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Abstract. We prove that the center of a regular block of parabolic
category O for the general linear Lie algebra is isomorphic to the coho-
mology algebra of a corresponding Springer fiber. This was conjectured
by Khovanov. We also find presentations for the centers of singular
blocks, which are cohomology algebras of Spaltenstein varieties.

1. Introduction

Fix a natural number n. By a composition, respectively, a partition of n
we mean a tuple λ = (λi)i∈Z, respectively, a sequence λ = (λ1 ≥ λ2 ≥ · · · )
of non-negative integers summing to n. For a composition ν of n, we write

Sν = · · · × Sν1 × Sν2 × · · ·
for the usual parabolic subgroup of the symmetric group Sn parametrized by
ν, and call ν regular if Sν = {1}. Let P := C[x1, . . . , xn], viewed as a graded
commutative algebra with each xi in degree two. The symmetric group Sn

acts as usual on P by permuting the generators. Let Pν be the subalgebra
C[x1, . . . , xn]Sν of all Sν-invariants in P . Given distinct integers i1, . . . , im,
we write er(ν; i1, . . . , im) and hr(ν; i1, . . . , im) for the rth elementary and
complete symmetric polynomials in variables Xi1 ∪ · · · ∪Xim , where

Xi :=

xj

∣∣∣∣∣ ∑
h<i

νh < j ≤
∑
h≤i

νh

 .

Note Pν is itself a free polynomial algebra of rank n generated by the ele-
ments {er(ν; i) | i ∈ Z, 1 ≤ r ≤ νi} and also by {hr(ν; i) | i ∈ Z, 1 ≤ r ≤ νi}.
Moreover, we have that er(ν; i1, . . . , im) = 0 for r > νi1 + · · ·+ νim .

Now fix a composition µ of n and let λ denote the transpose partition,
that is, λj counts the number of i ∈ Z such that µi ≥ j. Let Iµ

ν denote the
homogeneous ideal of Pν generated by{

hr(ν; i1, . . . , im)
∣∣∣∣ m ≥ 1, i1, . . . , im distinct integers,

r > λ1 + · · ·+ λm − νi1 − · · · − νim

}
.
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Equivalently (see Lemma 2.2), Iµ
ν is the ideal generated byer(ν; i1, . . . , im)

∣∣∣∣∣ m ≥ 1, i1, . . . , im distinct integers,
r > νi1 + · · ·+ νim − λl+1 − λl+2 − · · ·
where l := #{i ∈ Z | νi > 0, i 6= i1, . . . , im}

 .

Let Cµ
ν denote the graded quotient Pν/Iµ

ν . These algebras have natural
geometric realizations, as follows.

• If both µ and ν are regular then Iµ
ν is simply the ideal of P generated

by all homogeneous symmetric polynomials of positive degree. In
this case, we write simply I and C for Iµ

ν and Cµ
ν . The algebra C

is the coinvariant algebra, which by a classical theorem of Borel is
isomorphic to the cohomology algebra (with complex coefficients) of
the flag manifold F of complete flags in Cn.
• If just µ is regular, we denote Iµ

ν and Cµ
ν simply by Iν and Cν . The

algebra Cν is isomorphic to the subalgebra CSν of all Sν-invariants
in C, which is the cohomology algebra of the partial flag manifold Fν

of flags · · · ⊆ V1 ⊆ V2 ⊆ · · · with dim Vj =
∑

i≤j νi for each j ∈ Z.
• If just ν is regular, we denote Iµ

ν and Cµ
ν simply by Iµ and Cµ.

The ideal Iµ is generated by the elementary symmetric functions
er(xi1 , . . . , xim) for every m ≥ 1, 1 ≤ i1 < · · · < im ≤ n and
r > m − λn−m+1 − λn−m+2 − · · · . This is Tanisaki’s presentation
[T] (simplifying De Concini and Procesi’s original work [DP]) for
the cohomology algebra of the Springer fiber Fµ of all flags in F
stabilized by the nilpotent matrix xµ of Jordan type µ.
• Generalizing these special cases, we will prove in a subsequent article

[BO] (see also Remark 4.6 and Example 4.7 below) that the algebra
Cµ

ν for arbitrary µ and ν is isomorphic to the cohomology algebra of
the Spaltenstein variety Fµ

ν introduced in [Sp], that is, the subvariety
of Fν consisting of all partial flags · · · ⊆ V1 ⊆ V2 ⊆ · · · such that
xµVj ⊆ Vj−1 for each j.

The main goal of this article is to explain how the algebras Cµ
ν arise in

representation theory. Consider the Lie algebra g = gln(C). Let h be the
Cartan subalgebra of diagonal matrices and b be the Borel subalgebra of
upper triangular matrices. Let ε1, . . . , εn be the basis for the vector space h∗

that is dual to the standard basis e1,1, . . . , en,n of h consisting of matrix units.
The Bernstein-Gelfand-Gelfand category O introduced originally in [BGG]
is the category of all finitely generated g-modules that are locally finite over
b and semisimple over h. For α ∈ h∗, write L(α) for the irreducible highest
weight module of highest weight (α−ρ) where ρ := −ε2−2ε3−· · ·−(n−1)εn

1.
These are the irreducible objects in O.

For ν as above, let Oν be the Serre subcategory of O generated by the
irreducible modules L(α) for all α =

∑n
i=1 aiεi ∈ h∗ such that exactly νi of

the coefficients a1, . . . , an are equal to i for each i ∈ Z. This is an integral

1This choice of ρ is congruent to the usual choice (half the sum of the positive roots)
modulo ε1 + ε2 + · · ·+ εn. The choice here is more convenient when working with gln(C)
rather than sln(C) because it is itself an integral weight.
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block of O. For µ as above, let p be the standard parabolic subalgebra of
block upper triangular matrices with blocks of size . . . , µ1, µ2, . . . down the
diagonal. Let Oµ be the full subcategory of O consisting of all modules
that are locally finite over p. This is parabolic category O. Finally we set
Oµ

ν := Oµ∩Oν , an integral block2 of parabolic category O. Recall the center
of an additive category C is the ring Z(C) of all natural transformations from
the identity functor to itself.
Main Theorem. Z(Oµ

ν ) ∼= Cµ
ν .

To make this isomorphism explicit, let z1, . . . , zn be the generators for the
center Z(g) of the universal enveloping algebra U(g) of g determined by the
property that, for α =

∑n
i=1 aiεi ∈ h∗, the element zr acts on the irreducible

module L(α) by the scalar er(a1, . . . , an), the rth elementary symmetric
polynomial evaluated at a1, . . . , an. Let pν : Z(g) → Z(Oν) denote the
canonical homomorphism sending z to the natural transformation defined
by left multiplication by z. There is also a homomorphism qν : Z(g) → Cν

with qν(zr) = er(x1 +a1, . . . , xn +an) for each r = 1, . . . , n, where a1, . . . , an

here are defined so that a1 ≤ · · · ≤ an and as before exactly νi of the
integers a1, . . . , an are equal to i for each i ∈ Z. By a famous result of
Soergel [S] (see §6 below for precise references) both of the maps pν and qν

are surjective, and there is a unique isomorphism cν making the following
diagram commute:

Z(g)

Z(Oν)
∼−−−−→
cν

Cν .

↙
pν

�� ↘
qν

@@

We actually prove that there exists a unique isomorphism cµ
ν making the

following diagram commute:

Z(Oν)
∼−−−−→
cν

Cν

rµ
ν

y ysµ
ν

Z(Oµ
ν ) ∼−−−−→

cµ
ν

Cµ
ν ,

where rµ
ν : Z(Oν) → Z(Oµ

ν ) is the restriction map arising from the embed-
ding of Oµ

ν into Oν and sµ
ν : Cν � Cµ

ν is the canonical quotient map, which
exists because Iν ⊆ Iµ

ν . Note the surjectivity of the map rµ
ν , an essential

step in the proof, was already established in [B, Theorem 2].
In the special case that ν is regular, this proves that the center of a regular

block of Oµ is isomorphic to the cohomology algebra of the Springer fiber
Fµ, exactly as was conjectured by Khovanov in [Kh, Conjecture 3]3. Using
the surjectivity of the map rµ

ν established in [B], Stroppel [S2, Theorem 1]

2The fact that Oµ
ν really is an indecomposable subcategory of Oµ, so is a block of Oµ

in the usual sense, is explained in the discussion immediately following the statement of
Theorem 2 in the introduction of [B].

3Of the other conjectures from Khovanov’s paper, [Kh, Conjecture 4] was already
proved by Mazorchuk and Stroppel [MS, Theorem 5.2], and [Kh, Conjecture 2] then
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has also independently found a proof of Khovanov’s conjecture. Stroppel’s
approach based on deformation is quite different from the strategy followed
here. The approach here has the advantage of yielding at the same time the
explicit description of the centers of all singular blocks. By [B, Theorem
5.11], these can also be reinterpreted in terms of the centers of blocks of
degenerate cyclotomic Hecke algebras.

The key idea in the proof is the construction of an action of the general
linear Lie algebra ĝ := gl∞(C) on the direct sum

⊕
ν Z(Oν) ∼=

⊕
ν Cν of

the centers of all integral blocks of O. In this construction, the Chevalley
generators of ĝ act as the trace maps in the sense of [Be] associated to
some canonical adjunctions between the special translation functors that
arise by tensoring with the natural g-module and its dual. In a similar
way, there is an action of ĝ on the direct sum

⊕
ν Z(Oµ

ν ) ∼=
⊕

ν Cµ
ν of the

centers of all integral blocks of Oµ such that the canonical map ⊕νr
µ
ν is a

ĝ-module homomorphism (see Theorem 4.3). As explained in more detail in
[BO], this action is closely related to Ginzburg’s geometric construction of
representations of the general linear group [G1]; see also [BG] and [G2, §7].

The remainder of the article is organized as follows. In §2, we begin with
some preliminaries on symmetric functions, then deduce some elementary
properties of the algebras Cµ

ν . In §3, we construct an action of ĝ on the
direct sum

⊕
ν Cν of all partial coinvariant algebras by exploiting Schur-

Weyl duality, paralleling the idea of Braverman and Gaitsgory [BG] on the
geometric side. In §4, we use this action to deduce the dimension of Cµ

ν

from known properties of Cµ. Then in §5 we reinterpret the actions of the
Chevalley generators of ĝ on

⊕
ν Cν as certain trace maps. Only in §6 do we

finally relate things back to category O, using the full strength of Soergel’s
theory from [S] to complete the proof of the Main Theorem.

Acknowledgements. I would like to thank Catharina Stroppel, Victor Ostrik
and Nick Proudfoot for many helpful discussions, and the referees for some
helpful comments.

2. Preliminaries

Let λ be a partition of n. Recall that the Young diagram of λ consists of
λi boxes in its ith row; for example, the Young diagram of λ = (4 32 2) is

Given in addition a composition ν of n, a λ-tableau of type ν means some
filling of the boxes of this diagram by integers so that there are exactly νi

entries equal to i for each i ∈ Z. A λ-tableau is column strict if its entries
are strictly increasing in each column from bottom to top, and it is standard
if it is column strict and in addition its entries are weakly increasing in each

follows by [S2, Theorem 2]. This just leaves the geometric [Kh, Conjecture 1], which
appears still to be unresolved.
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row from left to right. The Kostka number Kλ,ν is the number of standard
λ-tableaux of type ν. It is well known that Kλ,ν is non-zero if and only
if λ ≥ ν+, where ≥ denotes the usual dominance ordering on partitions
and ν+ is the unique partition of n whose non-zero parts have the same
multiplicities as in the composition ν; see for example [Mac, (I.6.5)].

Let er(x1, . . . , xn) and hr(x1, . . . , xn) denote the rth elementary and com-
plete symmetric polynomials in commuting variables x1, . . . , xn, adopting
the convention that er(x1, . . . , xn) = hr(x1, . . . , xn) = 0 for r < 0 and
e0(x1, . . . , xn) = h0(x1, . . . , xn) = 1. The following basic identity [Mac,
(I.2.6′)] will be used repeatedly:

r∑
s=0

(−1)ses(x1, . . . , xn)hr−s(x1, . . . , xn) = 0 (2.1)

for all r ≥ 1. For m,n ≥ 0, we obviously have that

hr(x1, . . . , xm, y1, . . . , yn) =
r∑

s=0

hs(x1, . . . , xm)hr−s(y1, . . . , yn), (2.2)

er(x1, . . . , xm, y1, . . . , yn) =
r∑

s=0

es(x1, . . . , xm)er−s(y1, . . . , yn). (2.3)

Moreover, for all r ≥ 0, we have that

hr(y1, . . . , yn) =
r∑

s=0

(−1)ses(x1, . . . , xm)hr−s(x1, . . . , xm, y1, . . . , yn), (2.4)

er(y1, . . . , yn) =
r∑

s=0

(−1)shs(x1, . . . , xm)er−s(x1, . . . , xm, y1, . . . , yn). (2.5)

These identities follow by expanding the right hand sides using the identities
(2.2)–(2.3) and then simplifying using (2.1).

Let P denote the polynomial algebra C[x1, . . . , xn], graded so that each
xi is in degree 2. The algebra of symmetric polynomials is the subalgebra
PSn of all Sn-invariants in P . It is classical that P is a free PSn-module of
rank n! with basis

{xr1
1 xr2

2 · · ·x
rn
n | 0 ≤ ri < i}. (2.6)

An equivalent statement is that PSn−1 is a free PSn-module with basis
1, xn, x2

n, . . . , xn−1
n . The expansion of higher powers of xn in terms of this

basis can be obtained by setting u = xn in the following identity: for any
r ≥ 0 and any u such that (u− x1) · · · (u− xn) = 0 we have that

un+r =
n∑

s=1

r∑
t=0

(−1)s+t−1es+t(x1, . . . , xn)hr−t(x1, . . . , xn)un−s. (2.7)

This follows by induction on r; the base case r = 0 is exactly the assumption
(u − x1) · · · (u − xn) = 0, and then the induction step is obtained by mul-
tiplying both sides by u then making some easy manipulations using (2.1).
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Applying (2.1) once more, an equivalent way of writing the same identity is
as

un+r =
n∑

s=1

s∑
t=1

(−1)s−tes−t(x1, . . . , xn)hr+t(x1, . . . , xn)un−s, (2.8)

again valid for all r ≥ 0 and u satisfying (u− x1) · · · (u− xn) = 0
Next fix a composition ν of n and let Pν denote the subalgebra PSν of

Sν-invariants in P . For i ∈ Z we have the elements

hr(ν; i) := hr(xj+1, xj+2, . . . , xj+νi), (2.9)

er(ν; i) := er(xj+1, xj+2, . . . , xj+νi), (2.10)

where j :=
∑

h<i νh. The algebra Pν is freely generated by either the
hr(ν; i)’s or the er(ν; i)’s for all i ∈ Z and 1 ≤ r ≤ νi. Also, er(ν; i) = 0 for
r > νi. More generally, given distinct integers i1, . . . , im, let

hr(ν; i1, . . . , im) :=
∑

r1+···+rm=r

hr1(ν; i1)hr2(ν; i2) · · ·hrm(ν; im), (2.11)

er(ν; i1, . . . , im) :=
∑

r1+···+rm=r

er1(ν; i1)er2(ν; i2) · · · erm(ν; im). (2.12)

Because of (2.2)–(2.3), these are the same elements as defined in the intro-
duction. If i1, . . . , im, j1, . . . , jl are distinct integers such that νi1 + · · · +
νim + νj1 + · · ·+ νjl

= n, then we have by (2.4) that

hr(ν; i1, . . . , im) =
r∑

s=0

(−1)ses(ν; j1, . . . , jl)hr−s(x1, . . . , xn). (2.13)

The coinvariant algebra C is the quotient P/I, where I denotes the ideal
of P generated by all homogeneous symmetric functions of positive degree.
The images of the monomials (2.6) give a basis for C as a vector space, so
dim C = n!. In fact, by a theorem of Chevalley [C], the algebra C viewed
as a module over the symmetric group is isomorphic to the left regular
module CSn, where the action of Sn on C is the action induced by the
natural permutation action on P . More generally, let Iν be the ideal of Pν

generated by all homogeneous symmetric polynomials of positive degree and
define the partial coinvariant algebra Cν to be the quotient Pν/Iν . The first
lemma is well known.

Lemma 2.1. The map Pν → C obtained by restricting the canonical quo-
tient map P � C to the subalgebra Pν has kernel Iν and image CSν . Hence
it induces a canonical isomorphism between Cν = Pν/Iν and CSν . In par-
ticular, dim Cν = |Sn/Sν |.

Proof. Since we are over a field of characteristic zero, taking Sν-fixed
points is an exact functor. Applying it to 0 → I → P → C → 0 gives
a short exact sequence 0 → ISν → Pν → CSν → 0. So to prove the first
statement of the lemma, we just need to show that ISν = Iν . Let γ : P � Pν

denote the projection defined by γ(f) := 1
|Sν |

∑
w∈Sν

wf . Any element of I

is a linear combination of terms of the form fg for f ∈ P and g ∈ PSn
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homogeneous of positive degree. Applying γ, we deduce that any element of
γ(I) is a linear combination of terms of the form γ(fg) = γ(f)g for f ∈ P
and g ∈ PSn homogeneous of positive degree. Since γ(f) ∈ Pν , all such
terms belong to Iν . So we get that ISν = γ(ISν ) ⊆ γ(I) ⊆ Iν . On the other
hand, we obviously have that Iν ⊆ ISν . Hence, Iν = ISν and Cν

∼= CSν .
The final statement about dimension now follows easily using Chevalley’s
theorem, since dim CSν = dim(CSn)Sν = |Sn/Sν |.

In view of the above lemma, we will always identify Cν with the subalgebra
CSν of C. Moreover, we will use the same notation for elements of Pν and
for their canonical images in Cν ; since we will usually be working in Cν from
now on this should not cause any confusion. By (2.13), we have in Cν that

hr(ν; i1, . . . , im) = (−1)rer(ν; j1, . . . , jl) (2.14)

for m, l ≥ 0 and distinct integers i1, . . . , im, j1, . . . , jl with the property that
νi1 + · · ·+ νim + νj1 + · · ·+ νjl

= n. Hence by (2.2) we get that
r∑

s=0

(−1)ses(ν; i1, . . . , im)hr−s(ν; i1, . . . , im) = 0 (2.15)

for all r ≥ 1, equality again written in Cν .
Now we come to the crucial definition. Fix another composition µ of n

and let λ denote the transpose partition. Let Iµ
ν be the ideal of Pν generated

by the elements{
hr(ν; i1, . . . , im)

∣∣∣∣ m ≥ 1, i1, . . . , im distinct integers,
r > λ1 + · · ·+ λm − νi1 − · · · − νim

}
(2.16)

and set
Cµ

ν := Pν/Iµ
ν (2.17)

exactly as in the introduction. If we choose m and i1, . . . , im so that λ1 +
· · · + λm = νi1 + · · · + νim = n, then hr(ν; i1, . . . , im) belongs to Iµ

ν for all
r > 0, and it equals hr(x1, . . . , xn). Since Iν is generated by the elements
hr(x1, . . . , xn) for all r > 0, this shows that Iν ⊆ Iµ

ν . So it is natural to
regard Cµ

ν also as a quotient of Cν . Using Lemma 2.2 below, it is easy to
see that if µ is regular, i.e. λ1 = n, then Iν = Iµ

ν . So in this special case we
have simply that Cµ

ν = Cν .

Lemma 2.2. The ideal Iµ
ν is also generated byer(ν; i1, . . . , im)

∣∣∣∣∣ m ≥ 1, i1, . . . , im distinct integers,
r > νi1 + · · ·+ νim − λl+1 − λl+2 − · · ·
where l := #{i ∈ Z | νi > 0, i 6= i1, . . . , im}

 .

Proof. Let Jµ
ν be the ideal generated by the given set of elementary

symmetric functions. We just explain how to prove that each generator of
Jµ

ν belongs to Iµ
ν , hence Jµ

ν ⊆ Iµ
ν . Then a similar argument in the other

direction shows that each generator of Iµ
ν belongs to Jµ

ν , hence Iµ
ν ⊆ Jµ

ν , to
complete the proof.
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So take some element er(ν; i1, . . . , im) for m ≥ 1, distinct integers i1, . . . , im
and r > νi1 + · · ·+ νim − λl+1 − λl+2 − · · · where

l := #{i ∈ Z | νi > 0, i 6= i1, . . . , im}.
The definition of l means we can find distinct integers j1, . . . , jl /∈ {i1, . . . , im}
such that νi1 + · · ·+ νim + νj1 + · · ·+ νjl

= n. It is then the case that

νi1 + · · ·+ νim − λl+1 − λl+2 − · · · = λ1 + · · ·+ λl − νj1 − · · · − νjl
,

hence we have that r > λ1 + · · ·+λl−νj1−· · ·−νjl
. If l > 0 this shows that

hr(ν; j1, . . . , jl) is an element of the set (2.16), while if l = 0 then r > 0 so
hr(ν; j1, . . . , jl) = 0. Either way, this means that hr(ν; j1, . . . , jl) ∈ Iµ

ν . We
know by (2.14) that er(ν; i1, . . . , im) is equal to (−1)rhr(ν; j1, . . . , jl) plus
some element of Iν . We observed already above that Iν ⊆ Iµ

ν , so we have
now proved that er(ν; i1, . . . , im) ∈ Iµ

ν .

Lemma 2.3. Cµ
ν 6= 0 if and only if λ ≥ ν+.

Proof. Since everything is graded, we have that Cµ
ν 6= 0 if and only if all

the generators of Iµ
ν are of positive degree, i.e. λ1 + · · ·+λm ≥ νi1 + · · ·+νim

for all m ≥ 1 and distinct integers i1, . . . , im. By the definition of the
dominance ordering on partitions, this is the statement that λ ≥ ν+.

When ν is regular, we write Iµ for Iµ
ν and Cµ for Cµ

ν . As we said already in
the introduction, Lemma 2.2 is all that is needed to see that our definition of
Cµ is equivalent to Tanisaki’s presentation [T] for the cohomology algebra
H∗(Fµ, C) of the Springer fiber Fµ. In the following theorem, we record
some known facts about this algebra.

Theorem 2.4. Let µ be a composition of n with transpose partition λ.
(i) As a CSn-module, Cµ is isomorphic to the permutation representa-

tion Mµ of Sn on the cosets of the parabolic subgroup Sµ.
(ii) The top graded component of Cµ is in degree

dµ :=
∑
i≥1

λi(λi − 1) (2.18)

(which is twice the dimension of the Springer fiber Fµ).
(iii) As a CSn-module, the top graded component Cµ(dµ) is isomorphic

to the irreducible Specht module parametrized by the partition µ+.
(iv) For any non-zero vector z ∈ Cµ, there exists y ∈ Cµ such that yz is

a non-zero vector in the top graded component Cµ(dµ).

Proof. Parts (i)–(iii) are proved in [T]. Part (iv) is noted in the proof of
[Go, Theorem 6.6(vi)], where it is proved using the monomial basis for Cµ

constructed in [GP].

Remark 2.5. Recall from [Mac, (I.6.6(vi))] that the composition multi-
plicity [Mµ : Sτ ] of the irreducible Specht module Sτ parametrized by a
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partition τ in the permutation module Mµ is equal to the Kostka number
Kτ,µ. In view of Theorem 2.4(i), the polynomial

Kτ,µ(t) :=
∑
r≥0

[Cµ(dµ − 2r) : Sτ ]tr (2.19)

arising from graded composition multiplicities in Cµ satisfies Kτ,µ(1) = Kτ,µ.
In fact, it is known by [GP] that Kτ,µ(t) is equal to the Kostka-Foulkes
polynomial as defined in [Mac, section III.6].

3. Partial coinvariant algebras

In the remainder of the article, the notation
⊕

ν always denotes the direct
sum over the set of all compositions ν of n. Let ĝ := gl∞(C) be the Lie
algebra of matrices over C with rows and columns parametrized by index
set Z, all but finitely many of whose entries are zero. For each i ∈ Z, let
Di, Ei and Fi denote the (i, i)-matrix unit, the (i, i+1)-matrix unit and the
(i+1, i)-matrix unit in ĝ, respectively. These elements generate ĝ.

We are going to exploit some basic facts about polynomial representations
of ĝ. All of these facts are standard results about polynomial representations
finite dimensional general linear Lie algebras (see e.g. [Gr]) extended to ĝ by
taking direct limits. To start with, given a ĝ-module M and a composition
ν of n, the ν-weight space of M is

Mν := {v ∈M | Div = νiv for all i ∈ Z}. (3.1)

We call M a polynomial representation of ĝ of degree n if M =
⊕

ν Mν and
all Mν are finite dimensional. For example, the nth tensor power V̂ ⊗n of
the natural ĝ-module V̂ is a polynomial representation of degree n, as is the
module ∧µ(V̂ ) := · · · ⊗

∧µ1(V̂ )⊗
∧µ2(V̂ )⊗ · · · (3.2)

for a composition µ of n. For each partition λ of n, there is an irreducible
polynomial representation P λ(V̂ ) characterized uniquely up to isomorphism
by the property that the dimension of the ν-weight space of P λ(V̂ ) is equal
to the Kostka number Kλ,ν for every ν. These modules give all of the
irreducible polynomial representations of degree n.

The symmetric group Sn acts on the right on V̂ ⊗n by permuting tensors.
Consider the functor V̂ ⊗n⊗CSn? from the category of finite dimensional left
CSn-modules to the category of polynomial representations of ĝ of degree
n. By Schur’s classical theory, this functor is known to be an equivalence
of categories. Recall that Mµ is the permutation module parametrized by
a composition µ of n and Sλ is the irreducible Specht module parametrized
by a partition λ of n. It is well known that∧µ(V̂ ) ∼= V̂ ⊗n ⊗CSn M̃µ, (3.3)

P λ(V̂ ) ∼= V̂ ⊗n ⊗CSn Sλ, (3.4)

where M̃µ denotes the CSn-module obtained from Mµ by twisting the action
by sign.
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Lemma 3.1. For any left CSn-module M , there is a natural vector space
isomorphism κM : V̂ ⊗n ⊗CSn M

∼→
⊕

ν MSν defined as follows. Suppose ν
is a composition of n and a1 ≤ · · · ≤ an are integers exactly νi of which are
equal to i for each i ∈ Z. Then

κM (va1 ⊗ · · · ⊗ van ⊗m) =
1
|Sν |

∑
w∈Sν

wm ∈MSν

for any m ∈M . The inverse map κ−1
M satisfies

κ−1
M (m) = va1 ⊗ · · · ⊗ van ⊗m

for any m ∈MSν .

Proof. Fix a composition ν of n and let a1 ≤ · · · ≤ an be the unique
integers such that exactly νi of them are equal to i for each i ∈ Z. Let
V̂ ⊗n

ν denote the ν-weight space of V̂ ⊗n. Writing C for the trivial module, it
is well known that the right CSν-module homomorphism C → V̂ ⊗n

ν under
which 1 7→ va1 ⊗ · · · ⊗ van extends by Frobenius reciprocity to a right CSn-
module isomorphism C ⊗CSν CSn

∼→ V̂ ⊗n
ν . Also there is a familiar vector

space isomorphism C⊗CSν M
∼→MSν , 1⊗m 7→ 1

|Sν |
∑

w∈Sν
wm. Composing

these maps, we obtain an isomorphism

V̂ ⊗n
ν ⊗CSn M

∼−→ C⊗CSν CSn ⊗CSn M = C⊗CSν M
∼−→MSν

such that va1 ⊗ · · · ⊗ van ⊗m 7→ 1
|Sν |

∑
w∈Sν

wm. The isomorphism κM is
the direct sum of these maps over all compositions ν of n.

As in the introduction, let F be the flag manifold of (complex) dimension
1
2n(n− 1), and let Fν denote the partial flag manifold associated to a com-
position ν of n. So elements of Fν are nested chains (Vj)j∈Z of subspaces of
Cn such that dim Vj =

∑
i≤j νi for each j. The (complex) dimension of Fν

is equal to 1
2dν where

dν := n(n− 1)−
∑
i∈Z

νi(νi − 1). (3.5)

Let π : F � Fν denote the natural projection; informally, π is the map
forgetting all subspaces of a full flag of the wrong dimension. Identifying
the cohomology algebra H∗(F, C) with the coinvariant algebra C as in [F,
10.2(3)], the fundamental class of a point of F (regarded as an element of
H∗(F, C) via Poincaré duality) is the canonical image of the polynomial

ε :=
1
n!

∏
1≤i<j≤n

(xi − xj) (3.6)

in C. More generally, the cohomology algebra H∗(Fν , C) can be identified
with the partial coinvariant algebra Cν = CSν so that the pull-back homo-
morphism π∗ : H∗(Fν , C) → H∗(F, C) coincides with the natural inclusion
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Cν ↪→ C. Let

εν :=
1
|Sν |

∏
1≤i<j≤n

i
ν∼ j

(xi − xj), (3.7)

where we write i
ν∼ j if i and j lie in the same Sν-orbit. Note ε is divisible

by εν and the quotient ε/εν belongs to Pν . The fundamental class of a point
of Fν is the canonical image of ε/εν in Cν .

Let C̃ denote the CSn-module obtained from C by twisting the natural
permutation action by sign, i.e. w ∈ Sn acts on C̃ as the map f 7→ sgn(w)wf .
Since the regular CSn-module twisted by sign is isomorphic to the regular
module, it follows from Chevalley’s theorem that C̃ is isomorphic to C as
(ungraded) CSn-modules. Let C̃ν denote the space C̃Sν of all Sν-invariants
in C̃. In other words, C̃ν is the space of all Sν-anti-invariants in C. Note
εν belongs to C̃ν .

In the next lemma, we use Poincaré duality to regard the usual push-
forward π∗ in homology as a homogeneous map π∗ : H∗(F, C)→ H∗(Fν , C)
of degree −

∑
i∈Z νi(νi − 1).

Lemma 3.2. The restriction of the push-forward π∗ : H∗(F, C)→ H∗(Fν , C)
to the subspace C̃ν defines a Cν-module isomorphism π∗ : C̃ν

∼→ Cν with
π∗(εν) = 1. In particular, C̃ν = ενCν and dim C̃ν = |Sn/Sν |.

Proof. By the projection formula, π∗ is a Cν-module homomorphism,
hence so is its restriction to the Cν-submodule C̃ν of C. By degree con-
siderations, we have that π∗(εν) = c · 1 for some scalar c. To compute the
scalar, π∗ sends the fundamental class of a point to the fundamental class
of a point, so π∗(ε) = ε/εν . Hence in Cν we have that

ε/εν = π∗(ε) = π∗(εν · ε/εν) = π∗(εν)ε/εν = cε/εν .

So c = 1 and π∗(εν) = 1. It follows at once from this that π∗ : C̃ν → Cν is
surjective. It is an isomorphism because dim C̃ν = dim Cν = |Sn/Sν |.

Now let us consider the ĝ-module V̂ ⊗n ⊗CSn C̃. Since C̃ ∼= CSn as a
CSn-module, this is isomorphic simply to tensor space V̂ ⊗n, but it carries
an interesting grading induced from the natural grading on C. Composing
the direct sum over all ν of the isomorphisms from Lemma 3.2 with the
isomorphism κ eC from Lemma 3.1, we obtain an isomorphism

ϕ : V̂ ⊗n ⊗CSn C̃
∼−→

⊕
νCν . (3.8)

Using this, we transport the natural ĝ-action on V̂ ⊗n ⊗CSn C̃ to the vector
space

⊕
ν Cν , to make the latter into a ĝ-module whose ν-weight space is

equal to the partial coinvariant algebra Cν . Because this definition involves
push-forward, the action of ĝ does not preserve the grading on

⊕
ν Cν in the

usual sense. Instead, ĝ leaves the subspaces
⊕

ν Cν(dν − 2r) invariant for
each r ≥ 0.

Consider the following key situation. Fix i ∈ Z, let ν be a composition
of n with νi 6= 0, and define ν ′ to be the composition of n obtained from ν
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by replacing νi by νi− 1 and νi+1 by νi+1 + 1. The Chevalley generators Ei

and Fi of ĝ define linear maps

Cν Cν′ .
Fi−→←−
Ei

(3.9)

We are going to calculate these maps explicitly. It will be convenient to let
a := ν ′i, b := νi+1 and k :=

∑
j≤i νj , so that

xk−a
ν∼ · · · ν∼ xk−1

ν∼ xk, xk+1
ν∼ · · · ν∼ xk+b, (3.10)

xk−a
ν′∼ · · · ν′∼ xk−1, xk

ν′∼ xk+1
ν′∼ · · · ν′∼ xk+b. (3.11)

The notation ν∼ and ν′∼ being used here was introduced after (3.7).
Let

Fν,ν′ :=
{
((Vj)j∈Z, (V ′

j )j∈Z) ∈ Fν ×Fν′
∣∣Vj = V ′

j for j 6= i, V ′
i ⊂ Vi

}
. (3.12)

This is obviously isomorphic to the partial flag manifold whose cohomology
algebra has been identified with Cν,ν′ := CSν∩Sν′ . Both Cν = CSν and
Cν′ = CSν′ are subalgebras of Cν,ν′ . By the sentence after (2.6), Cν,ν′ is
a free Cν-module with basis 1, xk, . . . , x

a
k and a free Cν′-module with basis

1, xk, . . . , x
b
k. Moreover, by (2.8), we have that for r ≥ 1 that

xa+r
k =

a∑
s=0

s∑
t=0

(−1)s−tes−t(ν; i)hr+t(ν; i)xa−s
k , (3.13)

xb+r
k =

b∑
s=0

s∑
t=0

(−1)s−tes−t(ν ′; i + 1)hr+t(ν ′; i + 1)xb−s
k . (3.14)

Let p : Fν,ν′ → Fν and p′ : Fν,ν′ → Fν′ be the first and second projections.
The pull-backs p∗ : Cν → Cν,ν′ and (p′)∗ : Cν′ → Cν,ν′ are simply the
natural inclusions. To describe the push-forwards (again regarded as maps
in cohomology via Poincaré duality), we define

εν,ν′ :=
1

|Sν ∩ Sν′ |
∏

1≤i<j≤n

i
ν∼ j

ν′∼ i

(xi − xj) (3.15)

like in (3.7), so the fundamental class of a point of Fν,ν′ is the canonical
image of ε/εν,ν′ in Cν,ν′ . Both εν and εν′ are divisible by εν,ν′ , and we have
that

εν/εν,ν′ =
1

a+1

a∏
j=1

(xk−j − xk) =
(−1)a

a+1

a∑
s=0

(−1)ses(ν ′; i)xa−s
k , (3.16)

εν′/εν,ν′ =
1

b+1

b∏
j=1

(xk − xk+j) =
1

b+1

b∑
s=0

(−1)ses(ν; i + 1)xb−s
k . (3.17)

Lemma 3.3. Let notation be as above, so in particular a = νi − 1 = ν ′i and
b = νi+1 = ν ′i+1 − 1.
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(i) The push-forward p∗ : Cν,ν′ → Cν is the unique homogeneous Cν-
module homomorphism of degree −a that maps εν/εν,ν′ to 1. Equiv-
alently, it is the unique Cν-module homomorphism with p∗(xr

k) =
(−1)ahr−a(ν; i) for each r ≥ 0.

(ii) The push-forward p′∗ : Cν,ν′ → Cν′ is the unique homogeneous Cν′-
module homomorphism of degree −b that maps εν′/εν,ν′ to 1. Equiv-
alently, it is the unique Cν′-module homomorphism with p′∗(x

r
k) =

hr−b(ν ′; i + 1) for each r ≥ 0.

Proof. By the projection formula, p∗ is a homogeneous Cν-module ho-
momorphism of degree −a, so it must map εν/εν,ν′ to c · 1 for some scalar
c. Since it maps the fundamental class of a point to the fundamental class
of a point, we know that p∗(ε/εν,ν′) = ε/εν , from which we get that c = 1
as in the proof of Lemma 3.2. Now suppose that f : Cν,ν′ → Cν is any
homogeneous Cν-module homomorphism of degree −a mapping εν/εν,ν′ to
1. By (3.16) and (2.5),

εν/εν,ν′ =
(−1)a

a+1

a∑
s=0

s∑
t=0

(−1)s+tes−t(ν; i)xa−s+t
k .

Applying f to this equation and observing that f(1) = · · · = f(xa−1
k ) = 0 by

degree considerations, we deduce that f(xa
k) = (−1)a. Finally using (3.13),

we get that f(xr
k) = (−1)ahr−a(ν; i) for any r ≥ 0 (recalling by convention

that hr−a(ν; i) = 0 if r < a). Since the elements xr
k generate Cν,ν′ as a

Cν-module, there is clearly a unique such map. This proves (i), and (ii) is
similar.

Theorem 3.4. Let notation be as above, so in particular a = νi − 1 = ν ′i
and b = νi+1 = ν ′i+1 − 1.

(i) The map Fi : Cν → Cν′ is equal to the composite

Cν
p∗−→ Cν,ν′

m−→ Cν,ν′
p′∗−→ Cν′

where m is the map defined by multiplication by
∏a

j=1(xk−j − xk).
Equivalently, it is the restriction to Cν of the unique Cν′-module
homomorphism Cν,ν′ → Cν′ sending

xr
k 7→ (−1)a

a∑
s=0

(−1)ses(ν ′; i)hr−s+a−b(ν ′; i + 1)

for each r ≥ 0.
(ii) The map Ei : Cν′ → Cν is equal to the composite

Cν′
(p′)∗−→ Cν,ν′

m′
−→ Cν,ν′

p∗−→ Cν

where m′ is the map defined by multiplication by
∏b

j=1(xk − xk+j).
Equivalently, it is the restriction to Cν′ of the unique Cν-module
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homomorphism Cν,ν′ → Cν sending

xr
k 7→ (−1)a

b∑
s=0

(−1)ses(ν; i + 1)hr−s+b−a(ν; i)

for each r ≥ 0.

Proof. We just prove (i), the proof of (ii) being similar. Observe to
start with that the action of ĝ on

⊕
ν Cν lifts to an action on

⊕
ν Pν . To

see this, let P̃ denote the CSn-module obtained from P by twisting the
natural permutation action by sign. Let P̃ν denote the Sν-invariants in P̃ , or
equivalently, the Sν-anti-invariants in P . By another fundamental theorem
of Chevalley, every element of P̃ν is divisible by εν . Division by εν defines a
Pν-module isomorphism π̂∗ : P̃ν

∼→ Pν lifting the isomorphism π∗ : C̃ν
∼→ Cν

from Lemma 3.2. Composing the direct sum of these isomorphisms over all
ν with the isomorphism κ eP from Lemma 3.1, we obtain an isomorphism ϕ̂
making the following diagram commute:

V̂ ⊗n ⊗CSn P̃
ϕ̂−−−−→

⊕
ν Pνy y

V̂ ⊗n ⊗CSn C̃ −−−−→
ϕ

⊕
ν Cν

where the vertical maps here (and later on) are the canonical quotient maps.
The natural action of ĝ on V̂ ⊗n ⊗CSn P̃ clearly lifts the action of ĝ on
V̂ ⊗n⊗CSn C̃. Transporting this action through the isomorphism ϕ̂ gives the
desired action of ĝ on

⊕
ν Pν .

Now we compute the effect of Fi on a polynomial f ∈ Pν . The inverse
image of f under ϕ̂ is (· · · ⊗ v

⊗(a+1)
i ⊗ v⊗b

i+1 ⊗ · · · ) ⊗ ενf . Applying the Lie
algebra element Fi (which maps one vi to vi+1 in all possible ways), we get

(· · · ⊗ v⊗a
i ⊗ v

⊗(b+1)
i+1 ⊗ · · · )(1 +

a∑
j=1

(k−j k))⊗ ενf.

Since −(k−j k)ενf = ενf , this equals (· · ·⊗v⊗a
i ⊗v

⊗(b+1)
i+1 ⊗· · · )⊗(a+1)ενf ,

which is the same as (· · · ⊗ v⊗a
i ⊗ v

⊗(b+1)
i+1 ⊗ · · · )⊗ εν,ν′

∏a
j=1(xk−j − xk)f by

(3.16). Applying ϕ̂, we get
1

εν′

1
|Sν′ |

∑
w∈Sν′

sgn(w)w
(
εν,ν′

∏a
j=1(xk−j − xk)f

)
.

Setting Pν,ν′ := PSν∩Sν′ , we have proved that the map Fi : Pν → Pν′ is
equal to the composite of the inclusion p̂∗ : Pν ↪→ Pν,ν′ , then the map
m̂ : Pν,ν′ → Pν,ν′ defined by multiplication by

∏a
j=1(xk−j − xk), and finally

the map p̂′∗ : Pν,ν′ → Pν′ defined by

f 7→ 1
εν′

1
|Sν′ |

∑
w∈Sν′

sgn(w)w
(
εν,ν′f

)
.
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To complete the proof of the first statement of (i), it just remains to descend
back down to partial coinvariant algebras, which amounts to checking that
all three squares in the following diagram commute:

Pν
p̂∗−−−−→ Pν,ν′

m̂−−−−→ Pν,ν′
p̂′∗−−−−→ Pν′y y y y

Cν −−−−→
p∗

Cν,ν′ −−−−→
m

Cν,ν′ −−−−→
p′∗

Cν′ .

The commutativity of the left hand two squares is obvious. For the right
hand square, note from its definition that p̂′∗ is a homogeneous Pν′-module
homomorphism of degree −b mapping εν′/εν,ν′ to 1. Moreover, for any
f ∈ Pν,ν′ and any homogeneous symmetric function g of positive degree, we
have that p̂′∗(fg) = p̂′∗(f)g, so p̂′∗ factors through the quotients to induce a
homogeneous Cν′-module homomorphism Cν,ν′ → Cν′ of degree −b mapping
εν′/εν,ν′ to 1. This coincides with the map p′∗ by Lemma 3.3(ii).

Finally, to deduce the second description of Fi, take an element z ∈ Cν

and write z =
∑b

r=0 zrx
r
k for (unique) elements zr ∈ Cν′ . Using (3.16) and

the second description of p′∗ from Lemma 3.3(ii), p′∗ ◦m ◦ p∗ maps z to
b∑

r=0

zr · (−1)a
a∑

s=0

(−1)ses(ν ′; i)hr−s+a−b(ν ′; i + 1).

This is also the image of z under the given Cν′-module homomorphism
Cν,ν′ → Cν′ .

4. The algebras Cµ
ν

Throughout the section, we fix a composition µ of n with transpose parti-
tion λ. We will now regard Iµ

ν as an ideal of Cν rather than of Pν , generated
by the canonical images of the elements (2.16). So, recalling (2.17), we
are now viewing the algebra Cµ

ν as the quotient Cν/Iµ
ν , and

⊕
ν Cµ

ν is the
quotient of

⊕
ν Cν by the subspace

⊕
ν Iµ

ν . The following lemma implies
that the action of ĝ on

⊕
ν Cν factors through this quotient to induce a

well-defined action of ĝ on
⊕

ν Cµ
ν .

Lemma 4.1. For each i ∈ Z, the Chevalley generators Ei and Fi of ĝ leave
the subspace

⊕
ν Iµ

ν of
⊕

ν Cν invariant.

Proof. Fix i ∈ Z and let ν, ν ′ be compositions as in the key situation
(3.9). We also let a := ν ′i, b := νi+1 and k :=

∑
j≤i νj . It suffices to show

that Fi(I
µ
ν ) ⊆ Iµ

ν′ and Ei(I
µ
ν′) ⊆ Iµ

ν . We just verify the first containment,
the second being entirely similar. Since Cν ⊆ Cν,ν′ and Cν,ν′ is generated
as a Cν′-module by the elements xp

k for p ≥ 0, every element of Iµ
ν is a Cν′-

linear combination of terms of the form xp
khr(ν; i1, . . . , im) for p ≥ 0, m ≥ 1,

distinct integers i1, . . . , im and r > λ1 + · · ·+λm− νi1 − · · ·− νim . Recalling
the second description of Fi from Theorem 3.4(i), it therefore suffices to
show that Fi maps all these xp

khr(ν; i1, . . . , im)’s into Iµ
ν′ .
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If neither i nor (i+1) belongs to the set {i1, . . . , im}, then hr(ν; i1, . . . , im)
equals hr(ν ′; i1, . . . , im) ∈ Cν′ . So applying Theorem 3.4(i), we see that Fi

maps xp
khr(ν; i1, . . . , im) to

(−1)a
a∑

s=0

(−1)ses(ν ′; i)hp−s+a−b(ν ′; i + 1)hr(ν ′; i1, . . . , im),

which belongs to Iµ
ν′ because hr(ν ′; i1, . . . , im) does already according to the

definition (2.16). The same argument applies if both i and (i + 1) belong to
the set {i1, . . . , im}. So it remains to consider the situations when exactly
one of i and (i + 1) belongs to {i1, . . . , im}. We may as well assume either
that im = i or that im = i + 1.

Suppose first that im = i and i1, . . . , im−1 6= i + 1. By (2.2), we have
that xp

khr(ν; i1, . . . , im) =
∑r

t=0 ht(ν ′; i1, . . . , im)xp+r−t
k . Applying Fi using

Theorem 3.4(i), we get the element

(−1)a
a∑

s=0

r∑
t=0

(−1)ses(ν ′; i)hp+r−t−s+a−b(ν ′; i + 1)ht(ν ′; i1, . . . , im).

Since r > λ1 + · · ·+λm−νi1 −· · ·−νim = λ1 + · · ·+λm−ν ′i1 −· · ·−ν ′im −1,
we have that ht(ν ′; i1, . . . , im) ∈ Iµ

ν′ if t > r by (2.16), so another application
of (2.2) gives that

r∑
t=0

hp+r−t−s+a−b(ν ′; i + 1)ht(ν ′; i1, . . . , im)

≡ hp+r−s+a−b(ν; i1, . . . , im, i + 1) (mod Iµ
ν′).

It remains to show that
∑a

s=0(−1)ses(ν ′; i)hp+r−s+a−b(ν ′; i1, . . . , im, i + 1)
belongs to Iµ

ν′ . By (2.4), it equals hp+r+a−b(ν ′; i1, . . . , im−1, i+1) which does
indeed lie in Iµ

ν′ since p + r + a − b = p + r + νi − ν ′i+1 > λ1 + · · · + λm −
ν ′i1 − · · · − ν ′im−1

− ν ′i+1.
Finally suppose that im = i + 1 and i1, . . . , im−1 6= i. By (2.4), we can

rewrite xp
khr(ν; i1, . . . , im) as xp

khr(ν ′; i1, . . . , im) − xp+1
k hr−1(ν ′; i1, . . . , im).

The image of this under Fi is

(−1)a
a∑

s=0

(−1)ses(ν ′; i)
(
hp−s+a−b(ν ′; i + 1)hr(ν ′; i1, . . . , im)

− hp+1−s+a−b(ν ′; i + 1)hr−1(ν ′; i1, . . . , im)
)
.

Since r > λ1+· · ·+λm−ν ′i1−· · ·−ν ′im +1 both of the terms hr(ν ′; i1, . . . , im)
and hr−1(ν ′; i1, . . . , im) belong to Iµ

ν′ .

Recall Cµ denotes the algebra Cµ
ν when ν is regular. Let C̃µ denote the

CSn-module obtained from Cµ by twisting the natural action by sign. Let
C̃µ

ν denote the subspace of all Sν-invariants in C̃µ, i.e. the space of all Sν-
anti-invariants in Cµ. The restriction of the canonical quotient map C � Cµ

defines a surjective linear map C̃ν � C̃µ
ν .
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Lemma 4.2. The isomorphism π∗ : C̃ν
∼→ Cν from Lemma 3.2 factors

through the quotients to induce an isomorphism π̄∗ making the following
diagram commute:

C̃ν
π∗−−−−→ Cνy y

C̃µ
ν −−−−→

π̄∗
Cµ

ν

(Here, the vertical maps are the canonical quotient maps.) Composing the
direct sum of these isomorphisms over all ν with the isomorphism κ eCµ from
Lemma 3.1, we obtain a ĝ-module isomorphism ϕ̄ such that the following
diagram commutes:

V̂ ⊗n ⊗CSn C̃
ϕ−−−−→

⊕
νCνy y

V̂ ⊗n ⊗CSn C̃µ −−−−→
ϕ̄

⊕
νC

µ
ν .

(Here, ϕ is as in (3.8) and the vertical maps are the canonical quotients.)

Proof. Writing α, β and γ for the maps induced by the canonical quotient
homomorphisms, the left hand square of the following diagram commutes:

V̂ ⊗n ⊗CSn C̃
κ eC−−−−→

⊕
νC̃ν

π∗−−−−→
⊕

ν Cν

α

y β

y yγ

V̂ ⊗n ⊗CSn C̃µ −−−−→
κ eCµ

⊕
νC̃

µ
ν −−−−→

π̄∗

⊕
νC

µ
ν .

We have not yet defined the map π̄∗ appearing in the right hand square.
Let us first show that the maps α and γ ◦ π∗ ◦ κ eC have the same kernels.

Both of these maps are ĝ-module homomorphisms. Moreover it is quite
obvious that the restrictions of these maps to a regular weight space have
the same kernels. Since any polynomial ĝ-module of degree n is generated by
any one of its regular weight spaces, this implies that the kernels are equal
everywhere. Using the commutativity of the left hand square, we deduce
that the maps γ ◦ π∗ and β also have the same kernels. Since they are both
surjective, this means that π∗ factors through the quotients to induce an
isomorphism π̄∗ :

⊕
ν C̃µ

ν →
⊕

ν Cµ
ν making the right hand square commute.

The rest of the lemma follows since ϕ = π∗ ◦ κ eC and ϕ̄ = π̄∗ ◦ κ eCµ .

Now we can identify the ĝ-module
⊕

ν Cµ
ν explicitly. This result is a

natural extension of Theorem 2.4, replacing Sn with ĝ.

Theorem 4.3. Let µ be a composition of n with transpose partition λ.
(i) As a ĝ-module,

⊕
ν Cµ

ν is isomorphic to
∧µ(V̂ ).
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(ii) Assuming Cµ
ν 6= 0, i.e. λ ≥ ν+, the top graded component of Cµ

ν is
in degree

dµ
ν :=

∑
i≥1

λi(λi − 1)−
∑
i∈Z

νi(νi − 1) (4.1)

(which is twice the dimension of the Spaltenstein variety Fµ
ν ).

(iii) As a ĝ-module, the direct sum
⊕

ν Cµ
ν (dµ

ν ) of the top graded compo-
nents of all Cµ

ν is isomorphic to P λ(V̂ ).
(iv) Given a non-zero vector x ∈ Cµ

ν , a regular composition ω and a
composition γ with γ+ = λ, there exist operators u, v ∈ U(ĝ) and
y ∈ Cµ

ω such that vx ∈ Cµ
ω , y(vx) ∈ Cµ

ω(dµ
ω) and u(y(vx)) is the

identity element of the one-dimensional algebra Cµ
γ .

Proof. Consider the ĝ-module isomorphism ϕ̄ : V̂ ⊗n ⊗CSn C̃µ →
⊕

ν Cµ
ν

from Lemma 4.2. Combined with Theorem 2.4(i) and (3.3), it implies that⊕
ν Cµ

ν is isomorphic to
∧µ(V̂ ) as a ĝ-module, giving (i). Declaring that

V̂ ⊗n is concentrated in degree 0, the natural grading on C̃µ extends to a
grading on V̂ ⊗n ⊗CSn C̃µ, and the action of ĝ preserves this grading. By
Theorem 2.4(ii) the top graded component of C̃µ is in degree

∑
i≥1 λi(λi−1),

and by Theorem 2.4(iii) it is isomorphic to Sλ as a CSn-module. Hence the
top graded component of V̂ ⊗n ⊗CSn C̃µ is also in degree

∑
i≥1 λi(λi − 1)

and by (3.4) it is isomorphic to P λ(V̂ ) as a ĝ-module. If Cµ
ν 6= 0, which

means λ ≥ ν+ by Lemma 2.3, the ν-weight space of P λ(V̂ ) is non-zero, so
this is also the degree of the top graded component of the ν-weight space of
V̂ ⊗n⊗CSn C̃µ. Since the restriction of the isomorphism ϕ̄ to ν-weight spaces
is a homogeneous map of degree −

∑
i∈Z νi(νi− 1), this proves (ii) and (iii).

Finally, we prove (iv). The ω-weight space of every irreducible polynomial
representation of degree n is non-zero. So any vector in any polynomial
representation can be mapped to a non-zero vector of weight ω by applying
some element of U(ĝ). So given a non-zero vector x ∈ Cµ

ν , there exists
v ∈ U(ĝ) such that vx is a non-zero element of Cµ

ω . Then by Theorem 2.4(iv)
there is an element y ∈ Cµ

ω so that y(vx) is a non-zero element of the top
graded component of Cµ

ω . Finally by the irreducibility of
⊕

ν Cµ
ν (dµ

ν ), we
can find u ∈ U(ĝ) such that u(y(vx)) is a non-zero vector of Cµ

γ . The
latter algebra is one dimensional as the γ-weight space of

∧µ(V̂ ) is one
dimensional, so we can even ensure that u(y(vx)) = 1.

Corollary 4.4. The dimension of Cµ
ν is equal to the number of column strict

λ-tableaux of type ν.

Proof. The usual monomial basis of the ν-weight space of
∧µ(V̂ ) is

parametrized in an obvious way by column strict λ-tableaux of type ν.

Remark 4.5. We have shown that
⊕

ν Cµ
ν =

⊕
r≥0

⊕
ν Cµ

ν (dµ
ν − 2r), with

each
⊕

ν Cµ
ν (dµ

ν − 2r) being a ĝ-submodule. Letting κ be a partition of n
with transpose τ , the above arguments combined with Remark 2.5 show
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moreover that ∑
r≥0

[⊕
νC

µ
ν (dµ

ν − 2r) : P κ(V̂ )
]
tr = Kτ,µ(t), (4.2)

the Kostka-Foulkes polynomial. Hence, the Hilbert polynomial of the graded
algebra Cµ

ν is given by the formula∑
r≥0

dim Cµ
ν (r) tr = td

µ
ν

∑
(κ,τ)

Kκ,νKτ,µ(t−2), (4.3)

where the sum is over all pairs (κ, τ) of mutually transpose partitions of n.

Remark 4.6. Let i : Fµ ↪→ F and j : Fµ
ν ↪→ Fν be the natural inclusions.

Recall we have identified H∗(F, C) with the coinvariant algebra C. In turn,
by [T], we can identify H∗(Fµ, C) with Cµ so that the pull-back homomor-
phism i∗ : H∗(F, C) → H∗(Fµ, C) coincides with the natural quotient map
C � Cµ. Thus, the graded vector spaces C̃ν and C̃µ

ν are identified with
the Sν-anti-invariants in H∗(F, C) and in H∗(Fµ, C), respectively. In [BM,
Corollary 3.4(b)], Borho and MacPherson proved that there exists a graded
vector space isomorphism C̃µ

ν
∼→ H∗(Fµ

ν , C) that is homogeneous of degree
−

∑
i∈Z νi(νi − 1). In fact, there is a unique such isomorphism π̄∗ making

the following diagram commute:

C̃ν
π∗−−−−→ H∗(Fν , C)

i∗
y yj∗

C̃µ
ν −−−−→

π̄∗
H∗(Fµ

ν , C).

(4.4)

This last statement, which does not seem to follow directly from [BM], will
be proved in [BO]. Comparing with the first statement of Lemma 4.2, it
implies that the algebra Cµ

ν is canonically isomorphic to the cohomology
algebra of the Spaltenstein variety Fµ

ν .

Example 4.7. Let us give one small example where everything can be
worked out by hand. Let µ = ν = (. . . , 0, 1, 2, 1, 0, . . . ). So the nilpotent
matrix xµ is simply equal to the matrix unit e2,3, and the Spaltenstein variety
Fµ

ν is the space of all partial flags (L ⊂ H) consisting of an e2,3-invariant
line L and an e2,3-invariant hyperplane H in C4 such that e2,3H ⊆ L. As
a variety, Fµ

ν is isomorphic to two copies of P2 glued at a point, and its
cohomology algebra is isomorphic to the algebra

C[x, y]/〈x3, y3, xy〉
with basis {1, x, x2, y, y2}; both these statements make good exercises. On
the other hand, using Lemma 2.2, our algebra Cµ

ν is the quotient of Pν by the
ideal generated by all the elementary symmetric functions in x1, x2, x3, x4

of positive degree together with the elements {x1x4, x1x2x3, x2x3x4}. It is
straightforward now by explicitly checking relations to see that there is an
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isomorphism H∗(Fµ
ν , C) → Cµ

ν sending x 7→ x1, y 7→ x4. In particular,
{1, x1, x

2
1, x4, x

2
4} is a basis4 for Cµ

ν .

5. Trace maps

In this section, we give a quite different algebraic interpretation of the
actions of the Chevalley generators Ei and Fi of ĝ on

⊕
ν Cν . Fix i ∈ Z and

compositions ν, ν ′ as in the key situation (3.9), and set a := ν ′i, b := νi+1

and k :=
∑

j≤i νi. Recall that the algebra CSν∩Sν′ is free both as a Cν-
module with basis 1, xk, . . . , x

a
k and as a Cν′-module with basis 1, xk, . . . , x

b
k.

From now on, we reserve the notation Cν,ν′ for this algebra when viewed
as a (Cν , Cν′)-bimodule, and we introduce the new notation Cν′,ν for the
same algebra when viewed as a (Cν′ , Cν)-bimodule. Of course since all our
algebras are commutative, this distinction is quite artificial, but it helps
to keep track of the actions (left or right) later on. Tensoring with these
bimodules defines exact functors

Cν,ν′⊗Cν′? : Cν′ -mod→ Cν -mod, (5.1)

Cν′,ν⊗Cν ? : Cν -mod→ Cν′ -mod, (5.2)

where A -mod denotes the category of finite dimensional left A-modules.
The immediate goal is to prove that these functors are both left and right
adjoint to one another in canonical ways; see also [FKS, Proposition 3.5].

Lemma 5.1. There is a unique (Cν′ , Cν)-bimodule isomorphism

δ : Cν′,ν
∼−→ HomCν (Cν,ν′ , Cν)

such that (δ(xr
k))(x

s
k) = (−1)ahr+s−a(ν; i) for r, s ≥ 0. The inverse isomor-

phism sends f 7→ (−1)a
∑a

r=0(−1)rer(ν ′; i)f(xa−r
k ).

Proof. For 0 ≤ r ≤ a, let δr : Cν,ν′ → Cν be the unique Cν-module
homomorphism such that

δr(xa−s
k ) =

{
0 if s < a,
(−1)a if s = a.

The maps δ0, δ1, . . . , δa form a basis for HomCν (Cν,ν′ , Cν) as a free Cν-
module. Moreover, by (3.13), we have that δ0(xr

k) = (−1)ahr−a(ν; i) for
any r ≥ 0. Hence, writing xr

kδ0 for the map x 7→ δ0(xxr
k), we get that

xr
kδ0 =

a∑
s=0

δshr−s(ν; i),

since both sides map xa−s
k to hr−s(ν; i). Inverting using (2.1) we get that

δr =
r∑

s=0

(−1)r−s(xs
kδ0)er−s(ν; i)

for 0 ≤ r ≤ a. These equations imply that the maps δ0, xkδ0, . . . , x
a
kδ0 also

form a basis for HomCν (Cν,ν′ , Cν) as a free Cν-module. Moreover, since

4A similar algebraic basis for the algebras Cµ
ν in general will be constructed in [BO].
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s=0(−1)r−sxs

ker−s(ν; i) = (−1)rer(ν ′; i) by a special case of (2.5), we have
shown that

δr = (−1)rer(ν ′; i)δ0

for 0 ≤ r ≤ a.
Now we know enough to prove the lemma. Recalling that CSν∩Sν′ =

Cν,ν′ = Cν′,ν , there is a well-defined CSν∩Sν′ -module homomorphism

δ : Cν′,ν → HomCν (Cν,ν′ , Cν), 1 7→ δ0.

This is automatically a (Cν′ , Cν)-bimodule homomorphism. The elements
1, xk, . . . , x

a
k form a basis for Cν′,ν as a free right Cν-module, and δ maps

them to to the functions δ0, xkδ0, . . . , x
a
kδ0 which we showed in the previ-

ous paragraph give a basis for HomCν (Cν,ν′ , Cν) as a free right Cν-module.
Hence, δ is an isomorphism. Moreover,

(δ(xr
k))(x

s
k) = (xr

kδ0)(xs
k) = δ0(xr+s

k ) = (−1)ahr+s−a(ν; i),

so the isomorphism δ just constructed is precisely the map in the statement
of the lemma. Finally, take any f ∈ HomCν (Cν,ν′ , Cν). We have that

f = (−1)a
a∑

r=0

δrf(xa−r
k ) = (−1)a

a∑
r=0

(−1)rer(ν ′; i)δ0f(xa−r
k ).

Hence, δ−1(f) = (−1)a
∑a

r=0(−1)rer(ν ′; i)f(xa−r
k ) as claimed.

Corollary 5.2. For any Cν-module M , there is a natural Cν′-module iso-
morphism

Cν′,ν ⊗Cν M
∼−→ HomCν (Cν,ν′ ,M)

such that xr
k ⊗ m for any r ≥ 0 and m ∈ M maps to the unique Cν-

module homomorphism sending xs
k to (−1)ahr+s−a(ν; i)m for each s ≥ 0.

The inverse isomorphism sends f 7→ (−1)a
∑a

r=0(−1)rer(ν ′; i)⊗ f(xa−r
k ).

Proof. Let δ be the isomorphism from Lemma 5.1. We obtain the desired
natural isomorphism from the composite

Cν′,ν ⊗Cν M
δ⊗idM−−−−→ HomCν (Cν,ν′ , Cν)⊗Cν M

∼−→ HomCν (Cν,ν′ ,M),
where the second map is the obvious natural isomorphism. Now compute
this composite map and its inverse using the explicit descriptions of δ and
δ−1 from Lemma 5.1.

Corollary 5.2 combined with adjointness of tensor and hom implies that
(Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?) is an adjoint pair of functors. Let us write down the
unit and counit of the canonical adjunction explicitly; see also the discussion
following (6.7) below. The unit is the natural transformation

ι′ : IdCν′ -mod → Cν′,ν ⊗Cν Cν,ν′⊗Cν′? (5.3)

defined by m 7→ (−1)a
∑a

r=0(−1)rer(ν ′; i) ⊗ xa−r
k ⊗ m for all Cν′-modules

M and m ∈ M . (The prime in the notation ι′ is intended to help remem-
ber that it defines Cν′-module homomorphisms.) The counit is the natural
transformation

ε : Cν,ν′ ⊗Cν′ Cν′,ν⊗Cν ?→ IdCν -mod (5.4)



22 JONATHAN BRUNDAN

defined by xr
k ⊗ xs

k ⊗m 7→ (−1)ahr+s−a(ν; i)m for r, s ≥ 0, m ∈M and any
Cν-module M .

Repeating the proof of Lemma 5.1 with the roles of Cν and Cν′ reversed,
one shows instead that there exists a unique (Cν , Cν′)-bimodule isomorphism

δ′ : Cν,ν′ → HomCν′ (Cν′,ν , Cν′) (5.5)

such that (δ′(xr
k))(x

s
k) = hr+s−b(ν ′; i + 1) for each r, s ≥ 0. The inverse map

sends f 7→
∑b

r=0(−1)rer(ν; i + 1)f(xb−r
k ). Hence, just like in Corollary 5.2,

the functors Cν,ν′⊗Cν′? and HomCν′ (Cν′,ν , ?) are isomorphic. This means
that (Cν′,ν⊗Cν ?, Cν,ν′⊗Cν ?) is an adjoint pair too. This way round, the unit
of the canonical adjunction is the natural transformation

ι : IdCν -mod → Cν,ν′ ⊗Cν′ Cν′,ν⊗Cν ? (5.6)

defined by m 7→
∑b

r=0(−1)rer(ν; i + 1) ⊗ xb−r
k ⊗ m for all Cν-modules M

and m ∈M . The counit is the natural transformation

ε′ : Cν′,ν ⊗Cν Cν,ν′⊗Cν′?→ IdCν′ -mod (5.7)

defined by xr
k ⊗ xs

k ⊗m 7→ hr+s−b(ν ′; i + 1)m for r, s ≥ 0, m ∈ M and any
Cν′-module M .

Using the adjoint pairs just constructed and the general construction of
[Be, §3], we can define some natural trace maps

Z(Cν -mod) Z(Cν′ -mod),
Fi−→←−
Ei

(5.8)

between the centers of the module categories. To define these maps explic-
itly, take z ∈ Z(Cν -mod) and z′ ∈ Z(Cν′ -mod). Then Ei(z′) and Fi(z) are
the unique elements of Z(Cν -mod) and Z(Cν′ -mod), respectively, defined
by the equations

Ei(z′) := ε ◦ (1Cν,ν′⊗Cν′
?)z′(1Cν′,ν⊗Cν ?) ◦ ι, (5.9)

Fi(z) := ε′ ◦ (1Cν′,ν⊗Cν ?)z(1Cν,ν′⊗Cν′
?) ◦ ι′. (5.10)

Since Cν is a commutative algebras, the center Z(Cν -mod) is canonically
isomorphic to the algebra Cν itself, via the map Cν

∼→ Z(Cν -mod) arising
from multiplication. Similarly, Z(Cν′ -mod) is canonically isomorphic to Cν′ .
Making these identifications, the maps Ei and Fi just defined become linear
maps between Cν and Cν′ .

Theorem 5.3. The linear maps Ei and Fi just defined are the same as
the maps arising from the Chevalley generators Ei and Fi of ĝ that were
computed in Theorem 3.4.

Proof. We just check this in the case of Fi, the argument for Ei being
similar. We need the maps

ι′ : Cν′ → Cν′,ν ⊗Cν Cν,ν′ , ε′ : Cν′,ν ⊗Cν Cν,ν′ → Cν′

arising from (5.3) and (5.7) applied to the module M = Cν′ . The former
maps 1 7→ (−1)a

∑a
r=0(−1)rer(ν ′; i) ⊗ xa−r

k . The latter is the Cν′-module
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homomorphism mapping xr
k⊗xs

k 7→ hr+s−b(ν ′; i+1) for all r, s ≥ 0. Now take
any z ∈ Cν and write it as z =

∑b
r=0 zrx

r
k for (unique) elements zr ∈ Cν′ . By

the definition (5.10), Fi(z) is the image of 1 ∈ Cν′ under the composite first
of ι′ : Cν′ → Cν′,ν⊗Cν Cν,ν′ , then the endomorphism of Cν′,ν⊗Cν Cν,ν′ defined
by left multiplication by 1⊗z, and finally the map ε′ : Cν′,ν⊗Cν Cν,ν′ → Cν′ .
As z belongs to Cν , left multiplication by 1 ⊗ z is the same thing as left
multiplication by z ⊗ 1. Using these facts, an elementary calculation now
gives that

Fi(z) =
b∑

r=0

zr · (−1)a
a∑

s=0

(−1)ses(ν ′; i)hr−s+a−b(ν ′; i + 1).

This agrees with the second description of the action of the Chevalley gen-
erator Fi on z from Theorem 3.4(i).

6. Category O

At last it is time to bring category O into the picture. The basic notation
concerning O was introduced already in the introduction. We continue to
write

⊕
ν for the direct sum over all compositions ν of n, so

⊕
ν Oν is the

sum of all the integral blocks of O. We also fix throughout the section a
composition µ of n and let λ be the transpose partition. We will soon need
the following result, which was proved in [B, Theorem 2]. For the final part
of (ii), we refer the reader to [BK2, §4] where an explicit parametrization of
the irreducible modules in parabolic category O for g = gln(C) is explained
in terms of column strict tableaux.

Lemma 6.1. Let ν be a composition of n.
(i) The natural multiplication map mµ

ν : Z(g)→ Z(Oµ
ν ) is surjective.

(ii) The dimension of Z(Oµ
ν ) is equal to the number of isomorphism

classes of irreducible modules in Oµ
ν , which is the same as the number

of column strict λ-tableaux of type ν.

Let us recall some of Soergel’s results from [S]. Fix a composition ν
of n. Let Qν denote the antidominant projective indecomposable mod-
ule in Oν , that is, the projective cover of the irreducible module L(α)
where α =

∑n
i=1 aiεi is the unique weight such that a1 ≤ · · · ≤ an and

exactly νi of the integers a1, . . . , an are equal to i for each i ∈ Z. Let
pν : Z(g)→ EndOν (Qν)op be the homomorphism induced by multiplication;
the op here indicates that we are for once viewing Qν as a right module over
EndOν (Qν)op. Also let qν : Z(g) → Cν be the homomorphism sending the
generator zr ∈ Z(g) to er(x1 +a1, . . . , xn +an) ∈ Cν for each r = 1, . . . , n, as
in the introduction. With this notation, we can now formulate Soergel’s fun-
damental theorem [S, Endomorphismensatz 7] for the Lie algebra g = gln(C)
as follows: The maps pν and qν are surjective and have the same kernels.



24 JONATHAN BRUNDAN

Hence, there is a unique isomorphism cν making the following diagram com-
mute:

Z(g)

EndOν (Qν)op
∼−−−−→
cν

Cν .

↙
pν

�� ↘
qν

@@ (6.1)

We also need the following known lemma; see for example [MS, Theorem
5.2(2)] where a more general result than this is proved (for regular blocks).
For completeness, we include a self-contained proof based on Lemma 6.1.

Lemma 6.2. The natural multiplication map fν : Z(Oν) → EndOν (Qν)op

is an isomorphism.

Proof. As well as being the projective cover of L(α), the self-dual module
Qν is its injective hull. Every Verma module in Oν has irreducible socle
isomorphic to L(α). Every projective module in Oν has a Verma flag, so
embeds into a direct sum of copies of Qν . Hence every module in Oν is a
quotient of a submodule of a direct sum of copies of Qν . This means that
if z belongs to ker fν , i.e. it acts as zero on Qν , it also acts as zero on
every module in Oν , so in fact z = 0. Hence fν is injective. It is surjective
because the natural multiplication map mν : Z(g)→ Z(Oν) is surjective by
Lemma 6.1(i), and the surjection pν from (6.1) factors as pν = fν ◦mν .

Using the isomorphism cν from (6.1) we will from now on identify the alge-
bra EndOν (Qν)op with Cν , making Qν into a right Cν-module. Using the iso-
morphism fν from Lemma 6.2 we will also identify Z(Oν) with EndOν (Qν)op.
So it makes sense to write simply Z(Oν) = EndOν (Qν)op = Cν , and the maps
pν and cν in (6.1) have been identified with a surjection pν : Z(g)→ Z(Oν)
and an isomorphism cν : Z(Oν)→ Cν , as we wrote in the introduction.

We introduce Soergel’s combinatorial functor

Vν : Oν → Cν -mod, Vν := HomOν (Qν , ?). (6.2)

By [S, Struktursatz 9], given any projective module P in Oν and any other
module M , the functor Vν defines an isomorphism

Vν : HomOν (M,P ) ∼−→ HomCν (VνM, VνP ). (6.3)

So if we let Pν denote a minimal projective generator for Oν and set

Aν := EndOν (Pν)op, (6.4)

then the functor Vν defines an algebra isomorphism Aν
∼→ EndCν (VνPν)op.

It is often convenient to identify Aν with EndCν (VνPν)op in this way. We
can also identify Qν with a unique indecomposable summand of Pν , so there
exists an idempotent eν ∈ Aν such that Qν = Pνeν . It is then the case that
Cν = eνAνeν .

Suppose now that we are given compositions ν, ν ′ of n and exact functors
E : Oν′ → Oν and F : Oν → Oν′ that commute with direct sums. Assume in
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addition that we are given a (Cν′ , Cν)-bimodule Cν′,ν , a (Cν , Cν′)-bimodule
Cν,ν′ , and a pair of isomorphisms of functors

τ : Vν ◦ E ∼−→ Cν,ν′⊗Cν′? ◦ Vν′ , (6.5)

τ ′ : Vν′ ◦ F ∼−→ Cν′,ν⊗Cν ? ◦ Vν . (6.6)

Let Adj(E, F) and Adj(Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?) denote the sets of all (not
necessarily graded) adjunctions making (E, F) and (Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?),
respectively, into adjoint pairs of functors. Given an adjunction belong-
ing to Adj(Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?), there is an induced (Cν′ , Cν)-bimodule
isomorphism

δ : Cν′,ν = HomCν′ (Cν′ , Cν′,ν ⊗Cν Cν)
∼−→

HomCν (Cν,ν′ ⊗Cν′ Cν′ , Cν) = HomCν (Cν,ν′ , Cν), (6.7)

where the middle isomorphism is defined by the adjunction. Conversely, any
such (Cν′ , Cν)-bimodule isomorphism δ defines an isomorphism between the
functors Cν′,ν⊗Cν ? and HomCν (Cν,ν′ , ?) as in the proof of Corollary 5.2.
Hence by adjointness of tensor and hom, δ induces an adjunction between
Cν,ν′⊗Cν′? and Cν′,ν⊗Cν ?, i.e. an element of Adj(Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?).
The unit ι and counit ε of this induced adjunction are characterized as
follows:

• ι is the natural transformation IdCν′ -mod → Cν′,ν ⊗Cν Cν,ν′⊗Cν′?
defining the map 1 7→

∑k
i=1 ai ⊗ bi on the regular module Cν′ ,

where
∑k

i=1 ai ⊗ bi is the unique element of Cν′,ν ⊗Cν Cν,ν′ such
that

∑k
i=1(δ(ai))(x)bi = x for all x ∈ Cν,ν′ ;

• ε is the natural transformation Cν,ν′ ⊗Cν′ Cν′,ν⊗?→ IdCν -mod defin-
ing the map Cν,ν′ ⊗Cν′ Cν′,ν → Cν , a⊗ b 7→ (δ(b))(a) on the regular
module Cν .

The two constructions just described give mutually inverse bijections be-
tween Adj(Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?) and the set of all (Cν′ , Cν)-bimodule iso-
morphisms from Cν′,ν to HomCν (Cν,ν′ , Cν). In similar fashion, an element
of Adj(E, F) defines an (Aν′ , Aν)-bimodule isomorphism

δ̂ : HomOν′ (Pν′ , FPν)
∼−→ HomOν (EPν′ , Pν). (6.8)

This gives a bijection between Adj(E, F) and the set of all such (Aν′ , Aν)-
bimodule isomorphisms. The following lemma explaining how adjunctions
between E and F induce adjunctions between Cν,ν′⊗Cν′? and Cν′,ν⊗Cν ? is a
general result about quotient functors in the sense of [G, §III.1]. We include
a sketch of the proof since we will exploit the explicit description of the
induced unit and counit later on.

Lemma 6.3. There is a well-defined map

T : Adj(E, F)→ Adj(Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?)

sending the adjunction in Adj(E, F) with unit ι̂ and counit ε̂ to the adjunction
in Adj(Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?) with unit ι and counit ε determined by the
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property that the following diagrams commute:

Vν′
1Vν′

ι̂
−−−−→ Vν′FE

ι1Vν′

y yτ ′1E

Cν′,ν ⊗Cν Cν,ν′ ⊗Cν′ Vν′ ←−−−−−−−
(1Cν′,ν⊗?)τ

Cν′,ν ⊗Cν VνE,

Vν
1Vν ε̂
←−−−− VνEF

ε1Vν

x yτ1F

Cν,ν′ ⊗Cν′ Cν′,ν ⊗Cν Vν ←−−−−−−−−
(1Cν,ν′⊗?)τ ′

Cν,ν′ ⊗Cν′ Vν′F.

Proof. We first construct the map T . Take an adjunction between E
and F with unit ι̂ and counit ε̂, i.e. an element of Adj(E, F). It defines an
isomorphism

HomOν′ (Qν′ , FQν)
∼−→ HomOν (EQν′ , Qν), g 7→ ε̂Qν ◦ Eg.

Composing on the right with the inverse of the isomorphism

HomOν′ (Qν′ , FQν)
Vν′−→ HomCν′ (Vν′Qν′ , Vν′(FQν))

τ ′−→
HomCν′ (Vν′Qν′ , Cν′,ν ⊗Cν VνQν) = HomCν′ (Cν′ , Cν′,ν ⊗Cν Cν) = Cν′,ν

mapping g 7→ τ ′Qν
◦ Vν′g and on the left with the isomorphism

HomOν (EQν′ , Qν)
Vν−→ HomCν (Vν(EQν′), VνQν)

τ−→
HomCν (Cν,ν′ ⊗Cν′ Vν′Qν′ , VνQν) = HomCν (Cν,ν′ , Cν)

mapping h 7→ Vνh ◦ τ−1
Qν′

, we get a (Cν′ , Cν)-bimodule isomorphism δ :
Cν′,ν → HomCν (Cν,ν′ , Cν). As explained just after (6.7), this defines an
element of Adj(Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?).

Now we need to verify that the two diagrams in the statement of the
lemma commute; we just sketch the argument for the second one. We claim
for g ∈ HomOν′ (Qν′ , FQν) and ε defined via the second diagram that

Vν(ε̂Qν ◦ Eg) = εVνQν ◦
(
idCν,ν′ ⊗(τ ′Qν

◦ Vν′g)
)
◦ τQν′ ,

equality in HomCν (VνEQν′ , VνQν). Well, by the naturality of τ , we have
that τFQν ◦ VνEg = (idCν,ν′ ⊗Vν′g) ◦ τQν′ . Hence, using the commuting
diagram defining ε applied to the module Qν , we get that

Vν(ε̂Qν ◦ Eg) = Vν ε̂Qν ◦ VνEg = εVνQν ◦ idCν,ν′ ⊗τ ′Qν
◦ τFQν ◦ VνEg

= εVνQν ◦ idCν,ν′ ⊗τ ′Qν
◦ idCν,ν′ ⊗Vν′g ◦ τQν′

= εVνQν ◦
(
idCν,ν′ ⊗(τ ′Qν

◦ Vν′g)
)
◦ τQν′ .

This proves the claim. Now take any f ∈ HomCν′ (Vν′Qν′ , Cν′,ν⊗Cν VνQν) =
Cν′,ν . We can write f = τ ′Qν

◦Vν′g for a unique g ∈ HomOν′ (Qν′ , FQν). The
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map δ defined in the previous paragraph maps f to Vν(ε̂Qν ◦Eg) ◦ τ−1
Qν′

. By

the claim, this is the same as εVνQν ◦
(
idCν,ν′ ⊗(τ ′Qν

◦ Vν′g)
)
. This is the

image of the adjunction with counit ε under the map δ from (6.7), which is
what we were trying to check.

Conversely, every adjunction between Cν,ν′⊗Cν′? and Cν′,ν⊗Cν ? lifts in a
canonical way to an adjunction between E and F, thanks to the next lemma.

Lemma 6.4. There exists a map

R : Adj(Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?)→ Adj(E, F)

such that T ◦R = id, where T is the map from the preceeding lemma.

Proof. Recall that there are idempotents eν ∈ Aν and eν′ ∈ Aν′ such that
Qν = Pνeν , Qν′ = Pν′eν′ and Cν = eνAνeν , Cν′ = eν′Aν′eν′ . We have that

eν′HomOν′ (Pν′ , FPν)eν = HomOν′ (Qν′ , FQν),

eν′HomOν′ (EPν′ , Pν)eν = HomOν′ (EQν′ , Qν),

eν′HomCν′ (Vν′Pν′ , Cν′,ν ⊗Cν VνPν)eν = HomCν′ (Vν′Qν′ , Cν′,ν ⊗Cν VνQν),

eν′HomCν (Cν,ν′ ⊗Cν′ Vν′Pν′ , VνPν)eν = HomCν′ (Cν,ν′ ⊗Cν′ Vν′Qν′ , VνQν).

Consider the following diagram:

↘@@

↓

T ′

↓

↘

@
@

@

{
(Aν′ , Aν)-bimodule isomorphisms
HomOν′ (Pν′ , FPν)→HomOν (EPν′ , Pν)

}
 (Aν′ , Aν)-bimodule isomorphisms

HomCν′ (Vν′Pν′ , Cν′,ν ⊗Cν VνPν)
→HomCν (Cν,ν′ ⊗Cν′ Vν′Pν′ , VνPν)


{

(Cν′ , Cν)-bimodule isomorphisms
HomOν′ (Qν′ , FQν)→HomOν (EQν′ , Qν)

}
 (Cν′ , Cν)-bimodule isomorphisms

HomCν′ (Vν′Qν′ , Cν′,ν ⊗Cν VνQν)
→HomCν (Cν,ν′ ⊗Cν′ Vν′Qν′ , VνQν)


where the vertical maps arise by multiplying on the left by eν′ and on the
right by eν , and the diagonal maps are the isomorphisms defined by compos-
ing on the left and right by isomorphisms arising from (6.3) and (6.5)–(6.6)
exactly like in the proof of Lemma 6.3. Using the identifications of the
spaces of adjunctions with spaces of bimodule isomorphisms, T is by defini-
tion the composite of the two left hand maps. The diagram commutes, so T
is also the composite of the two right hand maps. So we just need to observe
that the map T ′ possesses a right inverse R′. To see that, take a bimodule
isomorphism δ in the codomain of T ′, that is, a bimodule isomorphism

δ : Cν′,ν
∼−→ HomCν (Cν,ν′ , Cν).
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It defines an adjunction between the functors (Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?), from
which we get a bimodule isomorphism

δ̂ : HomCν′ (Vν′Pν′ , Cν,ν′ ⊗Cν′ VνPν)
∼−→ HomCν (Cν′,ν ⊗Cν Vν′Pν′ , VνPν).

Moreover, T ′(δ̂) = δ, so we get the desired map R′ by setting R′(δ) := δ̂.

There is just one more essential ingredient: the special translation func-
tors Ei, Fi : O → O which we define here following the approach of [CR,
§7.4]; see also [BFK, §3.1] for a special case and [BK1, §4.4] for a detailed
discussion of the combinatorics of these functors in general. Let V and V ∗

denote the natural g-module and its dual, respectively. For g-modules M
and N , multiplication by Ω :=

∑n
i,j=1 ei,j⊗ej,i ∈ g⊗g defines a g-module en-

domorphism of M ⊗N . For i ∈ Z, let Fi be the functor defined on a module
M first by tensoring with the natural module V , then taking the generalized
i-eigenspace of the endomorphism Ω. Similarly, let Ei be the functor defined
first by tensoring with V ∗, then taking the generalized −(n + i)-eigenspace
of the endomorphism Ω. This defines functors

Ei, Fi :
⊕

ν Oν →
⊕

ν Oν (6.9)

for each i ∈ Z. It is well known that these functors are both left and
right adjoint to each other, for example one gets adjunctions induced by
the canonical adjunctions between the functors of tensoring with V and
with V ∗. In particular, both of the functors are exact and commute with
direct sums. It is also known that Ei is zero on modules belonging to Oν′

if ν ′i+1 = 0, and Fi is zero on modules belonging to Oν if νi = 0. Moreover,
given compositions ν, ν ′ related to each other as in the key situation (3.9),
the functor Ei maps modules belonging to Oν′ into Oν and Fi maps modules
belonging to Oν into Oν′ . Hence, Ei and Fi restrict to well-defined functors

Oν Oν′ .
Fi−→←−
Ei

(6.10)

From now on, Cν,ν′ denotes the algebra CSν∩Sν′ viewed as a (Cν , Cν′)-
bimodule and Cν′,ν denotes CSν∩Sν′ viewed as a (Cν′ , Cν)-bimodule, like in
the previous section. The following important lemma is proved in [FKS,
Proposition 3.3].

Lemma 6.5. There are isomorphisms of functors

τ : Vν ◦ Ei
∼−→ Cν,ν′⊗Cν′? ◦ Vν′ ,

τ ′ : Vν′ ◦ Fi
∼−→ Cν′,ν⊗Cν ? ◦ Vν .

In the previous section, we constructed an explicit adjunction between
Cν,ν′⊗Cν′? and Cν′,ν⊗Cν ?, i.e. an element of Adj(Cν,ν′⊗Cν′?, Cν′,ν⊗Cν ?),
with unit ι′ and counit ε defined by (5.3)–(5.4). Applying Lemmas 6.3–6.4
with E = Ei and F = Fi we lift this adjunction to an element of Adj(Ei, Fi).
Denoting the unit and counit of this lift by ι̂′ and ε̂, respectively, the appro-
priate analogues of the diagrams in the statement of Lemma 6.3 commute.
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Similarly, this time taking E = Fi and F = Ei, we lift the adjunction in
Adj(Cν′,ν⊗Cν ?, Cν,ν′⊗Cν′?) with unit ι and counit ε′ defined by (5.6)–(5.7)
to an adjunction in Adj(Fi, Ei), whose unit ι̂ and counit ε̂′ are again de-
fined by the appropriate analogues of the diagrams from Lemma 6.3. We
remark that the adjunctions making (Ei, Fi) and (Fi, Ei) into adjoint pairs
that we have just defined are definitely not in general the same as the ad-
junctions induced by the canonical adjunctions between tensoring with V
and V ∗ mentioned earlier.

Now we can repeat the definitions (5.9)–(5.10) in the present setting to
get induced trace maps

Z(Oν) Z(Oν′).
Fi−→←−
Ei

(6.11)

Thus, Ei and Fi are the maps defined on z′ ∈ Z(Oν′) and z ∈ Z(Oν) by

Ei(z′) := ε̂ ◦ 1Ei z′ 1Fi ◦ ι̂ ∈ Z(Oν), (6.12)

Fi(z) := ε̂′ ◦ 1Fi z 1Ei ◦ ι̂′ ∈ Z(Oν′), (6.13)

respectively. Also define Di : Z(Oν) → Z(Oν) to be multiplication by the
scalar νi. Taking the direct sum of these linear maps over all compositions
of n, interpreting Ei as the zero map on Z(Oν′) if ν ′i+1 = 0 and Fi as the
zero map on Z(Oν) if νi = 0, we obtain linear maps

Di, Ei, Fi :
⊕

ν Z(Oν)→
⊕

ν Z(Oν) (6.14)

for each i ∈ Z. The following theorem shows that these maps define actions
of the generators Di, Ei and Fi of ĝ making

⊕
ν Z(Oν) into a well-defined

ĝ-module.

Theorem 6.6. Under the identification of
⊕

ν Z(Oν) with
⊕

ν Cν , the en-
domorphisms Di, Ei and Fi just defined coincide with the maps arising from
the actions of the generators Di, Ei and Fi of ĝ defined just after (3.8).

Proof. It is obvious that the Di’s are equal. So in view of Theorem 5.3
we just need to check for fixed i ∈ Z and ν, ν ′ as above that the maps
Ei and Fi from (5.8) coincide with the maps Ei and Fi from (6.11). We
explain the argument just for Ei, since the other case is similar. As Cν is
commutative, we can identify Cν with Z(Cν -mod) as before. Consider the
following commutative diagram:

Z(g)
qν−−−−→ Z(Cν -mod)

pν

y yyν

Z(Oν) −−−−→
xν

End(Vν),

where xν is the map sending a natural transformation z ∈ End(IdOν ) to
the natural transformation 1Vν z ∈ End(Vν) and yν is the map sending a
natural transformation z ∈ End(IdCν -mod) to the natural transformation
z1Vν ∈ End(Vν). We note that yν is injective. Indeed, if z ∈ ker yν , then in
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particular z acts as zero on EndCν (VνQν) = EndCν (Cν), hence z = 0. More-
over, the diagram commutes. To see this, take z ∈ Z(g) and any M ∈ Oν .
We need to show xν(pν(z)) and yν(qν(z)) both define the same endomor-
phism of VνM = HomOν (Qν ,M). Well, xν(pν(z)) defines the endomomor-
phism f 7→ f̂ where f̂(q) = zf(q) and yν(qν(z)) defines the endomorphism
f 7→ f̃ where f̃(q) = f(zq). Since f is a g-module homomorphism we do
indeed have that f̂ = f̃ .

The facts established in the previous paragraph imply that x ∈ Z(Oν) is
equal to y ∈ Z(Cν -mod) under all our identifications if and only if 1Vν x =
y1Vν in End(Vν). Similarly, x ∈ Z(Oν′) is equal to y ∈ Z(Cν′ -mod) if and
only if 1Vν′x = y1Vν′ in End(Vν′). So take x ∈ Z(Oν′) and y ∈ Z(Cν′ -mod)
such that 1Vν′x = y1Vν′ . To complete the proof of the theorem, we need to
show that

1Vν Ei(x) = Ei(y)1Vν .

Recalling (5.9) and (6.12), this is the statement that

1Vν ε̂ ◦ 1Vν1Eix1Fi ◦ 1Vν ι̂ = ε1Vν ◦ (1Cν,ν′⊗Cν′
?)y(1Cν′,ν⊗Cν ?)1Vν ◦ ι1Vν .

Recalling Lemma 6.5, naturality implies that

τ ◦ 1Vν1Eix = (1Cν,ν′⊗Cν′
?)1Vν′x ◦ τ,

τ ′ ◦ y1Vν′1Fi = y(1Cν′,ν⊗Cν ?)1Vν ◦ τ ′.

Also by the commuting squares from Lemma 6.3 that are satisfied by the
special adjunctions fixed above, we have that

1Vν ε̂ = ε1Vν ◦ (1Cν,ν′⊗Cν′
?)τ ′ ◦ τ1Fi ,

ι1Vν = (1Cν,ν′⊗Cν′
?)τ ′ ◦ τ1Fi ◦ 1Vν ι̂.

Now we calculate:

1Vν ε̂ ◦ 1Vν1Eix1Fi ◦ 1Vν ι̂

= ε1Vν ◦ (1Cν,ν′⊗Cν′
?)τ ′ ◦ τ1Fi ◦ 1Vν1Eix1Fi ◦ 1Vν ι̂

= ε1Vν ◦ (1Cν,ν′⊗Cν′
?)τ ′ ◦ (1Cν,ν′⊗Cν′

?)1Vν′x1Fi ◦ τ1Fi ◦ 1Vν ι̂

= ε1Vν ◦ (1Cν,ν′⊗Cν′
?)τ ′ ◦ (1Cν,ν′⊗Cν′

?)y1Vν′1Fi ◦ τ1Fi ◦ 1Vν ι̂

= ε1Vν ◦ (1Cν,ν′⊗Cν′
?)y(1Cν′,ν⊗Cν ?)1Vν ◦ (1Cν,ν′⊗Cν′

?)τ ′ ◦ τ1Fi ◦ 1Vν ι̂

= ε1Vν ◦ (1Cν,ν′⊗Cν′
?)y(1Cν′,ν⊗Cν ?)1Vν ◦ ι1Vν .

This is what we wanted.

Now we have all the necessary machinery set up, we can quite quickly
prove the Main Theorem. Let Oµ

ν be the integral block of parabolic cate-
gory O parametrized by the fixed compositions µ and ν, as in the introduc-
tion5. Because Oµ

ν is a full subcategory of Oν , restriction defines an algebra

5Although not needed here, we remark that Soergel’s combinatorial functor V has been
considered recently in the parabolic setting in [S1, §10] and (from a quite different point
of view) in [BK2, §5].
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homomorphism
rµ
ν : Z(Oν)→ Z(Oµ

ν ). (6.15)
Since the surjection mµ

ν from Lemma 6.1(i) factors as mµ
ν = rµ

ν ◦ pν , this
map rµ

ν is surjective, i.e. Z(Oµ
ν ) is a quotient of Z(Oν). The functors Ei

and Fi from (6.10) restrict to well-defined functors

Oµ
ν Oµ

ν′ .
Fi−→←−
Ei

(6.16)

Working with the same adjunctions as before (viewed now as adjunctions
between the restricted functors), we define endomorphisms

Di, Ei, Fi :
⊕

ν Z(Oµ
ν )→

⊕
ν Z(Oµ

ν ) (6.17)

for each i ∈ Z in exactly the same way as (6.14). It is then immediate that
the map ⊕νr

µ
ν :

⊕
ν Z(Oν) �

⊕
ν Z(Oµ

ν ) intertwines the endomorphisms
from (6.14) and (6.17). So the latter maps define actions of the generators
Di, Ei and Fi of ĝ making

⊕
ν Z(Oµ

ν ) into a ĝ-module. Let sµ
ν : Cν � Cµ

ν

denote the canonical quotient map for each ν and recall that
⊕

ν Cµ
ν is a

ĝ-module described by Theorem 4.3.

Theorem 6.7. For each composition ν of n, there exists a unique algebra
isomorphism cµ

ν making the following diagram commute:

Z(Oν) = Cν

Z(Oµ
ν ) −−−−→

cµ
ν

Cµ
ν .

↙
rµ
ν�� ↘

sµ
ν@@ (6.18)

Moreover, the map ⊕νc
µ
ν :

⊕
ν Z(Oµ

ν ) ∼→
⊕

ν Cµ
ν is a ĝ-module isomorphism.

Proof. Both of the maps ⊕νr
µ
ν and ⊕νs

µ
ν are surjective ĝ-module homo-

morphisms. Moreover, we know that dim Z(Oµ
ν ) = dim Cµ

ν by Corollary 4.4
and Lemma 6.1(ii). So it suffices to check that ker rµ

ν ⊆ ker sµ
ν for each ν.

We first treat the special case that ν+ = λ, when there is just one col-
umn strict λ-tableau of type ν. Let a1 ≤ · · · ≤ an be the integers such
that νi of them are equal to i for each i ∈ Z. Since there is just one iso-
morphism class of simple modules in the highest weight category Oµ

ν , it is
a semisimple category. So zr ∈ Z(g) acts by the scalar er(a1, . . . , an) on
every module in Oµ

ν . It follows easily that ker rµ
ν is generated by the ele-

ments pν(zr)− er(a1, . . . , an) for all r ≥ 1. We therefore need to show that
qν(zr) − er(a1, . . . , an) = er(x1 + a1, . . . , xn + an) − er(a1, . . . , an) belongs
to ker sµ

ν for each r ≥ 1. This is clear since Cµ
ν is a one dimensional graded

algebra and each of these elements involves only strictly positive degree
terms.

Now take an arbitrary ν. Also let γ be any composition with γ+ = λ
and let ω be any regular composition. Let x ∈ Cν be an element that is
not contained in the kernel of sµ

ν . We need to show that rµ
ν (x) 6= 0. By

Theorem 4.3(iv), we can find y ∈ Cω and u, v ∈ U(ĝ) such that vx ∈ Cω,



32 JONATHAN BRUNDAN

u(y(vx)) ∈ Cγ and sµ
γ(u(y(vx))) 6= 0. Since γ+ = λ, the previous paragraph

implies that rµ
γ (u(y(vx)) 6= 0. But

rµ
γ (u(y(vx)) = urµ

ω(y(vx)) = u(rµ
ω(y)rµ

ω(vx)) = u(rµ
ω(y)(vrµ

ν (x))),

so we deduce that rµ
ν (x) 6= 0 too.

This completes the proof of the Main Theorem from the introduction.
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