) = res(i, λi), this shows that j is also normal for λ. Therefore i is not good

for λ. This proves (iii) (hence (iii)′).

Now we deduce (iv). By (iii), i is λ-addable and good for λ + εi if and only if i is

conormal for λ and normal for λ + εi. By (iii)′, this is if and only if i is cogood for λ, as

required for (iv).

5.9. Theorem. Fix λ, µ ∈ X+(n).

(i) The space HomGL(n)(∆n(µ), Ln(λ)⊗V ∗n ) is zero unless µ = λ−εi for some 1 ≤ i ≤ n

that is normal for λ, in which case it is one dimensional.

(ii) The space HomGL(n)(Ln(µ),∇n(λ)⊗V ∗n ) is zero unless µ = λ−εi for some 1 ≤ i ≤ n

that is conormal for λ− εi, in which case it is one dimensional.

(iii) The space HomGL(n)(Ln(µ), Ln(λ)⊗V ∗n ) is zero unless µ = λ−εi for some 1 ≤ i ≤ n

that is good for λ, in which case it is one dimensional.
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Proof. We note initially that by (5.1), we may assume that µ = λ − εi for some 1 ≤ i ≤

n that is λ-removable. Moreover, all three Hom spaces are certainly either zero or one

dimensional. Part (i) is now immediate from (5.7) and Corollary 5.5 providing i < n. If

i = n, note that HomGL(n)(∆n(λ − εn), Ln(λ) ⊗ V ∗n ) is one dimensional as λ − εn is the

highest weight of Ln(λ)⊗ V ∗n , while n is always normal for λ according to the definition in

section 2. Hence, (i) is true for all i. Part (ii) follows easily from (i) and Lemma 5.8(i),

because HomGL(n)(Ln(λ− εi),∇n(λ)⊗ V ∗n ) ∼= HomGL(n)(∆n(λ∗), Ln(λ∗ + εi∗)⊗ V ∗n ).

Finally, we prove (iii). By Lemma 5.8(iii), it suffices to show that

HomGL(n)(Ln(λ− εi), Ln(λ)⊗ V ∗n )

is non-zero if and only if i is normal for λ and conormal for λ−εi. The forward implication is

obvious because of (i) and (ii). For the converse, assume that i is normal for λ and conormal

for λ−εi. Take a generator θ of the one dimensional space HomGL(n)(∆n(λ−εi),∇n(λ)⊗V ∗n ).

Observe that by (ii), θ factors through the quotient Ln(λ− εi) of ∆n(λ− εi). Also, by (i),

the image of θ lies in the subspace Ln(λ) ⊗ V ∗n of ∇n(λ) ⊗ V ∗n . So θ induces a non-zero

homomorphism from Ln(λ− εi) to Ln(λ)⊗ V ∗n , as required.

Applying Proposition 4.7, we obtain the following complete reducibility criterion:

5.10. Corollary. For λ ∈ X+(n), the module Ln(λ) ⊗ V ∗n is completely reducible if and

only if every i with 1 ≤ i ≤ n that is normal for λ is good for λ.

We also have the dual statements:

5.11. Theorem. Fix λ, µ ∈ X+(n).

(i) The space HomGL(n)(∆n(µ), Ln(λ)⊗Vn) is zero unless µ = λ+ εi for some 1 ≤ i ≤ n

that is conormal for λ, in which case it is one dimensional.

31



(ii) The space HomGL(n)(Ln(µ),∇n(λ)⊗Vn) is zero unless µ = λ+εi for some 1 ≤ i ≤ n

that is normal for λ+ εi, in which case it is one dimensional.

(iii) The space HomGL(n)(Ln(µ), Ln(λ)⊗Vn) is zero unless µ = λ+εi for some 1 ≤ i ≤ n

that is cogood for λ, in which case it is one dimensional.

Proof. Note that by contravariant duality,

HomGL(n)(Ln(µ), Ln(λ)⊗ Vn) ∼= HomGL(n)(Ln(λ)⊗ Vn, Ln(µ))

∼= HomGL(n)(Ln(λ), Ln(µ)⊗ V ∗n ).

So (iii) follows easily from Theorem 5.9(iii) and Lemma 5.8. Parts (i) and (ii) follow similarly

from Theorem 5.9(ii) and (i) respectively.

Applying Proposition 4.7 again we deduce:

5.12. Corollary. For λ ∈ X+(n), the module Ln(λ) ⊗ Vn is completely reducible if and

only if every i with 1 ≤ i ≤ n that is conormal for λ is cogood for λ.

6 A filtration of Ln(λ)⊗ V ∗n

We now construct a filtration of the module Ln(λ)⊗ V ∗n by high weight modules. This will

allow us in the first place to prove that certain composition multiplicities are zero.

Fix λ ∈ X+(n) and let wλ (resp. vλ) denote a non-zero high weight vector in ∆n(λ)

(resp. Ln(λ)) throughout the section. Let ra < · · · < r1 = n denote the set of all r with

1 ≤ r ≤ n which are λ-removable. Let sb < · · · < s1 = n denote the set of all s with

1 ≤ s ≤ n which are normal for λ.

6.1. Lemma. The module ∆n(λ)⊗ V ∗n is generated as a U−(n)-module by the vectors

{wλ ⊗ fri | 1 ≤ i ≤ a}.
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Proof. We first prove by induction on i that any vector w ⊗ fi ∈ ∆n(λ) ⊗ V ∗n lies in the

U−(n)-module generated by wλ ⊗ f1, . . . , wλ ⊗ fi. Since wλ generates ∆n(λ) as a U−(n)-

module, we can find y ∈ U−(n) such that ywλ = w. Then,

y(wλ ⊗ fi) = (ywλ)⊗ fi +X

where X is a linear combination of terms of the form w′⊗ fi′ for w′ ∈ ∆n(λ) and i′ < i. By

induction, all such terms lie in the U−(n)-submodule generated by wλ ⊗ f1, . . . , wλ ⊗ fi−1,

hence w ⊗ fi lies in the submodule generated by wλ ⊗ f1, . . . , wλ ⊗ fi as required.

This shows that ∆n(λ)⊗ V ∗n is generated by {wλ ⊗ fi | 1 ≤ i ≤ n}. Now suppose that i

is not λ-removable. Let j be minimal such that j is λ-removable with j > i. Since λi = λj ,

the weight λ− εi + εj is not a weight of ∆n(λ), so Fi,jwλ = 0. Hence,

Fi,j(wλ ⊗ fj) = wλ ⊗ (Fi,jfj) = −wλ ⊗ fi.

Hence, wλ ⊗ fi lies in the U−(n)-submodule generated by wλ ⊗ fj .

6.2. Lemma. For 1 ≤ i ≤ a, let M(i) be the U−(n)-submodule of ∆n(λ) ⊗ V ∗n generated by

M(i−1) and wλ ⊗ fri. Then, each M(i) is GL(n)-stable and

0 = M(0) < M(1) < · · · < M(a) = M

is a ∆-filtration of M := ∆n(λ)⊗ V ∗n with M(i)/M(i−1)
∼= ∆n(λ− εri) for each i. Moreover,

the image of wλ ⊗ fri is a non-zero primitive vector in M(i)/M(i−1).

Proof. We first prove by induction on i ≤ a that wλ ⊗ fri + M(i−1) is either zero or a

primitive vector in M(i)/M(i−1), hence that each M(i) is a GL(n)-module. The induction

starts trivially with i = 0. So take i > 0 and assume the claim for all smaller i. Moreover,

if M(i−1) = M then M(i) = M(i−1) = M and the result is trivial, so we can assume that
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M(i−1) 6= M . Observe then that by Lemma 6.1, M/M(i−1) is generated as a U−(n)-module

by the vectors {wλ⊗frj +M(i−1) |j ≥ i}. If wλ⊗fri +M(i−1) is zero then M(i) = M(i−1) and

the conclusion is immediate. So we may assume that wλ ⊗ fri /∈ M(i−1). But that means

that wλ ⊗ fri +M(i−1) is a non-zero vector of maximal weight λ− εri in M/M(i−1). Hence,

wλ ⊗ fri is a primitive vector as required.

Noting that M(a) = M by Lemma 6.1, we have now constructed a filtration

0 = M(0) ≤ · · · ≤M(a) = M

with each factor M(i)/M(i−1) isomorphic to a (possible zero) quotient of ∆n(λ− εri). It just

remains to show that in fact M(i)/M(i−1)
∼= ∆n(λ−εri) for each i. This follows immediately

by dimension from Lemma 4.8 or (5.1).

6.3. Theorem. For 1 ≤ i ≤ b, let N(i) be the U−(n)-submodule of Ln(λ)⊗V ∗n generated by

N(i−1) and vλ ⊗ fsi. Then, each N(i) is GL(n)-stable and

0 = N(0) < N(1) < · · · < N(b) = N

is a filtration of N := Ln(λ)⊗V ∗n such that N(i)/N(i−1) is a non-zero quotient of ∆n(λ−εsi)

for each i. Moreover, the image of vλ ⊗ fri is a non-zero primitive vector in N(i)/N(i−1).

Proof. For 1 ≤ i ≤ a, let M̄(i) be the image of M(i) in the filtration of Lemma 6.2 under

the quotient ∆n(λ)⊗ V ∗n → Ln(λ)⊗ V ∗n . This gives a filtration

0 = M̄(0) ≤ M̄(1) ≤ · · · ≤ M̄(a) = N.

By contravariant duality, Corollary 4.6 and Theorem 5.9(i), M̄(i) 6= M̄(i−1) if and only if ri

is normal for λ. The theorem follows immediately on deleting all trivial factors M̄(i)/M̄(i−1)

with ri not normal for λ from this filtration.

34



Our first application of this high weight filtration is the following result, which is the

analogue for tensor products of [18, Lemma 7.4]:

6.4. Lemma. Let µ ∈ X+(n) be any weight of the form µ = λ − εj −
∑j−2

i=1 ai(εi − εi+1)

for some 1 ≤ j ≤ n and non-negative coefficients ai not all of which are zero. Then,

[Ln(λ)⊗ V ∗n : Ln(µ)] = 0.

Proof. Let κ =
∑j−2

i=1 ai(εi− εi+1). Suppose that Ln(µ) is a composition factor of Ln(λ)⊗

V ∗n . Then, it is a composition factor of some factor V := N(i)/N(i−1) of the high weight

filtration constructed in Theorem 6.3, for some 1 ≤ i ≤ b. Note that V is a high weight

module of high weight λ− εsi , generated by the primitive vector vλ ⊗ fsi +N(i−1). We can

find a filtration 0 ≤ V ′′ < V ′ ≤ V such that V ′/V ′′ ∼= Ln(µ). Let v ∈ V ′ be a vector of

weight µ such that v + V ′′ is a non-zero primitive vector in Ln(µ).

Since µ = λ−εj−κ and V is generated as a U−(n)-module by the vector vλ⊗fsi+N(i−1),

which has weight λ− εsi , we must have that λ− εj −κ ≤ λ− εsi . Hence, 0 ≤ κ+ εj − εsi so

that j ≤ si by the definition of κ. We can find operators y1 and y2 lying in the −(εj − εsi)-

and −κ-weight spaces of U−(n) respectively, such that

v = y2y1(vλ ⊗ fsi) +N(i−1).

Observe that y1 and y2 commute and so

v = y2y1(vλ ⊗ fsi) +N(i−1) = y1(y2(vλ ⊗ fsi)) +N(i−1) = y1((y2vλ)⊗ fsi) +N(i−1).

Since this is non-zero, y2vλ must be a non-zero vector in Ln(λ), so we can find x2 lying in

the κ-weight space of U+(n) such that x2y2vλ = vλ. Since v is a primitive vector modulo

V ′′ and κ 6= 0, x2v ∈ V ′′. But x2 and y1 commute, so

x2v = x2y1((y2vλ)⊗ fsi) +N(i−1) = y1((x2y2vλ)⊗ fsi) +N(i−1) = y1(vλ ⊗ fsi) +N(i−1).
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But then y2x2v = v, which contradicts the fact that x2v ∈ V ′′.

We formulate the dual statement for completeness:

6.5. Corollary. Let µ ∈ X+(n) be any weight of the form µ = λ+εj−
∑n−1

i=j+1 ai(εi−εi+1)

for some 1 ≤ j ≤ n and non-negative coefficients ai not all of which are zero. Then,

[Ln(λ)⊗ Vn : Ln(µ)] = 0.

Proof. Given a GL(n)-module M , let d(M) denote the GL(n)-module M but with action

twisted by the automorphism g 7→ (g−1)t of GL(n). Note that d(Ln(λ)) = Ln(λ∗) and

d(Vn) = V ∗n . Now

[Ln(λ)⊗ Vn : Ln(µ)] = [d(Ln(λ)⊗ Vn) : d(Ln(µ))] = [Ln(λ∗)⊗ V ∗n : Ln(µ∗)],

and the corollary follows immediately from Lemma 6.4.

7 Some composition multiplicities in Ln(λ)⊗ V ∗n

We calculate the multiplicity [Ln(λ)⊗V ∗n : Ln(λ−εi)] for any λ ∈ X+(n) and any 1 ≤ i ≤ n.

To do this, we will relate the latter multiplicities to branching multiplicities in the first level

Ln(λ)(1) of the restriction of Ln(λ) to GL(n − 1), as defined in section 5. The latter

multiplicities are known from [18, Corollary 9.4(ii)]:

7.1. Fix λ ∈ X+(n) and any λ-removable i with 1 ≤ i < n. Then, [Ln(λ)(1) : Ln−1(λ̄− εi)]

is zero unless i is normal for λ, in which case it equals the number of j with i ≤ j < n such

that j is normal for λ and res(i, λi) = res(j, λj).

We let Y denote the subgroup of GL(n) generated by root subgroups corresponding to

the roots ε1− εn, . . . , εn−1− εn as in section 5. As noted earlier, taking Y -fixed points gives
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a functor from the category of GL(n)-modules to the category of GL(n − 1)-modules. We

state [12, II.2.11]:

7.2. For λ ∈ X+(n), Ln−1(λ̄) ∼= Ln(λ)Y =
⊕

ν Ln(λ)ν where the sum is over all ν ∈ X(n)

with νn = λn.

We say a GL(n)-module M is polynomial of degree r if all non-zero weight spaces of M

are of weight µ ∈ X(n) with |µ| = r and µi ≥ 0 for all 1 ≤ i ≤ n.

7.3. Lemma. Fix λ ∈ X+(n) with λn = 0. Let M be a finite dimensional GL(n)-module

that is polynomial of degree r := |λ|. Then,

[M : Ln(λ)] = [MY : Ln−1(λ̄)].

Proof. Let 0 = M(0) < · · · < M(s) = M be a composition series of M . We prove by

induction on i that [M(i) : Ln(λ)] = [MY
(i) : Ln−1(λ̄)], starting from i = 0. Assume the result

is true for i− 1. Let M(i)/M(i−1)
∼= Ln(µ) for µ ∈ X+(n). Since |µ| = r = |λ|, we note that

µ = λ if and only if µ̄ = λ̄. We have the natural exact sequence

0→MY
(i−1) →MY

(i) → (M(i)/M(i−1))
Y .

By (7.2), (M(i)/M(i−1))Y ∼= Ln(µ)Y ∼= Ln−1(µ̄), so the exact sequence implies

[MY
(i−1) : Ln−1(λ̄)] ≤ [MY

(i) : Ln−1(λ̄)] ≤ [MY
(i−1) : Ln−1(λ̄)] + [Ln−1(µ̄) : Ln−1(λ̄)].

To prove the induction step, we need to show that right hand inequality is always equality.

This is obvious if µ̄ 6= λ̄, or equivalently if µ 6= λ. So suppose that µ = λ. Then we

need to show that the right hand map in the above exact sequence is surjective. Take

v +M(i−1) ∈ (M(i)/M(i−1))Y . By (7.2)

Ln(λ)Y =
⊕
ν

Ln(λ)ν ,
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where the sum is over ν ∈ X(n) with νn = 0. So we may assume that v is a weight vector of

weight ν with νn = 0. But then v ∈M(i) is Y -invariant by weights. So v ∈MY
(i), as required

for surjectivity.

Recall the equivalence relation ∼ from section 2. Now we can relate [Ln(λ)⊗V ∗n : Ln(µ)]

to branching multiplicities in the first level in almost all cases:

7.4. Lemma. Fix λ, µ ∈ X+(n) with µn = λn = 0 and |µ| = |λ|−1. Suppose that µ 6∼ λ−εn.

Then,

[Ln(λ)⊗ V ∗n : Ln(µ)] = [Ln(λ)(1) : Ln−1(µ̄)].

Proof. Let N = Ln(λ) ⊗ V ∗n . By the linkage principle, we may write N = N ′ ⊕ N ′′ for

unique submodules N ′, N ′′ such that all composition factors of N ′ (resp. N ′′) are of the

form Ln(ν) for ν ∼ λ − εn (resp. ν 6∼ λ − εn). Note that [N : Ln(µ)] = [N ′′ : Ln(µ)]

since µ 6∼ λ − εn. By Proposition 5.4, NY ∼= Ln(λ)(0) ⊕ Ln(λ)(1). But Ln−1(µ̄) is not a

composition factor of Ln(λ)(0) by degree. So,

[Ln(λ)(1) : Ln−1(µ̄)] = [NY : Ln−1(µ̄)] = [(N ′)Y : Ln−1(µ̄)] + [(N ′′)Y : Ln−1(µ̄)].

As Ln(µ) is not a composition factor of N ′ and |ν| = |λ| − 1 = |µ| for any composition

factor Ln(ν) of N ′, (7.2) implies that [(N ′)Y : Ln−1(µ̄)] = 0. It just remains to show that

[N ′′ : Ln(µ)] = [(N ′′)Y : Ln−1(µ̄)]. This will follow immediately from Lemma 7.3 once we

have shown that N ′′ is polynomial.

Note that the submodule N(1) of N in the filtration of Theorem 6.3 is a quotient of

∆n(λ − εn), so N(1) ≤ N ′ and N ′′ is a quotient of N/N(1). By Theorem 6.3, N/N(1) has

a filtration by high weight modules all of whose high weights are of the form λ − εi for

λ-removable i < n. Hence, N/N(1) is polynomial, so N ′′ is too.
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To give a similar result in the case that µ ∼ λ− εn, we need to allow n to vary. Recall

the notation λ̃ from section 4.

7.5. Lemma. Fix λ, µ ∈ X+(n). Then,

[Ln(λ)⊗ V ∗n : Ln(µ)] = [Ln+1(λ̃)⊗ V ∗n+1 : Ln+1(µ̃)]

+ [Ln+1(λ̃− εn+1)(1) : Ln(µ)]− [Ln+1(λ̃)(1) : Ln(µ)].

Proof. Let S denote the exact functor from the category of GL(n+1)-modules to the cate-

gory of GL(n)-modules defined by sending a GL(n+ 1)-module N to the GL(n)-submodule

of N consisting of the sum of all weight spaces Nγ with γn+1 = 0, and by restriction on

morphisms. Let N = Ln+1(λ̃)⊗ V ∗n+1. We compute [S(N) : Ln(µ)] in two different ways.

First, take a composition series 0 = N (0) < N (1) < · · · < N (s) = N for N . As S is exact,

[S(N) : Ln(µ)] =
s∑
i=1

[S(N(i)/N(i−1)) : Ln(µ)].

Observe that Ln+1(λ̃ − εn+1) appears in the composition series precisely once as λ̃ − εn+1

is the highest weight of N . Moreover, S(Ln+1(λ̃− εn+1)) is the first level Ln+1(λ̃− εn+1)(1)

of Ln+1(λ̃ − εn+1). So, this unique composition factor Ln+1(λ̃ − εn+1) of N contributes

[Ln+1(λ̃ − εn+1)(1) : Ln(µ)] to the right hand side of this expression. By Lemma 6.4, all

other composition factors of N are of the form Ln+1(ν) for ν ∈ X+(n + 1) with νn+1 ≥ 0.

For such ν, S(Ln+1(ν)) is nonzero only if νn+1 = 0, in which case it is Ln(ν̄) by (7.2). Hence

[S(Ln+1(ν)) : Ln(µ)] is zero unless ν = µ̃, when it is one. So we obtain a total contribution

of [N : Ln+1(µ̃)] to [S(N) : Ln(µ̄)] from such composition factors. We have shown:

[S(N) : Ln(µ)] = [Ln+1(λ̃)⊗ V ∗n+1 : Ln+1(µ̃)] + [Ln+1(λ̃− εn+1)(1) : Ln(µ)].

Second, we note N = Ln+1(λ̃)⊗V ∗n+1
∼= Ln+1(λ̃)⊗V ∗n ⊕Ln+1(λ̃)⊗V ∗1 as a GL(n)-module,

where V ∗n+1 = V ∗n ⊕ V ∗1 is a decomposition of V ∗n+1 with respect to GL(n). So, S(N), which
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just amounts to picking certain weight spaces, is equal to (Ln+1(λ̃)(0) ⊗ V ∗n ) ⊕ Ln+1(λ̃)(1).

So using (7.2) again,

[S(N) : Ln(µ)] = [Ln(λ)⊗ V ∗n : Ln(µ)] + [Ln+1(λ̃)(1) : Ln(µ)].

Comparing these two different expressions for [S(N) : Ln(µ)] gives the result.

7.6. Proposition. Fix λ, µ ∈ X+(n) with λn = µn = 0. Then,

[Ln(λ)⊗ V ∗n : Ln(µ)] =


[Ln+1(λ̃− εn+1)(1) : Ln(µ)] if µ ∼ λ− εn.

[Ln(λ)(1) : Ln−1(µ̄)] if µ 6∼ λ− εn

Proof. If µ 6∼ λ− εn, this is just Lemma 7.4. So suppose that µ ∼ λ− εn. By Lemma 7.5,

[Ln(λ)⊗ V ∗n : Ln(µ)] = [Ln+1(λ̃)⊗ V ∗n+1 : Ln+1(µ̃)]

+ [Ln+1(λ̃− εn+1)(1) : Ln(µ)]− [Ln+1(λ̃)(1) : Ln(µ)].

We can compute the first term on the right hand side using Lemma 7.4, as res(n, λ̃n) 6=

res(n + 1, λ̃n+1). Hence, [Ln+1(λ̃) ⊗ V ∗n+1 : Ln+1(µ̃)] = [Ln+1(λ̃)(1) : Ln(µ)]. Now the right

hand side simplifies to give the required result.

Now we can deduce the main result of the section:

7.7. Theorem. Fix λ ∈ X+(n) and a λ-removable i with 1 ≤ i ≤ n. Then,

[Ln(λ)⊗ V ∗n : Ln(λ− εi)]

is zero unless i is normal for λ, when it equals the number of j with i ≤ j ≤ n such that

j is normal for λ and res(i, λi) = res(j, λj).

Proof. By tensoring with a power of determinant if necessary, we may assume that λn = 0.

If i = n, the composition multiplicity is always 1, and the statement is true. So we also

assume 1 ≤ i < n. Now use Proposition 7.6 together with (7.1) and the combinatorial

definition of normal.
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8 The endomorphism ring of Ln(λ)⊗ V ∗n

Now we describe the endomorphism ring of Ln(λ)⊗ V ∗n using Casimir-type operators. This

gives further information about the structure of the high weight filtration of Lemma 6.2.

Throughout the section, fix λ ∈ X+(n) and let αi ∈ Z/pZ denote the residue res(i, λi),

for 1 ≤ i ≤ n. Let

Zn(λ) := Xn +
∑

1≤i<j≤n
[(Hi − i)(Hj − j)− (λi − i)(λj − j)] +

∑
1≤i≤n

(λi − i) (2)

where

Xn := −
∑

1≤i<j≤n
Fi,jEi,j .

This element Zn(λ) differs from the central element C2 constructed in [5, 2.2] by a scalar,

so Zn(λ) lies in the centre of U(n).

8.1. Lemma. Zn(λ)v = (Xn+αi)v, for any vector v of weight λ−εi (in some GL(n)-module)

and 1 ≤ i ≤ n.

Proof. It suffices to check that

∑
1≤h<k≤n

[(λh − δhi − h)(λk − δki − k)− (λh − h)(λk − k)] +
∑

1≤h≤n
(λh − h) = λi − i

which is routine.

8.2. Lemma. Fix α ∈ Z/pZ. Suppose M is a GL(n)-module with a filtration

0 = M(0) < M(1) < · · · < M(a) = M

such that each factor M(i)/M(i−1) is a quotient of ∆n(λ−εk) for some 1 ≤ k ≤ n with αk = α.

Then, for any 1 ≤ j ≤ i ≤ a, (Zn(λ)−α)jM(i) ⊆M(i−j). In particular, (Zn(λ)−α)aM = 0.

41



Proof. The general case follows by induction from the special case i = j = 1. So suppose

i = j = 1 and let v ∈ M(1) be a non-zero primitive vector of weight λ − εk. Since αk = α,

Lemma 8.1 implies that (Zn(λ) − α)v = Xnv, which is zero as v is primitive. Since v

generates M(1) and (Zn(λ)−α) lies in the centre of U(n), it follows that (Zn(λ)−α)M(1) = 0

as required.

Now let n = s1 > · · · > sb denote the set of all j which are normal for λ with 1 ≤ j ≤ n.

Let N = Ln(λ)⊗ V ∗n and fix a non-zero primitive vector vλ in Ln(λ). Let

0 = N(0) < N(1) < · · · < N(b) = N (3)

be the high weight filtration of Theorem 6.3, where N(i)/N(i−1) is a (nonzero) high weight

module generated by the image of vλ ⊗ fsi . For α ∈ Z/pZ, let

sα1 > · · · > sαbα

denote the set of all sj with 1 ≤ j ≤ b and αsj = α. Note that given any 1 ≤ i, j ≤ n,

λ− εi ∼ λ− εj if and only if αi = αj . So by the linkage principle, we can decompose N as

N =
⊕

α∈Z/pZ

Nα

where Nα is the largest submodule of N all of whose composition factors are of the form

Ln(ν) with contα(ν) = contα(λ) − 1 and contγ(ν) = contγ(λ) for γ 6= α. The high weight

filtration of N in (3) yields a high weight filtration of Nα,

0 = Nα
(0) < Nα

(1) < · · · < Nα
(bα) = Nα (4)

such that Nα
(i)/N

α
(i−1) is a non-zero quotient of ∆n(λ− εsαi ) and Nα

(i)/N
α
(i−1)

∼= N(j)/N(j−1),

where j is uniquely determined by sj = sαi . Indeed, if πα is the projection from N onto Nα

then Nα
(i) is just πα(N(j)).
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8.3. Lemma. For any α ∈ Z/pZ,

(i) (Zn(λ)− α)bαNα = 0;

(ii) (Zn(λ)− γ)Nα = Nα for any α 6= γ ∈ Z/pZ;

(iii) Nα =
∏
γ 6=α(Zn(λ)− γ)bγN .

(iv) Nα
(i)/N

α
(i−1) is generated as a high weight by the primitive vector

∏
γ 6=α

(Zn(λ)− γ)bγ (vλ ⊗ fsαi ) +Nα
(i−1).

Proof. Part (i) follows immediately from Lemma 8.2. For (ii), suppose γ 6= α. Then

(Zn(λ)− γ) = (Zn(λ)− α) + (α− γ). Since (Zn(λ)− α) induces a nilpotent endomorphism

of Nα by (i) and α−γ 6= 0, it follows that (Zn(λ)−γ) induces an automorphism of Nα. For

(iii), note that by (i),
∏
γ 6=α(Zn(λ)− γ)bγ annihilates all blocks Nγ of N for γ 6= α, while by

(ii) it induces an automorphism of Nα. Finally, (iv) follows from (iii) and the description

of Nα
(i) in the paragraph preceding this lemma.

The same argument applies to the GL(n − 1)-module Q := Ln(λ)(1). Let t1 > · · · > tc

denote the set of all j which are normal for λ with 1 ≤ j < n (actually, c = b− 1, ti = si+1,

i = 1, . . . , b− 1). Then, by [4, Lemma 3.7, Proposition A.2], Q has a high weight filtration

0 = Q(0) < Q(1) < · · · < Q(c) = Q (5)

where Q(i)/Q(i−1) is a (non-zero) high weight module generated by the image of Fti,nvλ,

which is a primitive vector in Q(i)/Q(i−1) of weight λ− εti + εn. For α ∈ Z/pZ, let

tα1 > · · · > tαcα

denote the set of all tj with 1 ≤ j ≤ c and αtj = α. By the linkage principle for GL(n− 1),

we can decompose Q as

Q =
⊕

α∈Z/pZ

Qα
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where Qα is the largest submodule of Q all of whose composition factors are of the form

Ln−1(ν) with contα(ν) = contα(λ) − 1 and contγ(ν) = contγ(λ) for γ 6= α. Now we can

state the following result proved in [17, Theorem 2.14] (the element φα defined here is

precisely the element ϕΓ defined in [17, Definition 2.9], as follows from the definitions using

Lemma 8.1):

8.4. For any α ∈ Z/pZ, let φα denote the image of (Zn−1(λ̄)− α) in EndF(Qα). Then, the

endomorphisms

{1, φα, . . . , (φα)cα−1}

form a basis for EndGL(n−1)(Qα).

To deduce the analogous result for Nα, we need one computational lemma:

8.5. Lemma. Let e : Ln(λ)→ Ln(λ)⊗ V ∗n be the map defined in Lemma 5.3.

(i) e(Zn−1(λ̄)v) = Zn(λ)e(v), for any v ∈ Ln(λ)(0) ⊕ Ln(λ)(1) of weight λ− εi + εn and

1 ≤ i < n.

(ii) e(Fi,nvλ) = (Zn(λ)− αn)(vλ ⊗ fi), for 1 ≤ i < n.

Proof. (i) Note that Xn = Xn−1 −
∑

1≤i<n Fi,nEi,n. Now e is a GL(n − 1)-map, so Xn−1

commutes with e, while every Ei,n annihilates e(v) as e(v) is fixed by the unipotent radical

Y from Proposition 5.4. Hence, e(Xn−1v) = Xne(v). Now, to prove (i) note that if v has

GL(n)-weight λ− εi + εn, then e(v) has weight λ− εi. So, applying Lemma 8.1 twice,

Zn(λ)e(v) = Xne(v) + αie(v) = e((Xn−1 + αi)v) = e(Zn−1(λ̄)v),

as required.

(ii) We calculate

e(Fi,nvλ) =
n∑
j=i

(Ej,nFi,nvλ)⊗ fj = (λi − λn)vλ ⊗ fj +
n∑

j=i+1

(Fi,jvλ)⊗ fj ,
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and using Lemma 8.1,

(Zn(λ)− αn)(vλ ⊗ fi) = (αi − αn)(vλ ⊗ fi) +Xn(vλ ⊗ fi)

= (αi − αn)(vλ ⊗ fi) +
n∑

j=i+1

Fi,j(vλ ⊗ fj)

= (αi − αn)(vλ ⊗ fi) +
n∑

j=i+1

((Fi,jvλ)⊗ fj − vλ ⊗ fi)

= (αi − αn − n+ i)(vλ ⊗ fi) +
n∑

j=i+1

(Fi,jvλ)⊗ fj .

The result follows since αi + i− αn − n = λi − λn in F.

8.6. Theorem. For any α ∈ Z/pZ, let ψα denote the image of (Zn(λ)− α) in EndF(Nα).

Then, the endomorphisms

{1, ψα, . . . , (ψα)bα−1}

form a basis for EndGL(n)(Nα), and (ψα)bα = 0.

Proof. We first show that {1, ψα, . . . , (ψα)bα−1} are linearly independent endomorphisms.

This is obvious if bα ≤ 1, so we assume that bα > 1. Note first that the argument of

Lemma 8.3(iii) applies equally well to the GL(n− 1)-module Q, to show that:

Qα =
∏
γ 6=α

(Zn−1(λ̄)− γ)cγQ.

Consequently, the high weight filtration of Q in (5) yields a high weight filtration of Qα,

0 = Qα(0) < Qα(1) < · · · < Qα(cα) = Qα (6)

where Qα(i)/Q
α
(i−1) is a high weight module generated by the image of

∏
γ 6=α

(Zn−1(λ̄)− γ)cγFtαi ,nvλ,
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precisely as in Lemma 8.3(iv). By (8.4), (Zn−1(λ̄) − α)cα−1Qα 6= 0. However, (Zn−1(λ̄) −

α)cα−1 annihilates the submodule Qα(cα−1) of Qα by Lemma 8.2. Hence,

(Zn−1(λ̄)− α)cα−1
∏
γ 6=α

(Zn−1(λ̄)− γ)cγFt,nvλ 6= 0

where t = tαcα . By definition, bα = cα unless α = αn, when bα = cα + 1. So, on applying the

injective map e to this non-zero vector, Lemma 8.5 implies:

(Zn(λ)− α)bα−1
∏
γ 6=α

(Zn(λ)− γ)bγvλ ⊗ ft 6= 0.

By Lemma 8.3(iii), this shows that (ψα)bα−1 6= 0. But by Lemma 8.3(i), (ψα)bα = 0, so

1, ψα, . . . , ψbα−1
α are certainly linearly independent endomorphisms.

It now just remains to check that dim EndGL(n)(Nα) = bα for all α ∈ Z/pZ. Since

EndGL(n)(N) ∼=
⊕

α∈Z/pZ

EndGL(n)(N
α),

it suffices to show that dim EndGL(n)(N) ≤ b. Let M denote ∆n(λ)⊗V ∗n , with the notation

of Lemma 6.2 for the ∆-filtration of M constructed there. Then,

dim EndGL(n)(N) ≤ dim HomGL(n)(M,N) ≤
a∑
i=1

dim HomG(∆n(λ− εri), N).

The right hand side is precisely the number b of j with 1 ≤ j ≤ n that are normal for λ,

thanks to Theorem 5.9(i). This completes the proof.

8.7. Corollary. (i) The dimension of EndGL(n)(Ln(λ)⊗ V ∗n ) is equal to the number of j

with 1 ≤ j ≤ n which are normal for λ.

(ii) The dimension of EndGL(n)(Ln(λ)⊗ Vn) is equal to the number of j with 1 ≤ j ≤ n

which are conormal for λ.

(iii) The number of j with 1 ≤ j ≤ n that are normal for λ is equal to the number of k

with 1 ≤ k ≤ n which are conormal for λ.
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Proof. Part (i) follows immediately Theorem 8.6. Note that

EndGL(n)(Ln(λ)⊗ Vn) ∼= EndGL(n)(Ln(λ∗)⊗ V ∗n ).

Now apply (i) and Lemma 5.8(i) to deduce (ii). For (iii) use the isomorphism

EndGL(n)(Ln(λ)⊗ V ∗n ) ∼= EndGL(n)(Ln(λ)⊗ Vn)

together with (i) and (ii).

8.8. Remark. We do not know a combinatorial proof of the purely combinatorial statement

in Corollary 8.7(iii).

In (iv) of the next theorem, we refer to the Loewy length of a finite dimensional GL(n)-

module M . We recall briefly the definition. We let 0 = S0(M) ≤ S1(M) ≤ . . . denote the

socle series of M , and M = J0(M) ≥ J1(M) ≥ . . . denote the radical series of M as in [19,

section I.8]. Then, the Loewy length of M is the smallest ` such that S`(M) = M ; by [19,

I.8.2(i)], this is also the smallest ` such that J `(M) = 0.

8.9. Theorem. Fix α ∈ Z/pZ and let 0 = Nα
(0) < Nα

(1) < · · · < Nα
(bα) = Nα be the high

weight filtration of (4).

(i) For 1 ≤ i ≤ k ≤ bα, the vector (Zn(λ)− α)k−i
∏
γ 6=α(Zn(λ)− γ)bγ (vλ ⊗ fsαk ) +Nα

(i−1)

is a non-zero primitive vector in Nα
(i)/N

α
(i−1) of weight λ− εsαk .

(ii) for 1 ≤ i ≤ k ≤ bα,

dim HomGL(n)(N
α
(k)/N

α
(k−1), N

α
(i)/N

α
(i−1)) = [Nα

(i)/N
α
(i−1) : Ln(λ+ εsαk )] = 1;

(iii) For 1 ≤ i < bα, the extension 0→ Nα
(i)/N

α
(i−1) → Nα

(i+1)/N
α
(i−1) → Nα

(i+1)/N
α
(i) → 0

does not split.

(iv) The Loewy length of Nα
(i)/N

α
(i−1) is at least bα − i+ 1.
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Proof. Throughout the proof, write Z = Zn(λ) for short.

(i) By Lemma 8.3(iv), the module Nα
(k) is generated by Nα

(k−1) and the vector
∏
γ 6=α(Z−

γ)bγ (vλ⊗fsαk ), which is primitive modulo Nα
(k−1). Therefore, since (Z−α)k−iNα

(k−1) ⊂ N
α
(i−1)

by Lemma 8.2, it follows that

v = (Z − α)k−i
∏
γ 6=α

(Z − γ)bγ (vλ ⊗ fsαk ) +Nα
(i−1)

is either primitive or zero. Also by Lemma 8.2, v lies in Nα
(i)/N

α
(i−1), so it just remains to

show that v is non-zero. Suppose now for a contradiction that v = 0. Then

(Z − α)k−iNα
(k) ⊆ N

α
(i−1).

Since (Z − α)bα−kNα ⊆ Nα
(k) and (Z − α)i−1Nα

(i−1) = 0 by Lemma 8.2, it follows that

(Z − α)bα−1Nα = 0, which contradicts Theorem 8.6.

(ii) By (i), left multiplication by (Z −α)k−i induces a non-zero homomorphism between

Nα
(k)/N

α
(k−1) and Nα

(i)/N
α
(i−1). Hence both the Hom-dimension and the composition mul-

tiplicity are at least one. So, since [Nα
(i)/N

α
(i−1) : Ln(λ + εsαk )] ≥ 1 for all 1 ≤ i ≤ k,

[Nα : Ln(λ + εsαk )] ≥ k with equality only if [Nα
(i)/N

α
(i−1) : Ln(λ + εsαk )] = 1 for all i ≤ k.

But Theorem 7.7 shows that equality does hold. So [Nα
(i)/N

α
(i−1) : Ln(λ+ εsαk )] = 1 and this

also implies that the Hom-dimension is at most one.

(iii) If the extension is split, Lemma 8.2 implies that (Z − α) annihilates Nα
(i+1)/N

α
(i−1).

But by Lemma 8.3(iv), the vector w :=
∏
γ 6=α(Z − γ)bγ (vλ ⊗ fsαi+1

) belongs to Nα
(i+1), and

by (i), (Z − α)w + Nα
(i−1) is a non-zero vector of Nα

(i+1)/N
α
(i−1). Hence (Z − α) does not

annihilate Nα
(i+1)/N

α
(i−1).

(iv) Let L = Nα
(i)/N

α
(i−1). For i ≤ k ≤ bα, let

vk = (Z − α)k−i
∏
γ 6=α

(Z − γ)bγ (vλ ⊗ fsαk ) +Nα
(i−1)

which by (i) is a non-zero primitive vector in L.
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We claim first that for k > i, vk lies in the GL(n)-submodule of L generated by vk−1.

By Lemma 8.3(iv), we can write

(Z − α)
∏
γ 6=α

(Z − γ)bγ (vλ ⊗ fsαk ) +Nα
(k−2) = y

∏
γ 6=α

(Z − γ)bγ (vλ ⊗ fsαk−1
) +Nα

(k−2)

for some y ∈ U−(n). Applying the central element (Z − α)k−i−1, which sends Nα
(k−2) into

Nα
(i−1), this shows that vk = yvk−1 as required.

Now let 0 = S0 ≤ S1 ≤ . . . denote the socle series of L. We show that for i ≤ k ≤ bα,

vk /∈ Sbα−k, by downward induction on k. In particular, this will show that vi /∈ Sbα−i, hence

that the socle series of L has length at least bα − i+ 1. The induction starts trivially with

k = bα, since vbα 6= 0. So now take k < bα and assume by induction that vk+1 /∈ Sbα−k−1.

Suppose for a contradiction that vk ∈ Sbα−j . Let v̄k = vk + Sbα−k−1 ∈ Sbα−k/Sbα−k−1.

Since vk+1 ∈ U(n)vk and vk+1 6∈ Sbα−k−1, we conclude that v̄k and v̄k+1 = vk+1 + Sbα−k−1

are two non-zero primitive vectors in Sbα−k/Sbα−k−1, which have different weights. Since

v̄k+1 ∈ U(n)v̄k, this contradicts the semisimplicity of Sbα−k/Sbα−k−1.

8.10. Corollary. For α ∈ Z/pZ, the Loewy length of Nα is at least 2bα − 1, where bα is

the number of j with 1 ≤ j ≤ n which are normal for λ and αj = α.

Proof. Let ` denote the Loewy length of Nα. Consider the submodule Nα
(1) ⊂ N

α generated

by
∏
γ 6=α(Zn(λ)− γ)bγ (vλ ⊗ fsα1 ) as in Theorem 8.9. Note that Nα

(1) has simple head Ln(µ)

where µ is the highest weight λ− εsα1 of N , hence that [Nα : Ln(µ)] = 1.

By Theorem 8.9(iv), the Loewy length of Nα
(1) is at least bα, so as Nα

(1) has simple head

Ln(µ), we conclude that [Sbα−1(Nα
(1)) : Ln(µ)] = 0, whence Ln(µ) appears with multiplic-

ity 1 in Nα
(1)/Sbα−1(Nα

(1)). By [19, Lemma 8.5(i)], Sbα−1(Nα
(1)) = Nα

(1) ∩ Sbα−1(Nα). So

Nα
(1)/Sbα−1(Nα

(1)) embeds into Nα/Sbα−1(Nα), which implies [Nα/Sbα−1(Nα) : Ln(µ)] = 1.
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Therefore

[Sbα−1(Nα) : Ln(µ)] = 0.

Note by contravariant duality that Nα/J i(Nα) ∼= (Si(Nα))τ . Hence, as Nα contains Ln(µ)

with multiplicity one,

[Jbα−1(Nα) : Ln(µ)] = 1.

Since Jbα−1(Nα) ⊆ S`−(bα−1)(Nα) by [19, Lemma I.8.2(ii)], this shows that

[S`−bα+1(Nα) : Ln(µ)] = 1.

Hence, S`−bα+1(Nα) strictly contains Sbα−1(Nα). So, `− bα + 1 > bα − 1, as required.
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